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Lecture Plan

@ ARX models
@ ARX prediction + control
© ARX estimation

@ ARX model validation
+ adaptive control

® ARMAX control

® ARMAX estimation
+ adaptive control
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@ Systems and control theory

@ Stochastic systems + Kalman filtering
© SS estimation (recursive) + control
@ SS control

® SS estimation (batch)

® SS estimation (recursive)

@® SS nonlinear control

Design

w

Identification

—

Controller

System

T
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Today’s Agenda

® Informative experiments
® Model validation
® Adaptive control

® Explicit self-tuners
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Design Configurations

When attempting to identify a system, consider the following:
@ What are the outputs?

® What are the inputs?

© What are the disturbances?

Also consider some practical aspects of the system
@ What are we allowed to do?

® What type of model are we interested in?
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Design Configurations

Open Loop

Exciter System
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Informative Experiments - Objectives

For any system S, we can construct a set of models M to describe it

S y=Golq)u+ Ho(g)e
M ={G(q,0), H(q,0)|0 € D}

Ideally, the system should be included in the set of possible models
SeM
Given two models in M

My =Gi(qu+ Hi(q)ex
My - Y= G2(q)u + Hg(q)eg

we want to be able to determine which that describes the system better

Therefore, we need to perform an informative (open-loop) experiment
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Persistency of excitation (very simplified)

M

We want to determine an input signal resulting in data that is sufficiently
informative to distinguish between models of the same order

A signal which is pe(n) cannot be filtered to zero by a filter of order n — 1,
but n or higher might do it

up = const # 0, signal is pe(1) (6)
Mi(gH=1-—q : Mg Yus=u —ug_1 =0 (7)
Mo(g™") =1 Mo(qg " Yur = us #0 (8)
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Informative Experiments - common signals

Crest factor (for zero-mean signals)

9 max; u;

C? = 5 (9)

IRT 1 N
limpy oo N Zt:l Uy

The crest factor should be as low as possible (the minimum is 1)
For binary signals, u; = +u, the crest factor is minimum, C’T2 =1

Consequently, binary signals are useful for linear systems, but cannot, in
general, handle nonlinear systems

Yt = ljég;f(ut)a (10)
f(u) = accos(tu) = accos(u) (11)
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Informative Experiments - common signals =
Single harmonic signal

ug = Asin(wt), (12)
® Two non-zero frequency components in its spectrum (at tw)
® |t is pe(2)
® Its crest factor is C? = 2
Sum of sines
n
u =Y Apsin(wit + ¢¢) (13)

k=1

® Two components for each wyg, so the signal is pe(2n)
® If wy =0 or wy, = 7-, the order goes down by 1 to pe(2n — 1) (by 2 if both)

® The crest factor is, in the worst case, C? = 2n, and lowest if the sinusoids are
maximally out of phase
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Informative Experiments - common signals
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Sum of 2 harmonics, with maximum phase difference (180°)

1.5k
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Informative Experiments - common signals

Single sine function: The chirp signal

up = Asin((wo + at)t), C?=+2
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Informative Experiments - common signals
PRBS signal
2 = mod(B(q ") 2z1,2) (15)

B is order m and the signal has the maximum length M = 2" — 1

® PRBS signals are deterministic, but have properties similar to those of white noise

® A PRBS signal is pe(M — 1) and C? =1
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Informative Experiments - common signals

Alternative: Apply random Gaussian signals that are filtered /colored white
noise signals

ug = Hy(q)¢, & ~ Fiia(0,02) (white) (16)

® In practice, we would have to use a truncated Gaussian to keep the control
bounded, e.g., within +30 (=~ 99% coverage), resulting in C? = 3

® Random binary signals can be generated by taking the sign of a suitable Random
Gaussian signal
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Informative Experiments - common signals

M

Step and square wave signals are also commonly used

For a step at time M and a square (both between dy and d;)
P B S
r = 2 — 2 . M -5 T 12 172
o G T

The pulse can also be represented as an infinite harmonic sum
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Model Validation

We now know how to estimate a model, but how do we check if it is
correctly estimated when we don't know the true parameters?

Essentially, we are asking the following two questions
@ Is our model too simple?

@ s our model too complex?
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Model Validations

Design

Prior knowledge

of experiment

Experiment

,
J

Choose set Choose
of models criteria

l !

|

Estimate parameters / identify models

Validate model
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Model Validation
Three available quantities for validation
@ the estimated parameters
@ the uncertainty (the variance)
© the undescribed model parts (the residuals)
The last is the source of measurement deviations

measurement(y) = model(d, u) + residual(e) (17)
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Model Validation - too complex?

Question: Does our model have too many parameters?

Unbiased estimate
0~ F(0,P)

0, is significant if it, with reasonable certainty, is different from zero
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Model validation - parameter insignificant?

Use a marginal parameter test to validate that a parameter is significant

For sufficiently many measurements, the distribution approaches a normal
distribution

0~ N(0,P) (19)
If the following holds, 6; is, with (1 — )% confidence not insignificant

16i > fr_ay/Pi (20)

fz is the xth quantile of the standard normal distribution. This approach
requires that the variance, P, is known
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Model validation - parameter insignificant?

If the variance, P, was estimated, use the t-distribution
0;
VP

dp is the number of parameters and M is the number of measurements

~ H(M — d) (21)

Z; =

If the following holds, 6; is, with (1 — «)% confidence not insignificant

10i] > fi_a (M = d,)\/Pis (22)

fL is the xth quantile of the t-distribution. Again, if M > d,,, this will
approach the normal distribution
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Model Validation - Multiple Insignificant Parameters?

More than one parameter might be insignificant, but we cannot tell whether
its some or all

But we can test whether all parameters in a subset 6, are significant

~ |6 0 P, Py
0= ~N|[] 2,5 @ 23
HEGREN) )
Test statistic for the hypothesis of insignificant parameters (6, = 0)

2y = égﬂbeléb ~ F(db, M — dp) (24)

If the following holds, all parameters in 6, are, with (1 — «)% confidence
significant

2 > o (dy, M — dp) (25)

dy is the size of the subset and fI" is the xth quantile of the F-distribution.
For large M, we can apply a x2(d;) instead of the F-distribution
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Model Reduction

M

Distribution of parameter estimates

0, 0. [P, P,
o~ (] [ &) &

If a subset of the parameters, 6, is insignificant, we can reduce the model
using the projection theorem

010y ~ N (84, P,) (27)
0o =0, — PLP0, (28)
pa:Pa*Pabeil‘Pg;) (29)
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Insignificant: singular analysis of the variance matrix P =
Most estimation methods involve solving linear equations in the form
HO=g (30)

H is a measure of the data set related to the variance, H! = P

-1

N
pP= (ZW? ) o’ (31)
1=0

® If a model is overparameterized, then (in the ideal case) H will be singular

® In the less ideal case, H is invertible, but has eigenvalues that are significantly
smaller than the rest

eig(H); < eig(H); & eig(P); > eig(P); (32)

® This requires that the system is sufficiently excited — insufficiently excited systems
will result in similar issues
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Condition number
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Another way to evaluate if a model is overparameterized is to consider the

condition number of its variance.

)\max .
cond(P) = ‘|)\ : |’, A = eig(P)

where Anin and Apax are the smallest and largest eigenvalues of P

If cond(P) is large, it indicates overparameterization

Example:

Model 1: cond(F;) = 1000
Model 2: cond(P») = 40

Model 1 appears to be too complex, while model 2 is more balanced
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Zeros and poles: Cancellation?

M

If the model is overparameterized, some zeros and poles might be close to
each other

Yt = HyU(q)ut + Hy@(‘])et (36)

Use linearization to approximate uncertainty in zero and poles

ﬁz:fi( ) fz( ) 8]; éNN(O7P)7 (37)

pi~N <p1'7 %J;ZP (%J;) ) (38)

If the confidence intervals of a pole and a zero overlap, it is a strong
indication that they cancel each other out

Hint: Use Matlab’s zpplot
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Zeros and poles: Example of cancellation

28
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(1—15¢""+0.7¢ )y = (1 — 0.5 )y + e
(1—aiqg "+ ..+ asqg Yy = (bo + ... + b3qg *)uy + e

Imag
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Plot of poles and zeros in model
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Residual Analysis
Question: Is the model too simple?

Residuals

measurement(y) = model(d, u) + residual(e) (41)

For a perfect model, the residuals would have the following properties
@ ~ F(0,0%).

@ ¢; has a symmetric distribution

© ¢; is white

O ¢, is uncorrelated with current and prior inputs

Equivalently (in terms of co-variance functions)

o2 k=0,

. ret,ut(k) - E[€t+kut] =0 (42)
0  otherwise,

re(k) = Elepire] = {
Important: use one data set for estimation and another for the validation

(cross-validation)
29 DTU Compute Stochastic Adaptive Control 26.2.2025



Residual Analysis - mean and variance test
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Simple approach: Test whether the distribution of the residuals has the

right mean and variance

If the below holds, the residuals are not zero mean

52

e > flg (M =1y =,

1 1
- ) 2 _ . 2)\2
€= ;:1 €, S°= — zEZI(GZ —€)

If either of the below hold, the variance is time-varying

5
53

1 lwi
2 2
S2=_—%"¢,,

Note: The intervals must be non-overlapping

SQ
Fay2 (M, Ma) or ‘> fiT (M, Mp),
2
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Residual Analysis - sign test
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Test for whiteness: The number of sign changes, z, should follow (M is the

number of data points)

M-1 M-1
z~N< , )
2 4

We reject the hypothesis if either of the below holds

M—-1 M
2

M—-1 M—-1
2 4

z <

-1
N N

That is, the hypothesis is rejected if the test statistic is outside the
confidence interval
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Residual Analysis - test of co-variance function
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Alternative test for whiteness: The auto-covariance must be in the form

o2 k=0

0  otherwise

re(k) = Eletrer] = {

Estimates of auto-covariance and auto-correlation

| M=k
Pe(k) = — > eryner, pe(k) =
M =

Test the covariance at each time step

N o
-5

VM

Ho: VMpe(k)~ N(0,1), reject if |pec(k)| >
Test if the covariance is zero for k # 0
m 2
Ho: z=MY_ pi(i) ~x*(m), reject if z > fi_(m)
i=1

32 DTU Compute Stochastic Adaptive Control
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Residual Analysis - test of autocorrelation

Aucsreion incion

Ausosoreaton rctn
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Residual Analysis - cross-covariance function test
Test the cross-covariance

Teu(k) = Eleqrru] =0

Cross-covariance and cross-correlation

R Peu(k)
7 — E €L kUt k) = :
eu ' t+kUWt pe,u( ) 726(0)72”(0)
Marginal test of the cross-covariance
) o fils
Ho: VMpeyu(k) ~ N(0,1), reject if |pen(k)| > NiTi

Check if the covariance is zero for k # 0
Hy: z= MZpeu ) ~ x%(m), reject if z > flxja(m)
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Residual Analysis - model comparison tests
Question: Can we validate a model using a single data set?
Coefficient of determination
Jo— J(0
R2 _ 0 ( ) (57)
Jo
1Y 1Y
Jo = 3 S wi—9)?, JO) = 5 > (58)
i=1 i=1

J(é) is the loss-function and a perfect model results in R? = 1. Lower
values of R? indicate worse models

Alternative loss functions
M 1 M
W( ) izzlez? M( ) Mi:ZIGZ (59)

The loss functions are monotonically non-increasing with model complexity
35 DTU Compute Stochastic Adaptive Control 26.2.2025

=



=
—
=

M

Residual Analysis - model comparison: F-test

Objective: Compare two model classes, M7 and My using the F-test

Hypothesis: Mipye C M1 C Mo where ds > dy are the number of model

A

parameters. Consequently, the loss-function J; = J;(0) does not decrease
significantly by increasing the model size if M; C My

Test statistic

Ji—Ja M —ds
Jo  do —dy

Hy:z= F(dy —dy, M — ds) (60)

Reject hypothesis if

2> fE (do — dy, M — dy) (61)
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Residual Analysis - model comparison: Information Criteria
Information criteria
@ Akaike's Information Criterion (AIC); tends towards higher complexity
2d
AIC =1+ — 2
c=(1+37) W (62)
@ Bayesian Information Criterion (BIC);
log(M)d
BIC = (1 + Og(]\/[)> Wr (63)

© Akaike's Final Prediction Error (FPE) Criterion; expresses the variance of the
prediction error, also FPE — AIC, M > d

M+d

FPE =
M—d

2d
Wy = (1 + M= d) W (64)

If two models have the same d, choose the one with the lowest loss function

37 DTU Compute Stochastic Adaptive Control 26.2.2025
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Adaptive Control

Stochastic control relies on a detailed
model which might not be available

@ Parameter values cannot be measured

@® The underlying physics is not under-
stood sufficiently well

Approach 1:

A model can be created using iden-
tification methods and a stochastic
controller can be designed

If the system varies in time, e.g.,
due to aging or wear, the identi-
fication will have to be repeated
occasionally

40 DTU Compute
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Approach 2:
Alternatively, we can combine online
identification and control.

Model of
System and dismrbancas

Objectives |  Constraints

Model Knowledge

Uncertainty Objective |
]

System

b
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Alternative to adaptive control: Robust control

If the model of a system is uncertain, there also exist other methods than
the adaptive control. One such method is the robust control

@ Robust control: Low sensitivity to the effect of uncertain system parts, a control
that, in some sense, operates after worst-case scenario

@ Adaptive control: Monitors/estimates the uncertain parts, a control law that
changes with the identified system.

In some sense, robust control can be seen as the opposite method to
adaptive control: Adapting the control usage (sensitivity) vs. adapting the
control design

That is the subject of the course 34746 Robust and fault-tolerant control
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Adaptive control - Method Overview

Several schools exist within adaptive control

——.‘"[ Gain Schedule ]

e B S

CE based STC

Cautious

L

Dual

Gradient optimization

-
-~
e J—[:[[

Stability optimization
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Adaptive control - Gain Scheduling Control

A simple approach is to manually
change the model based on the op-
erating point

@ Linear control of non-linear system:
Airplanes/robots

@ Piecewise systems: Laws for behaviour
at night vs. day

Adaptation is manual, so no perfor-
mance feedback to the adaptations
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DTU
Adaptive control - Model Reference Adaptive Control (MRACES

- Another approach is to adapt the
|| dedd control until the output follows a

desired transfer function with the
least possible deviation

error

. . The focus is on the control problem
i el and the adaptation is feedback on

the model deviations

The concept is similarly to that of
an observer/Kalman filter
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Adaptive control - Self-tuning Control

The self-tuning methods are based
on the combination of an
identification algorithm, a design
method, and a controller

It is further assumed that the
certainty equivalence principle holds

45 DTU Compute
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Adaptive control - Certainty Equivalence Principle -
Certainty equivalence principle: Replace true parameters by an estimate
0—0 (65)
For linear systems with additive noise, the principle holds
us=—Lx;y — ur=—Li (66)
In adaptive control, the principle is an assumption (minimum variance
control example)
Clg ) =AG+¢7Fs — C=AG+q*s (67)
BGu; = —Sy, — BGu; = —Sy, (68)

The principle does not guarantee optimality — it is assumed for convenience

46 DTU Compute Stochastic Adaptive Control 26.2.2025
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Basic Self-tuning =
Let us now discuss the self-tuning methods in terms of the minimum
variance controller, the so-called basic self-tuning controller
We combine a recursive estimation approach for
A(g )y = a7 *B(g ur + ClgVer, (69)
B(g ) =bo+big "+ +bag ™, by #0, (70)
et ~ F(0,0?) and white (71)
with the design of the minimum variance controller for the objective
J = E[yf 4] (72)
u = func(Y}) (73)

Self-tuning methods come in two variants: Explicit and implicit
@ Explicit: Estimation of model used to design the control

@ Implicit: Estimation of the controller parameters + C'(¢~ 1)

43 DTU Compute Stochastic Adaptive Control 26.2.2025
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The Basic Self tuner - Explicit

In the explicit method, we are interested in identifying the model
AlgNye = "Bla )+ Clg Ve (74)

to use in the control

M

We do this using a chosen estimation method

ye = &f -1 + e (75)
t
0, = arg min Z €2 (76)
i=1

Using the estimate, we compute the control as
u = arg min B[y, (77)

and we repeat at the next sampling time.

For a correct estimation (¢, = e;), we have that the sum of control errors:

Je(t) = Z e ~ to? (78)

49 DTU Compute i=1 Stochastic Adaptive Control 26.2.2025
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The Basic Self tuner - Explicit: properties =
The control loss function of the explicit self tuner:
Jr(t) =D v ~E[ylt (79)
i=1
¢
Ju(t) =D ui = Eluf]t (80)
i=1
For a correct estimate of the parameters, we have that ¢, = ¢4, therefore
the residuals loss function follows
¢
Je(t) =D € ~o*t (81)
i=1
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Explicit MV, Control

Identified system (general method)
Alg Yye = a7 Blgue + Cla e
Controller optimality criteria:

J = E[(yerr — we)?]

Controller design:

QRS form:
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