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02421 - Introduction
Course Content

Course details
• Time: Tuesday 08:00 - 12:00

(lectures and exercises)
• 5 ECTS points
• Evaluation: 4 individual reports
• Software: MATLAB (free choice)

Course plan
• Stochastic processes and systems

(state space and transfer function models)
• Filter and control design
• System identification
• Adaptive control
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Identification

w

v

u y

2 DTU Compute Stochastic Adaptive Control 14.3.2025



02421 - Introduction
Teachers

Tobias K. S. Ritschel
Assistant Professor
Course responsible
Contact: tobk@dtu.dk
Office: 303B-052

Henrik Madsen
Professor
Course co-responsible
Contact: hmad@dtu.dk
Office: 303B-004
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02421 - Introduction
You

• All of you are MSc students.
• A few guest students (abroad).
• Most of you are from electrical engineering (incl. autonomous systems) or math-

ematical engineering.
• A few from chemical engineering.
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02421 - Introduction
Lecture Plan

1 ARX models
2 ARX prediction + control
3 ARX estimation
4 ARX model validation

+ adaptive control
5 ARMAX control
6 ARMAX estimation

+ adaptive control

7 Systems and control theory

8 Stochastic systems + Kalman filtering

9 SS estimation (recursive) + control

10 SS control

11 SS estimation (batch)

12 SS estimation (recursive)

13 SS nonlinear control

Design

Controller System

Identification
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02421 - Introduction
Structure of lectures

• Lectures and exercise sessions will be integrated
• Agenda + practical information
• Lecture content
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02421 - Introduction
Workload

Advice for this year

• If you’re comfortable with the exercises, the mandatory assignments should be
manageable. But consider working together with your fellow students, even though
the report is individual.

• It’s normal to feel stuck in this course. Therefore, ask questions!

New this year
• Revised structure of lectures
• More focused course content
• Smaller assignments (4 instead of 2)
• Fewer exercises
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02421 - Introduction
Matlab toolboxes

Core Matlab toolboxes

• Control toolbox
• System identification toolbox
• Optimization toolbox
• Statistics and machine learning toolbox

You might need commands from these toolboxes as well

• Signal processing toolbox
• Curve fitting toolbox
• Econometrics toolbox
• Fuzzy logic toolbox
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02421 - Introduction
Temperature control laboratory (TCLab)

Link: https://apmonitor.com/pdc/index.php/Main/ArduinoTemperatureControl
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02421 - Introduction
TCLab model

3

1
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T1 T2

Figure: Four-compartment model of TCLab device.
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Demonstration
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02421 - Agenda
Today’s Agenda

Probability theory and ARX models
• Probability theory
• Auto-regressive (AR) models
• Auto-regressive models with exogenous inputs (ARX)
• Prediction with ARX models
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Probability theory
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02421 - Probability theory
Stochastic scalar variables

Stochastic variable

X ∼ F(p) (1)

Cumulative distribution function FX(y) (cdf)

FX(y) = Pr{X ≤ y} ∈ [0, 1], Pr{a ≤ X ≤ b} = FX(b) − FX(a) (2)

Probability density function fX(z) ≥ 0
(pdf)

FX(y) =
∫ y

−∞
fX(z) dz, (3)

F (−∞) = 0, F (∞) = 1 (4)
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02421 - Probability theory
Confidence Interval

1 − p confidence interval CI(p)

Pr{a ≤ X ≤ b} = 1 − p (5)

Confidence interval based on inverse cdf

Pr{X ≤ a} = p/2 or Pr{X ≤ b} = 1 − p/2 (6)
CI(p) = [F−1

X (p/2), F−1
X (1 − p/2)] (7)

Use Matlab routines (or look-up tables) to compute F−1(p/2)

X ∈ mX ± σXF
−1(p/2) (8)

Example: Let X ∼ N(10, 4). Then, a 95% CI is

10 − 2 · 1.96 ≤ X ≤ 10 + 2 · 1.96 or 6.08 ≤ X ≤ 13.92 (9)
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02421 - Probability theory
Moments

For a random variable X

Nth moment: E[Xn] =
∫

Ω
xnf(x) dx (10)

Moments represent certain properties of stochastic variables.

Mean (1st moment): E[X] = mx (11)
Variance (2nd central moment): Var(X) = E[(X −mx)2]

= E[X2] − E[X]2 = σ2
x (12)
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02421 - Probability theory
Moments - Sample Moments

Let {xi}N
i=1 be samples of X

Estimates of first and second order moments

E[X] ≈
N∑

i=1

xi

N
(13)

Var(X) ≈
N∑

i=1

(xi − E[X])2

N
(14)

Unbiased estimate of variance

Var(X) ≈
N∑

i=1

(xi − E[X])2

N − 1 (15)

(16)
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02421 - Probability theory
Probabilities: Joint probability and independence

Marginal probability that a single statement (X ≤ x) is true

Pr{X ≤ x} = FX(x) (17)

Joint probability that two (or more) statements are true

Pr{X ≤ x, Y ≤ y} = FX,Y (x, y) (18)

Compute the marginal distribution from the joint distribution

fX(x) =
∫

Ωy

fX,Y (x, y) dy (19)

Joint distributions for independent variables

FX,Y (x, y) = FX(x)FY (y), fX,Y (x, y) = fX(x)fY (y) (20)
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02421 - Probability theory
Covariance
Covariance is a measure of how two stochastic variables varies relatively to
each other

Cov(X,Y ) = E[(X −mx)(Y −my)] (21)

Variance is covariance between the same variable

Var(X) = Cov(X,X) (22)

Correlation coefficient

ρ = Cov(X,Y )√
Var(X) Var(Y )

, −1 ≤ ρ ≤ 1 (23)

Covariance of independent variables

Cov(X,Y ) = ρ = 0 (24)

Note: The reverse if not true
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02421 - Probability theory
Conditional distribution – Bayes’ theorem

Conditional probability and Bayes’ theorem

Pr(A|B) Pr(B) = Pr(A,B) = Pr(B|A) Pr(A), (25)
Pr{X ≤ x|Y ≤ y} Pr{Y ≤ y} = Pr{X ≤ x, Y ≤ y} (26)

= Pr{Y ≤ y|X ≤ x} Pr{X ≤ x} (27)

Conditional probability density function

fX|Y (x|y)fY (y) = fX,Y (x, y) = fY |X(y|x)fX(x) (28)

The same can be done for the moments if Var(X|Y ) < ∞ exists

E[X|Y ] = mx|y =
∫

Ωx

xfX|Y (x|y) dx (29)

Var(X|Y ) = E[(X −mx|y)2|Y ] (30)
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02421 - Probability theory
Different Distributions - Gaussian and χ2

Gaussian/normal distribution

X ∼ N(mx, σ
2
x) (31)

Y = X −mx

σx
∼ N(0, 1) standard Gaussian (32)

fX(x) = 1√
2πσx

exp
(

−(x−mx)2

2σ2
x

)
(33)

FX(x) = FY

(
x−mx

σx

)
(34)

χ2-distribution

X =
n∑

i=1
ψ2

i ∼ χ2(n), ψi ∼ N(0, 1), ψi ⊥ ψj (35)

f(x) = 1
Γ(n/2)x

n/2−1 exp
(

−x

2

)
(36)

E[X] = n Var(X) = 2n (37)
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02421 - Probability theory
Different Distributions - Gamma
Gamma distribution (χ2(n) = Γ(n/2, 2))

X ∼ Γ(k, θ), 0 < X < ∞ (38)

fX(x) = 1
Γ(k)θk

xk−1 exp
(

−x

θ

)
(39)

E[X] = kθ, Var(X) = kθ2 (40)

Gamma function

Γ(k) =
∫ ∞

0
tk−1e−tdt (41)

Γ(k + 1) = kΓ(k) (42)

Γ(1) = 1, Γ
(1

2

)
=

√
π (43)

Erlang distribution (Gamma distribution for integer values of k)

Γ(k) = (k − 1)!, Γ
(
k + 1

2

)
= (2k − 1)!

2k

√
π (44)
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02421 - Probability theory
Other Related Distributions

The F-distribution

X = Zm

Y n
∼ F (n,m) (45)

Z ∼ χ2(n), Y ∼ χ2(m), Z ⊥ Y (46)

Student’s t-distribution

X = Z√
Y

√
n ∼ t(n) (47)

Z ∈ N(0, 1), Y ∼ χ2(n), Z ⊥ Y (48)

The Rayleigh distribution:

X =
√
Y 2

1 + Y 2
2 ∼ Ray(σ2

y), Yi ∼ Niid(0, σ2
y) (49)
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02421 - Probability theory
Stochastics in Matlab

Sampling from distributions in Matlab
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02421 - Probability theory
Stochastic Processes

A stochastic process can be described using a marginal cdf or pdf

FXt(xt, t) = Pr{Xt ≤ xt} (50)
fXt(xt, t) = ∇xtFXt(xt, t) (51)

or if the different times are related, using joint probabilities

FXt,Xs(xt, xs, t, s) = Pr{Xt ≤ xt, Xs ≤ xs} (52)
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02421 - Probability theory
Properties of Stochastic processes

Mean

mx(t) = E[x(t)] =
∫ ∞

−∞
zfx(t)(z) dz, (53)

Variance

Px(t) = Var(x(t)) = E
[(
x(t) − E[x(t)]

)(
x(t) − E[x(t)]

)T ]
, (54)

Auto-covariance

rx(t1, t2) = Cov(x(t1), x(t2)) = E
[(
x(t1) − E[x(t1)]

)(
x(t2) − E[x(t2)]

)T ]
,

(55)

Note that rx(t, t) = Px(t)
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02421 - Probability theory
Auto-covariance and auto-correlation

Auto-correlation function

ρx(t1, t2) = rx(t1, t2)√
Px(t1)Px(t2)

(56)

For stationary processes, only the time difference τ = t1 − t2 is relevant

rx(τ) = Cov
[
x(t), x(t+ τ)

]
(57a)

ρx(τ) = rx(τ)
Px(τ) (57b)
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02421 - Probability theory
Stationarity

Steady state of deterministic systems: The state does not change in time

Stationary distributions of stochastic systems: The state distribution does
not change in time

Strong stationarity

fx(t1),...,x(tn)(z1, . . . , zn) = fx(t1+∆t),...,x(tn+∆t)(z1, . . . , zn), (58)

for any n ∈ N and ∆t ∈ R.

Weak stationarity: The first two moments (mean and covariance) do not
change in time
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02421 - Probability theory
Normal process and Markov process

Normal process: Any probability density function fx(t1),...,x(tn)(z1, . . . , zn) is
a multivariate normal distribution for any n ∈ N

Probability density function with mean µ and covariance Σ

fY (y) = 1
(2π)n/2

√
det(Σ)

exp
(

−1
2(y − µ)T Σ−1(y − µ)

)
(59)

Markov process: For any t1 < t2 < · · · < tn, the distribution of x(tn) given
(x(t1), . . . , x(tn−1)) is the same as the distribution of x(tn) given x(tn−1)

Pr
(
x(tn) ≤ x | x(tn−1), . . . , x(t1)

)
= Pr

(
x(tn) ≤ x | x(tn−1)

)
(60)
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Auto-regressive models
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02421 - Auto-regressive models
The Auto-Regressive (AR) Process

AR(m) process

yt +
m∑

k=1
akyt−k = et, a0 = 1 (61)

{et} is a white-noise process
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02421 - Auto-regressive models
The Auto-Regressive (AR) Process

AR(m) process (compact notation)

A(q−1)yt = et (62)

Polynomial

A(q−1) = 1 +
m∑

k=1
akq

−k (63)

It is called auto-regressive because yt can be viewed as a regression on past
values

yt = et −
m∑

k=1
akyt−k (64)
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02421 - Auto-regressive models
The Auto-Regressive (AR) Process - stability

An AR(m) process is stable if the roots, λ, of the characteristic equation

a0 + a1λ
−1 + · · · + amλ

−m = 0 (65)

lie within the unit circle

Multiply both sides by λm (assuming λ is nonzero)

a0λ
m + a1λ

m−1 + · · · + am = 0 (66)

Hint: If the Matlab vector A contains the elements a0, a1, . . . , am (in that
order), you can use the command roots(A) to find the poles (double-check
with the documentation)
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02421 - Auto-regressive models
The Auto-Regressive (AR) Process – Mean

Mean

A(q−1)E[yt] = E[et] = 0 (67)

Stationary mean, E[yt] = ȳ for all t

A(q−1)E[yt] = A(q−1)ȳ = A(0)ȳ = 0 (68)

A(q−1) applied to a constant (e.g., ȳ) is just the sum of the coefficients

A(0) =
m∑

k=0
ak (69)

If A(0) ̸= 0

ȳ = 0 (70)
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02421 - Auto-regressive models
The Auto-Regressive (AR) Process – Auto-covariance

Auto-covariance function of an AR(m) process

γ(k) = Cov(yt, yt−k) (71)

Auto-covariance

γ(k) +
m∑

j=1
ajγ(k − j) = 0, k > 0 (72)

Initial condition

γ(0) +
m∑

j=1
ajγ(j) = σ2

e (73)

Symmetry of auto-covariance functions: γ(k) = γ(−k)
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02421 - Auto-regressive models
The Auto-Regressive Process with Exogenous inputs (ARX)

ARX process

yt +
m∑

k=1
akyt−k =

n∑
k=1

bkut−k + et, a0 = 1 (74)

{et} is a white-noise process

ARX process (using polynomials)

A(q−1)yt = B(q−1)ut + et (75)
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02421 - Auto-regressive models
The Auto-Regressive Process with Exogenous inputs (ARX)

Mean

A(q−1)E[yt] = B(q−1)E[ut] + E[et] = 0 (76)

Stationary mean, E[yt] = ȳ and E[ut] = ut = ū for all t

A(q−1)E[yt] = A(1)ȳ = B(q−1)E[ut] = B(1)ū (77)

If A(1) ̸= 0

ȳ = B(1)
A(1) ū (78)
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Diophantine equations
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02421 - Diophantine equations
Polynomials and Transfer functions

Polynomials

B(q−1) = b0 + b1q
−1 + · · · + bnq

−n (79)

The polynomial is order n if bn ̸= 0 and bi = 0 for i > n

If b0 = 1, the polynomial is monic

A transfer function H(q) can be written in infinitely many ways

H(q) = B(q−1)
A(q−1) = C(q−1)B(q−1)

C(q−1)A(q−1) (80)

39 DTU Compute Stochastic Adaptive Control 14.3.2025



02421 - Diophantine equations
Polynomials and Transfer functions
B(q−1)
A(q−1) = b0 + b1q

−1 + · · · + bnq
−n

1 + a1q−1 + · · · + anq−n
(81)

= b0 − b0 + b0 + b1q
−1 + · · · + bnq

−n

1 + a1q−1 + · · · + anq−n
(82)

= b0 − b0(1 + a1q
−1 + · · · + anq

−n)
1 + a1q−1 + · · · + anq−n

+ b0 + b1q
−1 + · · · + bnq

−n

1 + a1q−1 + · · · + anq−n

(83)

= b0 + q−1 (b1 − b0a1) + (b2 − b0a2)q−1 + · · · + (bn − b0an)q−(n−1)

1 + a1q−1 + · · · + anq−n

(84)
Define the transfer function

H(q) = B(q−1)
A(q−1) = g0 + q−1S1(q−1)

A(q−1) , (85)

S1(q−1) = s0 + s1q
−1 + . . .+ sn1q

−n1 , (86)
g0 = b0, si = bi+1 − b0ai+1 (87)

n1 = n− 1 is the order of S1
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02421 - Diophantine equations
Polynomials and Transfer functions

Repeat the rewriting for S1
A , S2

A , etc.

H(q) = B(q)
A(q) = g0 + g1q

−1 + · · · + gm−1q
−(m−1) + q−mSm(q−1)

A(q−1) (88)

= Gm(q−1) + q−mSm(q−1)
A(q−1) (89)

Diophantine equation

B(q−1) = A(q−1)Gm(q−1) + q−mSm(q−1) (90)

The order of Sm is max(na − 1, nb −m) and the order of Gm is m− 1
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02421 - Diophantine equations
Solving simple Diophantine equations

This (simple) Diophantine equation can be solved iteratively
% I n i t i a l i z e
G = [ ] ;
S = [ B, 0 ] ; % Pad B with z e r o s to make S as l ong as A

f o r i = 1 :m
% Augment wi th f i r s t e l ement o f S
G = [ G, S (1 ) ] ;

% Update S
S = [ S ( 2 : end ) − S (1) ∗A( 2 : end ) , 0 ] ;

end

% Remove l a s t e l ement
S = S ( 1 : end −1) ;
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Prediction
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02421 - Prediction
Prediction - AR process

Weakly stationary process

A(q−1)yt = et (91)

et is a white noise signal F(0, σ2) and A is monic

m-step prediction based on solution to the Diophantine equation

yt+m = 1
A(q−1)et+m = Gm(q−1)et+m + Sm(q−1)

A(q−1) et (92)

Prediction and error

ŷt+m|t = Sm(q−1)
A(q−1) et = Sm(q−1)

A(q−1) A(q−1)yt = Sm(q−1)yt, (93)

ỹt+m|t = Gm(q−1)et+m (94)

ŷt and ỹt are independent
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02421 - Prediction
Prediction - ARX process

System

A(q−1)yt = q−kB(q−1)ut + et (95)

k is the control delay

m-step prediction

ŷt+m|t = B(q−1)Gm(q−1)ut+m−k + Sm(q−1)yt, (96)
ỹt+m|t = Gm(q−1)et+m (97)

Diophantine equation

1 = A(q−1)Gm(q−1) + q−mSm(q−1) (98)

The order of G and S are m− 1 and max(na − 1, 1 −m) and G(0) = 1
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02421 - Prediction
Proof of ARX prediction

Rewrite future output using the Diophantine equation

yt+m =
(
A(q−1)Gm(q−1) + q−mSm(q−1)

)
yt+m (99)

= Gm(q−1)A(q−1)yt+m + Sm(q−1)yt (100)

Substitute system description

yt+m = Gm(q−1)(B(q−1)ut+m−k + et+m) + Sm(q−1)yt (101)
= Gm(q−1)B(q−1)ut+m−k + Sm(q−1)yt +Gm(q−1)et+m (102)
= ŷt+m|t + ỹt+m|t (103)

The prediction ŷt+m|t is uncorrelated with the prediction error ỹt+m|t
because yt is independent of the future noises, et (recall that Gm is of order
m− 1 so the error term involves et+1, . . . , et+m)
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02421 - Prediction

Questions?
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