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02421 - Introduction
Today’s Agenda

• Informative experiments
• Model validation
• Adaptive control
• Explicit self-tuners
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Informative experiments
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02421 - Informative experiments
Design Configurations

When attempting to identify a system, consider the following:
1 What are the outputs?

2 What are the inputs?

3 What are the disturbances?

Also consider some practical aspects of the system
1 What are we allowed to do?

2 What type of model are we interested in?
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02421 - Informative experiments
Design Configurations

Open Loop Closed Loop
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02421 - Informative experiments
Informative Experiments - Objectives

For any system S, we can construct a set of models M to describe it

S : y = G0(q)u+H0(q)e (1)
M = {G(q, θ), H(q, θ)|θ ∈ D} (2)

Ideally, the system should be included in the set of possible models

S ∈ M (3)

Given two models in M

M1 : y = G1(q)u+H1(q)e1 (4)
M2 : y = G2(q)u+H2(q)e2 (5)

we want to be able to determine which that describes the system better

Therefore, we need to perform an informative (open-loop) experiment

7 DTU Compute Stochastic Adaptive Control 26.2.2025



02421 - Informative experiments
Persistency of excitation (very simplified)

We want to determine an input signal resulting in data that is sufficiently
informative to distinguish between models of the same order

A signal which is pe(n) cannot be filtered to zero by a filter of order n− 1,
but n or higher might do it

ut = const ̸= 0, signal is pe(1) (6)
M1(q−1) = 1 − q−1 : M1(q−1)ut = ut − ut−1 = 0 (7)
M0(q−1) = 1 : M0(q−1)ut = ut ̸= 0 (8)

8 DTU Compute Stochastic Adaptive Control 26.2.2025



02421 - Informative experiments
Informative Experiments - common signals

Crest factor (for zero-mean signals)

C2
r = maxt u

2
t

limN→∞
1
N

∑N
t=1 u

2
t

(9)

The crest factor should be as low as possible (the minimum is 1)

For binary signals, ut = ±ū, the crest factor is minimum, C2
r = 1

Consequently, binary signals are useful for linear systems, but cannot, in
general, handle nonlinear systems

yt = B(q)
A(q)f(ut), (10)

f(ut) = α cos(±ū) = α cos(ū) (11)
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02421 - Informative experiments
Informative Experiments - common signals
Single harmonic signal

ut = A sin(wt), (12)

• Two non-zero frequency components in its spectrum (at ±w)
• It is pe(2)
• Its crest factor is C2

r = 2

Sum of sines

ut =
n∑

k=1
Ak sin(wkt+ ϕt) (13)

• Two components for each wk, so the signal is pe(2n)
• If wk = 0 or wk = π

Ts
, the order goes down by 1 to pe(2n− 1) (by 2 if both)

• The crest factor is, in the worst case, C2
r = 2n, and lowest if the sinusoids are

maximally out of phase
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02421 - Informative experiments
Informative Experiments - common signals

Sum of 2 harmonics, with maximum phase difference (180◦)
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02421 - Informative experiments
Informative Experiments - common signals

Single sine function: The chirp signal

ut = A sin((w0 + αt)t), C2
r =

√
2 (14)
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02421 - Informative experiments
Informative Experiments - common signals

PRBS signal

zt = mod(B(q−1)zt−1, 2) (15)

B is order m and the signal has the maximum length M = 2m − 1

• PRBS signals are deterministic, but have properties similar to those of white noise
• A PRBS signal is pe(M − 1) and C2

r = 1
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02421 - Informative experiments
Informative Experiments - common signals

Alternative: Apply random Gaussian signals that are filtered/colored white
noise signals

ut = Hu(q)ět, ět ∼ Fiid(0, σ2
u)(white) (16)

• In practice, we would have to use a truncated Gaussian to keep the control
bounded, e.g., within ±3σ (≈ 99% coverage), resulting in C2

r = 3
• Random binary signals can be generated by taking the sign of a suitable Random

Gaussian signal
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02421 - Informative experiments
Informative Experiments - common signals
Step and square wave signals are also commonly used

For a step at time M and a square (both between d0 and d1)

C2
r = d2

1

lim
N→∞

Md2
0+(N−M)d2

1
N

= d2
1

d2
1 + lim

N→∞
M
N d2

0
= 1, C2

r = d2
1

1
2d

2
1 + 1

2d
2
0

The pulse can also be represented as an infinite harmonic sum
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Model validation
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02421 - Model validation
Model Validation

We now know how to estimate a model, but how do we check if it is
correctly estimated when we don’t know the true parameters?

Essentially, we are asking the following two questions
1 Is our model too simple?

2 Is our model too complex?
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02421 - Model validation
Model Validations

Validate model

Estimate parameters / identify models

Choose set
of models

Choose
criteria

Data

Experiment

Design
of experiment

Prior knowledge
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02421 - Model validation
Model Validation

Three available quantities for validation
1 the estimated parameters

2 the uncertainty (the variance)

3 the undescribed model parts (the residuals)

The last is the source of measurement deviations

measurement(y) = model(θ, u) + residual(ϵ) (17)
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02421 - Model validation
Model Validation - too complex?

Question: Does our model have too many parameters?

Unbiased estimate

θ̂ ∼ F(θ, P ) (18)

θi is significant if it, with reasonable certainty, is different from zero
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02421 - Model validation
Model validation - parameter insignificant?

Use a marginal parameter test to validate that a parameter is significant

For sufficiently many measurements, the distribution approaches a normal
distribution

θ̂ ∼ N(θ, P ) (19)

If the following holds, θi is, with (1 − α)% confidence not insignificant

|θ̂i| > f1− α
2

√
Pi,i (20)

fx is the xth quantile of the standard normal distribution. This approach
requires that the variance, P , is known
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02421 - Model validation
Model validation - parameter insignificant?

If the variance, P , was estimated, use the t-distribution

zi = θ̂i√
Pi,i

∼ t(M − dp) (21)

dp is the number of parameters and M is the number of measurements

If the following holds, θi is, with (1 − α)% confidence not insignificant

|θ̂i| > f t
1− α

2
(M − dp)

√
Pi,i (22)

f t
x is the xth quantile of the t-distribution. Again, if M ≫ dp, this will

approach the normal distribution
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02421 - Model validation
Model Validation - Multiple Insignificant Parameters?
More than one parameter might be insignificant, but we cannot tell whether
its some or all

But we can test whether all parameters in a subset θb are significant

θ̂ =
[
θ̂a

θ̂b

]
∼ N

([
θa

θb

]
,

[
Pa Pab

P T
ab Pb

])
(23)

Test statistic for the hypothesis of insignificant parameters (θb = 0)

zb = θ̂T
b P

−1
b θ̂b ∼ F (db,M − dp) (24)

If the following holds, all parameters in θb are, with (1 − α)% confidence
significant

zb > fF
1−α(db,M − dp) (25)

db is the size of the subset and fF
x is the xth quantile of the F-distribution.

For large M , we can apply a χ2(db) instead of the F-distribution
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02421 - Model validation
Model Reduction

Distribution of parameter estimates[
θa

θb

]
∼ N

([
θ̂a

θ̂b

]
,

[
Pa Pab

P T
ab Pb

])
(26)

If a subset of the parameters, θ̂b, is insignificant, we can reduce the model
using the projection theorem

θa|θb ∼ N(ˆ̄θa, P̄a) (27)
ˆ̄θa = θ̂a − P T

abP
−1
b θ̂b (28)

P̄a = Pa − PabP
−1
b P T

ab (29)
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02421 - Model validation
Insignificant: singular analysis of the variance matrix P

Most estimation methods involve solving linear equations in the form

Hθ̂ = g (30)

H is a measure of the data set related to the variance, H−1 = P

P =
(

N∑
i=0

ψiψ
T
i

)−1

σ2 (31)

• If a model is overparameterized, then (in the ideal case) H will be singular
• In the less ideal case, H is invertible, but has eigenvalues that are significantly

smaller than the rest

eig(H)i ≪ eig(H)j ⇔ eig(P )i ≫ eig(P )j (32)

• This requires that the system is sufficiently excited – insufficiently excited systems
will result in similar issues
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02421 - Model validation
Condition number

Another way to evaluate if a model is overparameterized is to consider the
condition number of its variance.

cond(P ) = |λmax|
|λmin|

, λ = eig(P ) (33)

where λmin and λmax are the smallest and largest eigenvalues of P

If cond(P ) is large, it indicates overparameterization

Example:

Model 1: cond(P1) = 1000 (34)
Model 2: cond(P2) = 40 (35)

Model 1 appears to be too complex, while model 2 is more balanced
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02421 - Model validation
Zeros and poles: Cancellation?

If the model is overparameterized, some zeros and poles might be close to
each other

yt = Hyu(q)ut +Hye(q)et (36)

Use linearization to approximate uncertainty in zero and poles

p̂i = fi(θ̂) ≃ fi(θ) + ∂fi

∂θ
θ̃, θ̃ ∼ N(0, P ), (37)

p̂i ∼ N

(
pi,

∂fi

∂θ
P

(
∂fi

∂θ

)T
)

(38)

If the confidence intervals of a pole and a zero overlap, it is a strong
indication that they cancel each other out

Hint: Use Matlab’s zpplot
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02421 - Model validation
Zeros and poles: Example of cancellation

(1 − 1.5q−1 + 0.7q−2)yt = (1 − 0.5q−1)ut + et (39)
(1 − a1q

−1 + ...+ a4q
−4)yt = (b0 + ...+ b3q

−3)ut + et (40)
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02421 - Model validation
Residual Analysis
Question: Is the model too simple?

Residuals

measurement(y) = model(θ, u) + residual(ϵ) (41)

For a perfect model, the residuals would have the following properties
1 ϵt ∼ F(0, σ2).
2 ϵt has a symmetric distribution
3 ϵt is white
4 ϵt is uncorrelated with current and prior inputs

Equivalently (in terms of co-variance functions)

rϵ(k) = E[ϵt+kϵt] =
{
σ2 k = 0,
0 otherwise,

rϵt,ut(k) = E[ϵt+kut] = 0 (42)

Important: use one data set for estimation and another for the validation
(cross-validation)
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02421 - Model validation
Residual Analysis - mean and variance test
Simple approach: Test whether the distribution of the residuals has the
right mean and variance

If the below holds, the residuals are not zero mean

|ϵ̄| > f t
1− α

2
(M − 1)

√
S2

M
, (43)

ϵ̄ = 1
M

M∑
i=1

ϵi, S2 = 1
M − 1

M∑
i=1

(ϵi − ϵ̄)2 (44)

If either of the below hold, the variance is time-varying

S2
1
S2

2
< fF

α/2(M1,M2) or S
2
1
S2

2
> fF

1−α/2(M1,M2), (45)

S2
i = 1

Mi

Mi∑
j=1

ϵ2i+j (46)

Note: The intervals must be non-overlapping
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02421 - Model validation
Residual Analysis - sign test

Test for whiteness: The number of sign changes, z, should follow (M is the
number of data points)

z ∼ N

(
M − 1

2 ,
M − 1

4

)
(47)

We reject the hypothesis if either of the below holds

z <
M − 1

2 −

√
M − 1

4 fN
1− α

2
or z > M − 1

2 +

√
M − 1

4 fN
1− α

2
(48)

That is, the hypothesis is rejected if the test statistic is outside the
confidence interval
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02421 - Model validation
Residual Analysis - test of co-variance function
Alternative test for whiteness: The auto-covariance must be in the form

rϵ(k) = E[ϵt+kϵt] =
{
σ2 k = 0
0 otherwise

(49)

Estimates of auto-covariance and auto-correlation

r̂ϵ(k) = 1
M

M−k∑
t=1

ϵt+kϵt, ρ̂ϵ(k) = r̂ϵ(k)
r̂ϵ(0) (50)

Test the covariance at each time step

H0 :
√
Mρ̂ϵ(k) ∼ N(0, 1), reject if |ρ̂ϵ(k)| >

fN
1− α

2√
M

(51)

Test if the covariance is zero for k ̸= 0

H0 : z = M
m∑

i=1
ρ̂2

ϵ (i) ∼ χ2(m), reject if z > fχ2

1−α(m) (52)
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02421 - Model validation
Residual Analysis - test of autocorrelation
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02421 - Model validation
Residual Analysis - cross-covariance function test
Test the cross-covariance

rϵ,u(k) = E[ϵt+kut] = 0 (53)

Cross-covariance and cross-correlation

r̂ϵ,u(k) = 1
M

M−k∑
i=1

ϵt+kut, ρ̂ϵ,u(k) = r̂ϵ,u(k)√
r̂ϵ(0)r̂u(0)

(54)

Marginal test of the cross-covariance

H0 :
√
Mρ̂ϵ,u(k) ∼ N(0, 1), reject if |ρ̂ϵ,u(k)| >

fN
1− α

2√
M

(55)

Check if the covariance is zero for k ̸= 0

H0 : z = M
m∑

i=1
ρ̂2

ϵ,u(i) ∼ χ2(m), reject if z > fχ2

1−α(m) (56)
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02421 - Model validation
Residual Analysis - model comparison tests
Question: Can we validate a model using a single data set?

Coefficient of determination

R2 = J0 − J(θ̂)
J0

(57)

J0 = 1
2

M∑
i=1

(yi − ȳ)2, J(θ̂) = 1
2

M∑
i=1

ϵ2i (58)

J(θ̂) is the loss-function and a perfect model results in R2 = 1. Lower
values of R2 indicate worse models

Alternative loss functions

W (θ̂) =
M∑

i=1
ϵ2i , WM (θ̂) = 1

M

M∑
i=1

ϵ2i (59)

The loss functions are monotonically non-increasing with model complexity
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02421 - Model validation
Residual Analysis - model comparison: F-test

Objective: Compare two model classes, M1 and M2 using the F-test

Hypothesis: Mtrue ⊂ M1 ⊂ M2 where d2 ≥ d1 are the number of model
parameters. Consequently, the loss-function Ji = Ji(θ̂) does not decrease
significantly by increasing the model size if M1 ⊂ M2

Test statistic

H0 : z = J1 − J2
J2

M − d2
d2 − d1

∼ F (d2 − d1,M − d2) (60)

Reject hypothesis if

z > fF
1−α(d2 − d1,M − d2) (61)
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02421 - Model validation
Residual Analysis - model comparison: Information Criteria
Information criteria
1 Akaike’s Information Criterion (AIC); tends towards higher complexity

AIC =
(

1 + 2d
M

)
WM (62)

2 Bayesian Information Criterion (BIC);

BIC =
(

1 + log(M)d
M

)
WM (63)

3 Akaike’s Final Prediction Error (FPE) Criterion; expresses the variance of the
prediction error, also FPE → AIC,M ≫ d

FPE = M + d

M − d
WM =

(
1 + 2d

M − d

)
WM (64)

If two models have the same d, choose the one with the lowest loss function
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Adaptive control
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Adaptive control
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02421 - Adaptive control
Adaptive Control

Stochastic control relies on a detailed
model which might not be available
1 Parameter values cannot be measured

2 The underlying physics is not under-
stood sufficiently well

Approach 1:
A model can be created using iden-
tification methods and a stochastic
controller can be designed

If the system varies in time, e.g.,
due to aging or wear, the identi-
fication will have to be repeated
occasionally

Approach 2:
Alternatively, we can combine online
identification and control.
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02421 - Adaptive control
Alternative to adaptive control: Robust control

If the model of a system is uncertain, there also exist other methods than
the adaptive control. One such method is the robust control
1 Robust control: Low sensitivity to the effect of uncertain system parts, a control

that, in some sense, operates after worst-case scenario

2 Adaptive control: Monitors/estimates the uncertain parts, a control law that
changes with the identified system.

In some sense, robust control can be seen as the opposite method to
adaptive control: Adapting the control usage (sensitivity) vs. adapting the
control design

That is the subject of the course 34746 Robust and fault-tolerant control
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02421 - Adaptive control
Adaptive control - Method Overview

Several schools exist within adaptive control
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02421 - Adaptive control
Adaptive control - Gain Scheduling Control

A simple approach is to manually
change the model based on the op-
erating point
1 Linear control of non-linear system:

Airplanes/robots

2 Piecewise systems: Laws for behaviour
at night vs. day

Adaptation is manual, so no perfor-
mance feedback to the adaptations
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02421 - Adaptive control
Adaptive control - Model Reference Adaptive Control (MRAC)

Another approach is to adapt the
control until the output follows a
desired transfer function with the
least possible deviation

The focus is on the control problem
and the adaptation is feedback on
the model deviations

The concept is similarly to that of
an observer/Kalman filter
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02421 - Adaptive control
Adaptive control - Self-tuning Control

The self-tuning methods are based
on the combination of an
identification algorithm, a design
method, and a controller

It is further assumed that the
certainty equivalence principle holds
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02421 - Adaptive control
Adaptive control - Certainty Equivalence Principle

Certainty equivalence principle: Replace true parameters by an estimate

θ → θ̂ (65)

For linear systems with additive noise, the principle holds

ut = −Lxt → ut = −Lx̂t (66)

In adaptive control, the principle is an assumption (minimum variance
control example)

C(q−1) = AG+ q−kS → Ĉ = ÂG+ q−kS (67)
BGut = −Syt → B̂Gut = −Syt (68)

The principle does not guarantee optimality – it is assumed for convenience
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Explicit self-tuner
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02421 - Explicit self-tuner
Basic Self-tuning
Let us now discuss the self-tuning methods in terms of the minimum
variance controller, the so-called basic self-tuning controller

We combine a recursive estimation approach for

A(q−1)yt = q−kB(q−1)ut + C(q−1)et, (69)
B(q−1) = b0 + b1q

−1 + · · · + bnb
q−nb , b0 ̸= 0, (70)

et ∼ F(0, σ2) and white (71)

with the design of the minimum variance controller for the objective

J = E[y2
t+k] (72)

u = func(Yt) (73)

Self-tuning methods come in two variants: Explicit and implicit
1 Explicit: Estimation of model used to design the control

2 Implicit: Estimation of the controller parameters + C(q−1)
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02421 - Explicit self-tuner
The Basic Self tuner - Explicit
In the explicit method, we are interested in identifying the model

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt (74)
to use in the control

We do this using a chosen estimation method
yt = ϕT

t θt−1 + et (75)

θ̂t = arg min
t∑

i=1
ϵ2i (76)

Using the estimate, we compute the control as
ut = arg minE[y2

t+k] (77)
and we repeat at the next sampling time.

For a correct estimation (ϵt = et), we have that the sum of control errors:

Je(t) =
t∑

i=1
ϵ2i ≈ tσ2 (78)
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02421 - Explicit self-tuner
The Basic Self tuner - Explicit: properties

The control loss function of the explicit self tuner:

Jr(t) =
t∑

i=1
y2

t ≈ E[y2
t ]t (79)

Ju(t) =
t∑

i=1
u2

t ≈ E[u2
t ]t (80)

For a correct estimate of the parameters, we have that ϵt = et, therefore
the residuals loss function follows

Je(t) =
t∑

i=1
ϵ2t ≈ σ2t (81)
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02421 - Explicit self-tuner
Explicit MV0 Control

Identified system (general method)

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt (82)

Controller optimality criteria:

J = E[(yt+k − wt)2] (83)

Controller design:

B̂(q−1)G(q−1)ut = Ĉ(q−1)wt − S(q−1)yt, (84)
Ĉ(q−1) = Â(q−1)G(q−1) + q−kS(q−1) (85)

QRS form:

Q(q−1) = Ĉ(q−1), R(q−1) = B̂(q−1)G(q−1) (86)
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02421 - Explicit self-tuner

Questions?
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