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02421 - Introduction
Today’s Agenda

• Minimum variance control for ARX models
• Least-squares (LS) estimation
• Maximum likelihood (ML) estimation
• Estimation for ARX models
• Recursive estimation
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Control
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02421 - Control
Control of ARX processes

ARX process

A(q−1)yt = q−kB(q−1)ut + et (1)

General control law

R(q−1)ut = Q(q−1)wt − S(q−1)yt (2)

Criterion used to derive optimal control laws

min
ut

Jt(yt+k, ut) (3)

5 DTU Compute Stochastic Adaptive Control 18.2.2025



Minimum variance control
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02421 - Control
Minimum Variance Control

ARX model

A(q−1)yt = q−kB(q−1)ut + et (4)

B is stable

Minimize the variance

Jt = E[y2
t+k] (5)

Gk(q−1) and Sk(q−1) are the solution to the simple Diophantine equation

1 = A(q−1)Gk(q−1) + q−kSk(q−1) (6)
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02421 - Control
Minimum Variance Control

m-step prediction and error

ŷt+m = B(q−1)Gm(q−1)ut+m−k + Sm(q−1yt), (7)
ỹt+m = Gm(q−1)et+m (8)

Cost function (we exploit that ŷt+m ⊥ ỹt+m)

Jt = E[y2
t+k] = E

[(
B(q−1)Gk(q−1)ut + Sk(q−1)yt

)2
]

(9)

+ E
[(

Gk(q−1)et+k

)2
]

(10)

Optimal control law

B(q−1)Gk(q−1)ut = −Sk(q−1)yt (11)

8 DTU Compute Stochastic Adaptive Control 18.2.2025



02421 - Control
Minimum Variance Control
Closed-loop system

A(q−1)yt = q−kB(q−1)ut + et (12)

= −q−kB(q−1) Sk(q−1)
B(q−1)Gk(q−1)yt + et (13)

= −q−k Sk(q−1)
Gk(q−1)yt + et (14)

Simplify
=1 (Diophantine equation)︷ ︸︸ ︷(

Gk(q−1)A(q−1) + q−kSk(q−1)
)

yt = Gk(q−1)et (15)

Control law

ut = −Sk(q−1)
B(q−1)Gk(q−1)yt (16)

= −Sk(q−1)
B(q−1)Gk(q−1)Gk(q−1)et (17)

= −Sk(q−1)
B(q−1) et (18)9 DTU Compute Stochastic Adaptive Control 18.2.2025



02421 - Control
Minimum Variance Control

Stationary closed-loop system

yt = Gk(q−1)et, B(q−1)ut = −Sk(q−1)et (19)

The closed loop poles are determined by B(q−1)

The minimum variance controller has the following shortcomings
1 No possibility for setpoints

2 Large control effort

3 Undamped zeros (zeros outside of the unit circle)
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MV0 controller
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02421 - Control
MV0 controller

ARX process

A(q−1)yt = q−kB(q−1)ut + et (20)

Cost function

Jt = E[(yt+k − wt)2] (21)

Optimal control law

B(q−1)Gk(q−1)ut = wt − Sk(q−1)yt (22)

The Diophantine equation is the same as for the minimum variance
controller

1 = A(q−1)Gk(q−1) + q−kSk(q−1) (23)
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02421 - Control
MV0 controller

Closed-loop system

yt = q−kwt + Gk(q−1)et, (24)
B(q−1)ut = A(q−1)wt − Sk(q−1)et (25)

The poles are determined by B(q−1)

If wt = 0, the MV0 control becomes the minimum variance control

The MV0 controller still has the following shortcomings.
1 Large control effort.

2 Undamped zeros.
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Estimation
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02421 - Estimation
Estimation Methods

Observation equation

Y = G(θ) + e, yt = g(t, θ) + et (26)

The noise e is zero-mean and has the variance P = σ2Σ

Residuals

ϵ = Y − G(θ̂), ϵt = yt − g(t, θ̂) (27)

Linear case

G = Φθ, g(t, θ) = ϕT
t θ (28)

ϕt is a vector containing other data, such as inputs, past outputs, etc.
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Least-squares estimation
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02421 - Estimation
Least Squares Method
Least squares (LS)

min
θ

JN (θ) = min
θ

1
2

N∑
t=1

ϵ2
t = min

θ

1
2ϵT ϵ (29)

Solution (
∂G(θ)

∂θ

)T

G(θ) =
(

∂G(θ)
∂θ

)T

Y (30)

Linear case

ΦT Φθ = ΦT Y,
N∑

t=1
ϕtϕ

T
t θ =

N∑
t=1

ϕtyt (31)

where Φ is

Φ =


ϕT

1
ϕT

2
...

ϕT
N

 (32)
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02421 - Estimation
Least Squares Method
Parameter estimate

θ̂ = (ΦT Φ)−1ΦT Y =
(

N∑
t=1

ϕtϕ
T
t

)−1 N∑
t=1

ϕtyt (33)

ΦT Φ must have full rank

Distribution of estimate

θ̂ ∼ F(θ, Pθ), (34)
Pθ = Cov(θ̂) = (ΦT Φ)−1ΦT PΦ(ΦT Φ)−1 (35)

Uncorrelated noise (Σ = I)

Pθ = σ2(ΦT Φ)−1 (36)

Estimate of noise covariance (if it is unknown, but normally distributed)

Cov(θ̂) ≈ σ̂2
(

∂2JN

∂θ2 (θ̂)
)−1

, σ̂2 ≈ 2 JN (θ̂)
N − nθ

(37)
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02421 - Estimation
Least Squares Method – Main properties

Properties of linear least squares estimators
• It is a linear function of the observations, Y

• It is unbiased: E[θ̂] = θ and Cov(θ̂) = (ΦT Φ)−1ΦT PΦ(ΦT Φ)−1

• It does not assume a specific distribution

If P = σ2I

• Unbiased: E[θ̂] = θ and Cov(θ̂) = σ2(ΦT Φ)−1

• Independent: ϵ ⊥ θ̂

• θ̂ is the best linear unbiased estimator (BLUE), which means that it has the smallest
variance among all estimators which are linear functions of the observations
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02421 - Estimation
Linear Models
If we consider the parameters

θT =
[
θ1 θ2 θ3

]
(38)

which of the following models are linear in the sense of estimation?
• yt = θ1ut + et

• yt = θ1ut + θ2utxt + et

• yt = θ1ut + θ2θ3xt + et

• yt = cos(θ1)ut + θ2zt + θ3xt + et

• yt = cos(θ1)ut + θ2zt + θ3θ1xt + θ1yt−1 + et

• yt = cos(θ1ut) + θ2zt + θ3θ1xt + θ1yt−1 + et

Think about it for yourself for two minutes and
then discuss with the person next to you for five minutes.
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02421 - Estimation
Least squares – Example

System

yt = θ1ut + θ2ut−1 + θ3ut−2 + et (39)

=
[
ut ut−1 ut−2

]
︸ ︷︷ ︸

ϕT
t

θ1
θ2
θ3


︸ ︷︷ ︸

θ

+et (40)

Matrix (N = 3 measurements)

Φ =

ϕT
1

ϕT
2

ϕT
3

 =

u1 u0 u−1
u2 u1 u0
u3 u2 u1

 (41)
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02421 - Estimation
Least squares – Example
Measurements

y1 = 1, y2 = 2, y3 = 3 (42)

Inputs

u−1 = 3, u0 = 1, u1 = 4, u2 = −1, u3 = 2 (43)

Matrix

Φ =

 4 1 3
−1 4 1
2 −1 4

 , Y =

1
2
3

 (44)

Parameter estimate

θ =

θ1
θ2
θ3

 = (ΦT Φ)−1ΦT Y =

−0.5660
0.0943
1.0566

 (45)
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02421 - Estimation
Least squares – Exercise
Measurements

y1 = 4, y2 = −1, y3 = 2 (46)

Inputs

u−1 = 5, u0 = 2, u1 = −2, u2 = −3, u3 = 1 (47)

Solve the exercise in 10 min.

Matrix

Φ =

−2 2 5
−3 −2 2
1 −3 −2

 , Y =

 4
−1
2

 (48)

Parameter estimate

θ =

θ1
θ2
θ3

 = (ΦT Φ)−1ΦT Y =

 2.9259
−1.3704
2.5185

 (49)
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Maximum likelihood estimation
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02421 - Estimation
Maximum Likelihood Method

Likelihood

L(θ) = f(Y |θ) (50)

Maximum likelihood estimation problem (equivalent formulations)

max
θ

L(θ), max
θ

ln L(θ) (51)

Maximum likelihood estimation requires an assumption of the distribution
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02421 - Estimation
Maximum Likelihood Method
Assume that Y = Φθ + e and that e ∼ N(0, P )

Probability distribution of N observations

f(Y |θ) = 1√
(2π)N

√
det P

exp
(

−1
2(Y − Φθ)T P −1(Y − Φθ)

)
(52)

Log-likelihood function

ln L(Y ; θ) = −1
2 ln det P − N

2 ln 2π − 1
2(Y − Φθ)T P −1(Y − Φθ) (53)

Optimization problem

max
θ

ln L(θ) = min
θ

− ln L(θ) (54)

= min
θ

1
2 ln det P + 1

2(Y − Φθ)T P −1(Y − Φθ) + c (55)

c is constant and independent of θ and P
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02421 - Estimation
Maximum Likelihood Method

First-order optimality conditions

∂ ln L
∂θ

(Y ; θ) = 1
2(−2ΦT P −1Y + 2ΦT P −1Φθ) = 0 (56)

Optimal estimate

θ̂ = (ΦT P −1Φ)−1ΦT P −1Y (57)

Only the structure Σ of the variance P = σ2Σ is important

θ̂ = (ΦT Σ−1Φ)−1ΦT Σ−1Y (58)

If (P = σ2I), the MLE estimator is identical to the LS estimator

θ̂ = σ2

σ2 (ΦT Φ)−1ΦT Y = (ΦT Φ)−1ΦT Y (59)
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02421 - Estimation
Maximum Likelihood Method

ML is based on the assumption that Σ is known, but σ2 can be unknown

First-order optimality conditions for σ2

∂ ln L
∂σ2 (Y ; θ) = N

2σ2 − 1
2σ4 (Y − Φθ)T Σ−1(Y − Φθ) = 0 (60)

det P = (σ2)N det Σ

ML estimate of the noise covariance

σ̂2 = (Y − Φθ̂)T Σ−1(Y − Φθ̂)
N

(61)
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02421 - Estimation
Maximum Likelihood Method – Main properties

Properties of the ML estimator (assuming a normal distribution)
• It is unbiased: θ̂ ∼ N(θ, (ΦT Σ−1Φ)−1ΦT Σ−1PΣ−1Φ(ΦT Σ−1Φ)−1)
• It is a linear function of the observations, Y

and for the case P = σ2I

• The estimate is equivalent to the LS estimator
• It is unbiased: θ̂ ∼ N(θ, σ2(ΦT Φ)−1)

• Independent: ϵ ⊥ θ̂

• θ̂ is the best linear unbiased estimator (BLUE), which means that it has the smallest
variance among all estimators which are linear functions of the observations
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02421 - Estimation
Residual-Estimator Independence
Both the LS and ML estimators achieve residual-estimator independence
when P = σ2I

Covariance
Cov(ϵ, θ̂) = Cov(Y − Φθ̂, θ̂) (62)

= Cov(Φθ + e − Φθ̂, θ̂), Y = Φθ + e (63)
= Cov(e, θ̂) − Φ Cov(θ̂, θ̂) (64)
= Cov(e, e)LT − ΦL Cov(e, e)LT , θ̂ = LY = LΦθ + Le (65)
= (I − ΦL)PLT (66)

LS estimator (L = (ΦT Φ)−1ΦT )
Cov(ϵ, θ̂) = (I − Φ(ΦT Φ)−1ΦT )PΦ(ΦT Φ)−1 (67)

If P = σ2I is a multiple of the identity matrix
Cov(ϵ, θ̂) = σ2(I − Φ(ΦT Φ)−1ΦT )Φ(ΦT Φ)−1 (68)

= σ2(Φ(ΦT Φ)−1 − Φ(ΦT Φ)−1ΦT Φ(ΦT Φ)−1) = 0 (69)
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ARX estimation
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02421 - Estimation
ARX estimation

ARX model

A(q−1)yt = q−kB(q−1)ut + et, (70)

yt = −
na∑
i=1

aiyt−i +
nb∑

i=0
biut−i−k + et (71)

et ∼ F (0, σ2) and white

Rewrite

yt =
nϕ∑
i=1

θiϕt,i + et = ϕT
t θ + et, (72)

ϕT
t = [−yt−1, −yt−2, ..., −yt−na , ut−k, ..., ut−k−nb

], (73)
θT = [a1, a2, ..., ana , b0, b1, ..., bnb

] (74)
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02421 - Estimation
Estimation - LS and ML
Least-squares method

Yt = Φtθ + Et, Et ∼ F(0, P ) (75)
θ̂ = (ΦT

t Φt)−1ΦT
t Yt (76)

⇒ θ̂ ∼ F(θ, (ΦT
t Φt)−1ΦT

t PΦt(ΦT
t Φt)−1) (77)

Maximum-likelihood method

Yt = Φtθ + Et, Et ∼ N(0, P ) (78)
θ̂ = (ΦT

t P −1Φt)−1ΦT
t P −1Yt (79)

⇒ θ̂ ∼ F(θ, (ΦT
t P −1Φt)−1ΦT

t P −1Φt(ΦT
t P −1Φt)−1) (80)

If P = σ2Σ

σ̂2 = (Y − Φtθ̂)T Σ−1(Y − Φtθ̂)
N

(81)
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Recursive parameter estimation
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02421 - Estimation
Recursive Estimation

The previously presented methods are in the form

θ̂t = func(Yt) (82)

We use all measurements up to and including time t, which becomes
computationally intensive over time

Recursive methods only rely on the current measurement and the past
estimate

θ̂t = func(yt, θ̂t−1) (83)

• It assumes that θ̂t−1 is a sufficient statistic of Yt−1

• It can easily be adapted to account for time-varying parameters
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02421 - Estimation
Estimation - Estimation by Iteration

Least squares estimator

θ̂t = (ΦT Φ)−1ΦT Yt (84)

If Yt = Φθ̄ + ϵ for some previous estimator θ̄

θ̂t = θ̄ + (ΦT Φ)−1ΦT ϵ (85)

Iterative formulation of the LS estimator

θ̂t = θ̂t−1 + (ΦT
t Φt)−1ΦT

t ϵt (86)
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02421 - Estimation
RLS/RARX - Recursive Least Squares

ARX model

A(q−1)yt = q−kB(q−1)ut + et, et ∼ F(0, σ2) (87)
yt = ϕT

t θ + et, et ⊥ es s > t (88)
ϕt = [−yt−1, . . . , −yt−na , ut−k, . . . , ut−nb−k]T (89)
θ = [a1, . . . , ana , b0, . . . , bnb

]T (90)

Least squares estimator based on t measurements

θ̂t =
( t∑

i=1
ϕiϕ

T
i

)−1 t∑
i=1

ϕiyi, (91)

P −1
t =

t∑
i=1

ϕiϕ
T
i ,

t∑
i=1

ϕiϵi = 0 (92)
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02421 - Estimation
RLS/RARX - Recursive Least Squares

Recursive formulation

θ̂t = θ̂t−1 + Pt

t∑
i=1

ϕiϵi (93)

Rewrite the recursion

θ̂t = θ̂t−1 + Ptϕtϵt (94)
ϵt = yt − ϕT

t θ̂t−1 (95)
P −1

t = P −1
t−1 + ϕtϕ

T
t (96)

Var(θ̂t|Yt) = Ptσ
2 ≈ Var(θ̂t) (97)

If no a priori knowledge about the parameter values is available, use

θ̂0 = 0, P0 = βI, β ≫ 0 (98)
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02421 - Estimation
RLS/RARX - Recursive Least Squares

The recursion can also be computed using alternative formulations

Example (inspired by the Hemes’ inversion lemma and
square-root/factorization algorithms)

ϵt = yt − ϕT
t θ̂t−1 (99)

st = 1 + ϕT
t Pt−1ϕt (100)

Kt = Pt−1ϕt

st
(101)

θ̂t = θ̂t−1 + Ktϵt (102)
Pt = Pt−1 − KtstK

T
t (103)

39 DTU Compute Stochastic Adaptive Control 18.2.2025



02421 - Estimation

Questions?
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