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Lecture Plan

@ ARX models
@ ARX prediction + control
© ARX estimation

@ ARX model validation
+ adaptive control

® ARMAX control

® ARMAX estimation
+ adaptive control
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@ Systems and control theory

@ Stochastic systems + Kalman filtering
© SS estimation (recursive) + control
@ SS control

® SS estimation (batch)

® SS estimation (recursive)

@® SS nonlinear control

Design

w

Identification

—

Controller

System

T
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Today’s Agenda

® Minimum variance control for ARX models
® | east-squares (LS) estimation

® Maximum likelihood (ML) estimation

® Estimation for ARX models

® Recursive estimation
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Control of ARX processes =
ARX process
Alg Dye= a7 Blg u + e (1)
General control law
R(g Yur = Qg wi — S(g Hus (2)
Criterion used to derive optimal control laws
quil’l Tt Yk ut) (3)
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Minimum Variance Control

ARX model

Alg Ny =q "Blg Hu + & (4)

B is stable

Minimize the variance

Jo = Elyi ] (5)

Gr(qg™') and Si(¢~!) are the solution to the simple Diophantine equation

1=A(g "HGr(g ") +a " Sk(a™) (6)
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Minimum Variance Control =
m-step prediction and error
Jvm = B(g™)Grm(q™ ) ttim—k + Smla w1, (7)
Jem = Gm(q " )erym (8)
Cost function (we exploit that §¢1m L Grym)
B =Bl ) =B | (Bl )Gua D+ Sa )| (9)
+E {(Gk(q_l)etﬂcf (10)
Optimal control law
B(q™)Grla™ ue = —S(a™ e (11)
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Minimum Variance Control
Closed-loop system
Alg Yy =q "Blg Hu + e
kg Sk(g™")
k 1 k
=—¢ "B
7Bl )B(q‘l)Gk(Q‘l)

_ ok Sk(g™h)

= —q — Yt + et
Gr(g™h)

Yt + e

Simplify

=1 (Diophantine equation)

(Gra™MAW@™) + a7 Sia™)) g = Grla Mer

Control law
w — —Se(q™h)
" Bl HGiaH"
=Sk -
B B(q_l)Gk(q_l)Gk(q e
 =Sk(gh)
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Minimum Variance Control

Stationary closed-loop system
ye = Grlq Her, B(q~ " ur = =Sk(q e
The closed loop poles are determined by B(q~!)

The minimum variance controller has the following shortcomings
@ No possibility for setpoints
@ Large control effort

© Undamped zeros (zeros outside of the unit circle)
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MV, controller

M

ARX process

Alg ye =q " Blg ue + e (20)
Cost function
Jr = B[(yr4r — we)?] (21)
Optimal control law
B(q™)Grlaue = we — Sp(a™ )y (22)

The Diophantine equation is the same as for the minimum variance
controller

1=A(g HGrlg ") +a " Sk(a™) (23)
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MV, controller

Closed-loop system

Y =q "w + Grlg e,
B(q "uy = A(q " )wy — Sk(q e

The poles are determined by B(q™!)
If wy =0, the MV control becomes the minimum variance control

The MV, controller still has the following shortcomings.
@ Large control effort.

® Undamped zeros.
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Estimation Methods =
Observation equation

Y=GO)+e, y=g(t0)+e (26)
The noise e is zero-mean and has the variance P = %%
Residuals

e=Y -G@B), =y —g(t0) (27)
Linear case

G=3a0, g(t,0)=0l0 (28)

¢ is a vector containing other data, such as inputs, past outputs, etc.
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Least Squares Method
Least squares (LS)

1Y 1
. a1 2 _ s 2T
ngnJN(Q)—Hbln2;et min e
Solution
OGO\ T N
(%50) c0= (") ¥
Linear case
N N
') =0Ty, D 4di0=7 o
t=1 t=1
where ® is
«%
- ¢_2
O

17  DTU Compute Stochastic Adaptive Control

=
=
=

M

(29)

(30)

(31)

(32)

18.2.2025



=
—
=

M

Least Squares Method
Parameter estimate

N -1 N
0= (@"e) o’y = (Z ¢t¢£‘r> > by (33)
®T'® must have full rank
Distribution of estimate
0~ F(0, Pp), (34)
= Cov(d) = (@72) 1o Po (0T ®) ! (35)
Uncorrelated noise (X = I)
Py=o?(@To)! (36)
Estimate of noise covariance (if it is unknown, but normally distributed)
—1 A
A O*JIN 4 JIn(0)
~ 67| =t 52 ~ 2
Cov(f) =~ & ( 502 (0)> , d N g (37)
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Least Squares Method — Main properties

Properties of linear least squares estimators
® |t is a linear function of the observations, Y
® It is unbiased: E[f] = 6 and Cov(f) = (37 ®) 10T PO (G &)~}

® |t does not assume a specific distribution

If P=o%1
® Unbiased: E[f] = 6 and Cov(0) = o2(®T®)~!
® Independent: € L 0

® () is the best linear unbiased estimator (BLUE), which means that it has the smallest
variance among all estimators which are linear functions of the observations
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Linear Models

If we consider the parameters
o7 = [91 0> 93} (38)

which of the following models are linear in the sense of estimation?
®y = O1ur + ey

® yp = O1ug + 2wy + €4

® y, = Ohur + 02031 + e

® y, = cos(01)ug + O3z + O3 + €4

® y, = cos(01)ug + 022 + 03012 + O1ye—1 + €

® yr = cos(Orug) + 022 + 03012 + 01yi—1 + €

Think about it for yourself for two minutes and
then discuss with the person next to you for five minutes.
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Least squares — Example

System

yr = O1ug + Oous—1 + O3up—2 + €4

th
= [Ut Ug—1 Ut—Q} Oz | +eq
03
o
0
Matrix (N = 3 measurements)
o1 up up U—1
®=|¢)| = |uz w o
o3 uz uz U
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Least squares — Example

Measurements
Yy = ]-7 Y2 = 27
Inputs
U—-1 —3, uo—l, ul —4,

Matrix

4 1 3

P=|-1 4 1],

2 -1 4
Parameter estimate

01

6= 160y =(@Td) Ty =
03
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ys =3 (42)
Ug = —1, usz = 2 (43)
1
Y = |2 (44)
3
—0.5660
0.0943 (45)
1.0566

Stochastic Adaptive Control 18.2.2025



Least squares — Exercise

Measurements
y1 =4,
Inputs
U_1 =9, ug = 2,

Solve the exercise in 10 min.
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)
—~~
~
(@)
N—r

Y2 = _17 Y3

up = —2, Uy = —3, us = 1 (47)

Matrix
-2 2 5 4
d=|-3 -2 2|, Y =1|-1 (48)
1 -3 -2 2
Parameter estimate
01 2.9259
0= 16| = (@T®) 0Ty = |-1.3704 (49)
03 2.5185
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Maximum Likelihood Method =
Likelihood
L(0) = f(Y]0) (50)
Maximum likelihood estimation problem (equivalent formulations)
max L(0), max In £(0) (51)

Maximum likelihood estimation requires an assumption of the distribution
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Maximum Likelihood Method
Assume that Y = ®60 + e and that e ~ N(0, P)

M

Probability distribution of NV observations

\/(27) \/(W

Log-likelihood function

F(Y]0) =

exp (-i(y - o0)TP~ (v - <I>9)> (52)

InL(Y;0) = —% Indet P — %m 21 — %(Y —o0) P~ Hy — @) (53)
Optimization problem

max InL(0) = mein —InL(6) (54)

= min ; Indet P+ ~ (Y )T P~HY —®0)+¢  (55)

c is constant and independent of 6 and P
26 DTU Compute Stochastic Adaptive Control 18.2.2025



Maximum Likelihood Method

First-order optimality conditions

1 1
8;95 (Y;0) = 5(—2c1>TP*1Y + 207 P7190) =0

Optimal estimate
0= (TP o) taTply
Only the structure X of the variance P = ¢2¥ is important

0=@">"'e) 'oTn "y

If (P = 02I), the MLE estimator is identical to the LS estimator

2
A o _ _
0 = §(<I>T<I>) oy = (o7@) oYy
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Maximum Likelihood Method

M

ML is based on the assumption that ¥ is known, but ¢ can be unknown

First-order optimality conditions for o2

Olmf ..~ N 1 o Tai —
S (Vi6) = o — 5 (Y —26)'27 (Y —20) =0 (60)

det P = (62)N det

ML estimate of the noise covariance

o (Y —20)TS (Y — 20)
6% = ~ (61)
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Maximum Likelihood Method — Main properties

Properties of the ML estimator (assuming a normal distribution)
® It is unbiased: § ~ N (0, (®T2"19)1oTL -1 PY-1¢(@Tx 1)~ 1)
® |t is a linear function of the observations, Y

and for the case P = o021

® The estimate is equivalent to the LS estimator

® It is unbiased: 6 ~ N (0, 02(®T®)~1)

® Independent: € L 0

® {)is the best linear unbiased estimator (BLUE), which means that it has the smallest
variance among all estimators which are linear functions of the observations
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Residual-Estimator Independence =

Both the LS and ML estimators achieve residual-estimator independence
when P = o]

Covariance
Cov(e,f) = Cov(Y — @0, 0) (62)
:COV(CI)9+€—(I>9 0), Y =300+e (63)
= Cov(e, ) — ® Cov(0, 0) (64)
= Cov(e,e)LT — ®L Cov(e,e)LT, =LY = L®O + Le (65)
= (I —-oL)PLY (66)
LS estimator (L = (®T®)~1oT)
Cov(e,0) = (I — ®(®TD) 10T Po(Td) ! (67)
If P = o21 is a multiple of the identity matrix
Cov(e,0) = o*(I — ®(®T®) 1T o (o7 d) ! (68)

=2 (®(@Td) — p(@Td) Lo d(dTP) ) =0 (69)
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ARX estimation =
ARX model
Alg e = ¢ *B(q Hu + e, (70)
Na ny
Ye=— ailY—i+ > biuu_i_j + e (71)
i=1 i=0
et ~ F(0,02) and white
Rewrite
ng
Yt = Z 0idri + et = oL 0+ e, (72)
i=1
(th = [_yt—17 “Yt—25 oy TYt—ng Ut—ky -y utfkfnbL (73)
o7 = [a1,a2, ..., an,, bo, b1, ..., by, (74)
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Estimation - LS and ML =

Least-squares method

Y, = &0+ E;, E,~F(0,P) (75)
0= (&) o/ V; (76)
= 0 ~F(0, (D] &) 0] PPy (0] D)) (77)

Maximum-likelihood method

Y; = &0 + E;, E;~ N(0,P) (78)
0= (@[ P 'e,) o] P, (79)
=0 ~F0, (@' P 1o, ol P~lo (o P71, (80)
If P=02%
Y - &,0) TS 1Y — &,0
52 | ¢0) - ( i) (81)
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Recursive Estimation

The previously presented methods are in the form
0, = func(Y;) (82)

We use all measurements up to and including time ¢, which becomes
computationally intensive over time

Recursive methods only rely on the current measurement and the past
estimate

0, = func(y, ét_l) (83)

® |t assumes that 6,1 is a sufficient statistic of Y;_;

® |t can easily be adapted to account for time-varying parameters
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Estimation - Estimation by lteration

Least squares estimator
0, = (d7®) oy,
If Y; = ®0 + ¢ for some previous estimator
0, =0+ (®7®) 1o e
Iterative formulation of the LS estimator

ét = ét_l + (‘I)?‘I)t)_lq);‘ret

36 DTU Compute Stochastic Adaptive Control

=
—
=

M

18.2.2025



RLS/RARX - Recursive Least Squares

ARX model

Alg Yy = q_kB(q_l)Ut +e, e~ F(0,0%)
yt:¢$9+et; et Les s>t

T
¢t = [—?/t—h ceey TYt—ng Wt—ky - - - 7ut—nb—k]

0=lat,...,an,,00,- bn,)"

Least squares estimator based on ¢ measurements

-1 t

0, = <§¢1¢2T> ;ﬁbiyi»

t t
Prt=) ¢, Y diei=0
i=1 i=1
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RLS/RARX - Recursive Least Squares

Recursive formulation
. . t
0p =01+ P> diei
i=1
Rewrite the recursion
=01+ Pigrey
€& = Yt — ¢?ét—1
Pl =P + poF
Var(0,|Y;) = P,o? ~ Var(6;)

If no a priori knowledge about the parameter values is available, use

0o=0, Py=pI, 5>0
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RLS/RARX - Recursive Least Squares

The recursion can also be computed using alternative formulations

Example (inspired by the Hemes' inversion lemma and
square-root /factorization algorithms)

€ =y — AL 0
st=1+ ¢ P_1¢y
_ B

St

ét = ét_l + Ktﬁt
Pt = Pt—l — KtSthT

K
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