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Stochastic Adaptive Control - Other Self Tuners
Lecture Plan
1 System theory

2 Stochastics

3 State estimation 1

4 State estimation 2

5 Optimal control 1

6 System identification 1 + adaptive
control 1

7 External models + prediction

8 Optimal control 2

9 Optimal control 3

10 System identification 2

11 System identification 3 + model
validation

12 System identification 4 + adaptive
control 2

13 Adaptive control 3
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2 DTU Compute Stochastic Adaptive Control 30.4.2024



Stochastic Adaptive Control - Other Self Tuners
Today’s Agenda

• Cautious adaptive control
• Dual adaptive control
• Ideas for MSc projects/special courses
• Presentation by Emil Skov Martinsen
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Stochastic Adaptive Control - Other Self Tuners
Follow-up from Last Lecture
CE Self-tuner Adaptive methods
• Explicit adaptive control: Estimate model parameters and then design controller

(explicit design)
• Implicit adaptive control: Estimate the controller parameters directly

(implicit design)

Other terms discussed
• CE: certainty equivalence principle; θ replaced by θ̂

• Jr =
t∑

i=1
(yi − wi)2 ≈ E[(yi − wi)2]t

• Ju =
t∑

i=1
u2

i ≈ E[u2
i ]t (requires oscillation around 0)

• Je =
t∑

i=1
ϵ2

i ≈ σ2t, for correct estimation ϵi = ei

• Je ≈ Jr
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Stochastic Adaptive Control - Other Self Tuners
Follow-up from Last Lecture

Questions?
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Stochastic Adaptive Control - Other Self Tuners
Known Systems and Control

ARX model with 1-step delay

A(q−1)yt = B(q−1)ut−1 + et, et ∈ Niid(0, σ2) (1)

Cost function

J = E
[

N∑
i=1

(yt+i − wt+i)2
]

(2)

Example: MV0 controller (N = 1)

ut−1 = 1
B

wt − S

B
yt−1 = 1

B
wt − q(1 − A)

B
yt−1 (3)

yt = wt + et (4)
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Known Systems and Control
Alternative form: System

yt = ϕT
t θ + et = b0ut−1 + φT

t ϑ + et (5)
ϕT

t = (−yt−1, −yt−2, . . . , ut−1, ut−2, . . .), θT = (a1, a2, . . . , b0, b1, . . .)
(6)

φT
t = (−yt−1, −yt−2, . . . , 0, ut−2, . . .), ϑT = (a1, a2, . . . , 0, b1, . . .) (7)

Alternative form: Controller

ut−1 = 1
b0

wt − φT
t ϑ

b0
(8)

yt = wt + et (9)

Relation between ϕ and φ

φ = ϕ − diag(l)ϕ, ϑ = θ − diag(l)θ (10)
lT = (0, 0, . . . , 1, 0, . . .) (11)

The nonzero entry corresponds to the placement of b0 and ut−1
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Adaptive control - Method Overview
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Adaptive Control - CE Control (Explicit)
Certainty equivalent self-tuner: Use the parameter estimate as the true
parameters

yt = ϕT
t θ + ϵt, θ → θ̂ (12)

Update parameter estimate

ϵt = yt − ϕT
t θ̂t−1 (13)

Kt = Pt−1ϕt

1 + ϕT
t Pt−1ϕt

(14)

θ̂t = θ̂t−1 + Ktϵt (15)
Pt = Pt−1 − Kt(1 + ϕT

t Pt−1ϕt)KT
t (16)

Redesign the control law

ut = wt+1 − Syt

R
= 1

B̂
wt+1 − q(1 − Â)

B̂
yt = 1

b̂0
wt − φT

t ϑ̂

b̂0
(17)
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Cautious adaptive control
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Adaptive Control - Cautious Control
Cautious adaptive control: Take estimation uncertainty into account

Conditional cost function

J = E[(yt+1 − wt+1)2|Yt] (18)
= (E[yt+1 − wt+1|Yt])2 + Var(yt+1 − wt+1|Yt) (19)

Uncertainty of parameter estimate

θ̂t ∼ N(θ, Pt) (20)
b̂0,t = lT θ̂t (21)
pb,t = lT Ptl (22)

Control law

ut =
b̂2

0,t

b̂2
0,t + pb,t

(
wt+1 − φT

t θ̂

b̂0,t

− φT
t Ptl

b̂2
0,t

)
(23)
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Adaptive Control - Cautious Control

If Pt → 0, cautious control is equivalent to certainty equivalent control

ut =
b̂2

0,t

b̂2
0,t + pb,t

(
wt+1 − φT

t θ̂

b̂0,t

− φT
t Ptl

b̂2
0,t

)
→ ut = wt+1 − φT

t θ̂

b̂0,t

(24)

If θ̂t → θ, certainty equivalent control is equivalent to the known control
1 Pt → 0 : Cautious = CE ̸= known

2 θ̂t → θ : Cautious ̸= CE = known

3 Pt → 0, θ̂t → θ : Cautious = CE = known
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Adaptive Control - Cautious Control - Usage

Cautious controller

ut =
b̂2

0,t

b̂2
0,t + pb,t

(
wt+1 − φT

t θ̂

b̂0,t

− φT
t Ptl

b̂2
0,t

)
(25)

• Turn-off phenomenon: Control is dampened due to high uncertainty of b0

• Consequence: Less information about b0 for the next estimate, i.e., the
uncertainty increases

• Turn-off usually occurs if b0 or the control signal is small
• Conclusion: The cautious controller is useful for systems with constant or almost

constant parameters, but unsuitable for general time-varying systems
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Examples

Matlab example: Cautious self-tuner
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Stochastic Adaptive Control - Other Self Tuners
Adaptive Control - Method Overview
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Dual adaptive control
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Adaptive Control - Optimal Dual Control

Dual control: Conditional expectation of the cost

J = min
Ut

E
[

N∑
i=1

(yt+i − wt+i)2
]

= EYt

[
min

Ut

E
[

N∑
i=1

(yt+i − wt+i)2
∣∣∣∣∣ Yt

]]
(26)

If the parameter uncertainty is Gaussian, the conditional expectation is
Gaussian (even if yt is not)

ξt = [φt−1, θ̂t, Pt] (27)

contains the necessary information

If not Gaussian, it becomes computationally challenging to compute the
hyper space and storage requirements increase
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Adaptive Control - Optimal Dual Control

Bellman equation

V (ξt, t) = min
ut−1

E[(yt − wt)2 + V (ξt+1, t)|Yt−1] (28)

The last (N ’th) step is identical to the cautious controller

V (ξN , N) = min
uN−1

E[(yN − wN )2|YN−1] (29)

= (φT
N−1θN − wN )2 + σ2 + φT

N−1PN φN−1 −
b̂0,N wN − φT

N−1(b̂0,N θ̂N + PN l)
b̂2

0,N − pb,N

(30)

substituting into V (ξN−1, N − 1), the second last control can be computed,
and so on

This is similar to the LQR – however, it does not have an analytical solution
and must be solved numerically
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Adaptive Control - Optimal Dual control

Fundamental paradox of adaptive control
1 Control objective: Small signals (control action)

2 Estimation: Large signals (probing action)

For the optimal N -step dual control problem, the solution is a compromise
between these goals
1 Improved long-term estimation accuracy; sacrificing short-term loss

2 Probing adds active learning to the method

Cautious control (N = 1): The probing effects diminishes and any learning
is "accidental"

Issue with dual control: Curse of dimensionality – the computational cost
increases drastically with increasing hyperspace dimension and horizon
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Adaptive Control - Sub-Optimal Dual control

As optimal dual control is impractical, sub-optimal dual controllers exist.
They are based on the cautious controller and fix the issue with turn-off

Various approaches
1 Constrain the uncertainty

2 Extend the loss function

3 Serial expansion of the loss function

4 Add perturbation signals to the control
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Sub-Optimal Dual Control - Constrained One-step Controller

Constrained one-step controller (minimum distance to zero control)

ut =
{

uc if |uc| ≥ |ul|
ul sign(uc) if |uc| < |ul|

(31)

uc is the cautious controller input and ul is a lower limit determined by us

The constraints do not prevent turn-off, but add extra perturbation when it
happens
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Sub-Optimal Dual Control - Constrained Uncertainty

Alternatively, constrain the uncertainty

Tr(P −1
t+1) ≥ M (32)

or constrain only pb

pb,t+1 ≤
{

γb̂2
0,t+1 if pb,t ≤ b̂2

0,t

αpb,t otherwise
(33)
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Sub-Optimal Dual control - extended loss function

Add uncertainty to the cost function

J = E[(yt+1 − wt+1)2 + ρf(Pt+1)] (34)

f can be formulated in many ways
1 f(Pt+1) = pb,t+1

2 f(Pt+1) = R2
pb,t+1

pb,t

3 f(Pt+1) = − det(Pt)
det(Pt+1)

4 f(Pt+1) = −ϵ2
t+1

This might lead to multiple local minima, and numerical optimization is
required. Alternatively, use a second order serial expansion (e.g., a Taylor
expansion)
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Sub-Optimal Dual control - Extended Loss Function - Example
Third version of f

J = E
[

(yt+1 − wt+1)2 − ρ
det(Pt)

det(Pt+1)

∣∣∣∣ Yt

]
(35)

Ratio between determinants
det(Pt)

det(Pt+1) = 1 + ϕT
t+1Ptϕt+1 (36)

Analytical control law

ut =
b̂0(wt+1 − φT

t+1ϑ̂t) + ρ(Ptl)T φt+1

b̂2
0 − ρpb,t

(37)

Depending on ρ, we get specific controllers
1 ρ = 0: the CE controller

2 ρ = −1: the cautious controller

3 ρ > 0: an active learning controller
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Sub-Optimal Dual control - Probing

Add probing/perturbation signal

ut = uc
t + ux

t (38)

Possible probing/perturbation signals include
1 PRBS

2 DOX: Design of excitation signal

They can be applied both at certain points in time (low uncertainty) or
constantly
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Questions

Questions?
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Other interesting courses

• 34746 – Robust & fault-tolerant control
• 34791 – Topics in advanced control (PhD)
• 02619 – Model predictive control
• 02417 – Time series analysis
• 02427 – Advanced time series analysis
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Subjects for special courses and MSc projects
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Stochastic adaptive control of structured nonlinear systems

Bilinear systems (e.g., in heat exchangers)

xk+1 = Axk + Buk + G(xk ⊗ uk) (39)

Separable bilinear systems (e.g., in district heating)

xk+1 = Axk + Buk + G(xk ⊗ vk) (40)

Quadratic-bilinear systems (e.g., in nuclear fission)

xk+1 = Axk + buk + H(xk ⊗ xk) + G(xk ⊗ uk) (41)
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Develop control system examples

• TCLab device
• Electrolysis
• Tank systems
• ... or others
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Control of systems with time delays
Can both be discrete- and continuous-time

• Ordinary differential equations (ODEs)

ẋ(t) = f(x(t), u(t), d(t), θ)

• Delay differential equations (DDEs)
with absolute delays

ẋ(t) = f(x(t), x(t − τ), u(t), d(t), θ)

• Distributed delay differential equations
(DDDEs)

ẋ(t) = f(x(t), z(t), u(t), d(t), θ),

z(t) =
∫ t

−∞
α(t − s)x(s) ds

Potential collaboration with Prof. John Wyller from NMBU, Norway.
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Control of equilibrium/transport processes
(DAEs/PDAEs with complementarity conditions)

DAEs
ẋ(t) = F (y(t), u(t), d(t), θ),

0 = G(x(t), y(t), z(t), θ)

Equilibrium 1/2
min
y(t)

f(y(t)),

s.t. g(y(t)) = x(t),
h(y(t)) = 0

Equilibrium 2/2
min
y(t)

f(y(t)),

s.t. g(y(t)) = x(t),
h(y(t)) = 0,

y(t) ≥ 0

Injection well

CO2

Reservoir fluid

• CO2 storage
• Geothermal energy
• Power-to-X

Potential collaborations with

SemperCycle ApS, Nordic Hydrogen

ApS, and MPI Magdeburg, Germany.
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Learning-based adaptive control

Stochastic adaptive control

Design

Controller System

Identification

w

v

u y

Reinforcement learning

6464 I

64 64 I/
2

256 256 256 I/
4

512 512 512 I/
8

512 512 512 K I/
16

concatenation of de-
convolved feature maps

K I/
8

K I/
4

K I/
2

K I

K I

Combined/hybrid approaches
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Model reduction and numerical methods for optimal control

The linear continuous-time system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

reduces to

˙̂x(t) = Arx̂(t) + Bru(t),
ŷ(t) = Crx̂(t) + Dru(t).

What about

ẋ(t) = f(x(t), u(t))

and optimal control/dynamic
optimization problems?

Original system

ẋ = A x + B u

y = C x + D u

Reduced system

˙̂x = Ar x̂ + Br u

ŷ = Cr x̂ + Dr u
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Nuclear fission
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Geothermal energy
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Power grids
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Power-to-X
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