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Stochastic Adaptive Control - Adaptive Control
Today’s Agenda

• Closed-loop system identification
• Explicit self-tuning controllers (STCs)
• Implicit self-tuning controllers (STCs)
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Stochastic Adaptive Control - Adaptive Control
Follow-up from last time

Questions?
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Closed-loop system identification
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Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - why?

Why closed-loop identification?
1 Unstable open-loop system

2 Running process (production/economics)

3 Safety

4 Adaptive control

6 DTU Compute Stochastic Adaptive Control 13.5.2024



Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - Pitfalls

System and control law

yt + ayt−1 = but−1 + et, et ∼ Niid(0, σ2) (1)
ut = −fyt (2)

Closed-loop system (time domain)

yt + (a+ bf)yt−1 = et (3)

The parameter estimate is not unique

a = a0 + γf, (4)
b = b0 − γ (5)

γ is arbitrary and the controller is therefore too simple

7 DTU Compute Stochastic Adaptive Control 13.5.2024



Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification
Question: How complex should a controller be?

ARMAX model

A(q−1)yt = q−kB(q−1)ut + C(q−1)et, et ∼ Niid(0, σ2) (6)

Control law

ut = −S(q−1)
R(q−1)yt (7)

Closed-loop system(
A(q−1)R(q−1) + q−kB(q−1)S(q−1)

)
yt = R(q−1)C(q−1)et (8)

A controller is sufficiently complex if the order of the closed-loop system is
higher than the number of parameters to be estimated

max(nr − nb, ns + k − na) ≥ 1 + np (9)

np is the number of common factors in RC and AR+ q−kBS
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Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - examples

System (revisited)

yt + ayt−1 = but−1 + et, et ∼ Niid(0, σ2) (10)
ut = −fyt (11)

Polynomial orders

na = 1, nb = 0, k = 1, nr = 0, ns = 0, np = 0 (12)

Evaluate controller

max(nr − nb, ns + k − na) ≥ 1 + np (13)
max(0 − 0, 0 + 1 − 1) ≥ 1 + 0 (14)

0 ≥ 1 (15)

The order is too low to identify the system
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Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - examples: Minimum Variance
ARMAX model

A(q−1)yt = q−kB(q−1)ut + C(q−1)et, et ∼ Niid(0, σ2) (16)

Minimum variance controller

J = E[y2
t+k], yt+k = 1

C
(BGut + Syt) +Get+k (17)

Control law and closed-loop system

ut = − S

BG
yt (AG+ q−kS)yt = CGet (18)

Polynomial orders

nr = nb + k − 1, ns = na − 1, np = nc (19)

Evaluate polynomial orders

max(nr − nb, ns + k − na) = max(k − 1, k − 1) ≥ 1 + nc, (20)
k ≥ nc + 2 (21)
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Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - informative Data

• We say that the examples were not sufficiently informative (for k < nc + 2)

• As in the open-loop case, the data must be sufficiently informative in order to
identify the system

• A data set zt is sufficiently informative if

E[||(M1 − M2)zt||2] = 0 ⇒ M1(w) ≡ M2(w) (22)

such that we can distinguish between two models, Mi ∈ M

• In general, the closed-loop experiment is informative if the reference wt (or
another probing signal) is persistently exciting

• Similarly, time-invariant, nonlinear or higher order feedback controllers should
also provide informative experiments
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Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - challenges

Potential pitfalls specific to closed-loop identification
1 The closed-loop experiment may be non-informative even if the input in itself is

persistently exciting. Reason: the controller might be too simple

2 Spectral analysis applied in a straightforward manner will give erroneous results.
The estimate of G will converge to

G∗ = G0ϕw − Fϕv

ϕw + |F |2ϕv
, y = Gu+ v (23)

3 Correlation analysis will give a biased estimate of the impulse response because
the assumption that E[utvt−k] = 0 is violated.

4 OE methods give unbiased estimates of G in open-loop experiments, even if the
additive noise (v) is not white. This is not true in closed-loop.
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Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - Direct approach
The system is identified in exactly the same way as in open-loop
identification, using the data set [y, u] and ignoring any information about
the feedback structures

Strengths
1 It works regardless of the complexity of the controller and requires no knowledge

about the character of the feedback
2 No special algorithms or software are required
3 Consistency and optimal accuracy are obtained if model structure contains the

true system
4 Unstable systems can be handled without problems (as long as the closed-loop

system and the predictor are stable)
Drawbacks
1 We need good noise models. (Not a problem if the true system (G, H) is

contained in model structure.)
2 If noise model is incorrect (fixed incorrectly or not containing the true noise

model), a bias in G will be introduced.
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Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - Indirect Approach

Closed-loop transfer functions

yt = Gut +Het, ut = wt − Fyt (24)

yt = Gclwt +Hclet, Gcl = GS, Hcl = HS, S = 1
1 + FG

(25)

Derive the identified system (the control law is known)

Ĝ = Ĝcl

1 − FĜcl

, Ĥ = Ĥcl(1 + FĜ) (26)

Properties of the indirect approach
1 + Any (open-loop) method such as spectral analysis, instrumental variable,

subspace and prediction error methods can be applied.

2 − Any error in F will directly affect the estimate of the model (e.g., saturation,
manual operation).
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Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - joint input-output

Full closed-loop description

yt = GSwt +HSet +GSzt = GSwt + v1,t (27)
ut = Swt − FSHet + Szt = Swt + v2,t (28)

where zt is a partial unknown signal part of ut

In this approach, we utilize the structure of both the input and output to
estimate the closed-loop system and the sensitivity function S
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Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - joint input-output V1

First version: Take correlation between v1 and v2 into account[
yt

ut

]
= S

[
G
1

]
wt + S

[
H G

−FH 1

] [
et

zt

]
= Gwt + H

[
et

zt

]
(29)

Using the variance of [et, zt]T , we can estimate the system parameters
using, e.g., a ML or PEM method

J =
t∑

i=1
ϵTi R

−1ϵi, R = Var
([
ei

zi

])
, ϵi = H−1

([
yi

ui

]
− Gwi

)
(30)

This is essentially the direct approach extended to controller estimation
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Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - joint input-output V2
Second version: Disregard correlation[

yt

ut

]
=
[
Gcl

Guw

]
wt +

[
v1,t

v2,t

]
(31)

Cost function

J = 1
σ2

1

t∑
i=1

(yi −Gclwi)2 + 1
σ2

2

t∑
i=1

(ui −Guwwi)2, (32)

The system can then be determined by

Ĝ = Ĝcl

Ĝwu

≈ ĜŜ

Ŝ
(33)

Given these polynomials are estimated the cancellation is not perfect,
making Ĝ higher order than it should be

A trick for mitigating this is to use independent parametrization of G and S:
G(θ) and S(η)
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Stochastic Adaptive Control - Adaptive Control
Closed-Loop Identification - joint input-output V2 - 2 step

For the independently parametrized estimation, we consider the cost

J = β
1
σ2

1

t∑
i=1

(yi −G(θ)S(η)wi)2 +
t∑

i=1
(ui − S(η)wi)2, (34)

Estimation in two steps
1 first for β = 0, to estimate the parameters of S(η)

2 then use ût = S(η̂)wt to estimate G(θ) from yt = G(θ)ût + v1,t

One previously suggested parametrization of S is the non-causal filter

S(η) =
m∑

i=−m

skq
−k (35)
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Adaptive control
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Stochastic Adaptive Control - Adaptive Control
Adaptive Control

Stochastic control relies on a detailed
model which might not be available
1 Parameter values cannot be measured

2 The underlying physics is not
understood sufficiently well

Approach 1:
A model can be created using
identification methods and a
stochastic controller can be designed

If the system varies in time, e.g., due
to aging or wear, the identification
will have to be repeated occasionally

Approach 2:
Alternatively, we can combine online
identification and control.
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Stochastic Adaptive Control - Adaptive Control
Alternative to adaptive control: Robust control

If the model of a system is uncertain, there also exist other methods than
the adaptive control. One such method is the robust control
1 Robust control: Low sensitivity to the effect of uncertain system parts, a control

that, in some sense, operates after worst-case scenario

2 Adaptive control: Monitors/estimates the uncertain parts, a control law that
changes with the identified system.

In some sense, robust control can be seen as the opposite method to
adaptive control: Adapting the control usage (sensitivity) vs. adapting the
control design

That is the subject of the course 34746 Robust and fault-tolerant control
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Stochastic Adaptive Control - Adaptive Control
Adaptive control - Method Overview

Several schools exist within adaptive control
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Stochastic Adaptive Control - Adaptive Control
Adaptive control - Gain Scheduling Control

A simple approach is to manually
change the model based on the
operating point
1 Linear control of non-linear system:

Airplanes/robots

2 Piecewise systems: Laws for behaviour
at night vs. day

Adaptation is manual, so no
performance feedback to the
adaptations
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Stochastic Adaptive Control - Adaptive Control
Adaptive control - Model Reference Adaptive Control (MRAC)

Another approach is to adapt the
control until the output follows a
desired transfer function with the
least possible deviation

The focus is on the control problem
and the adaptation is feedback on
the model deviations

The concept is similarly to that of
an observer/Kalman filter
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Stochastic Adaptive Control - Adaptive Control
Adaptive control - Self-tuning Control

The self-tuning methods are based
on the combination of an
identification algorithm, a design
method, and a controller

It is further assumed that the
certainty equivalence principle holds
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Stochastic Adaptive Control - Adaptive Control
Adaptive control - Certainty Equivalence Principle

Certainty equivalence principle: Replace true parameters by an estimate

θ → θ̂ (36)

For linear systems with additive noise, the principle holds

ut = −Lxt → ut = −Lx̂t (37)

In adaptive control, the principle is an assumption (minimum variance
control example)

C = AG+ q−kS → Ĉ = ÂG+ q−kS (38)
BGut = −Syt → B̂Gut = −Syt (39)

The principle does not guarantee optimality – it is assumed for convenience
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Explicit self-tuning controllers
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Stochastic Adaptive Control - Adaptive Control
Basic Self-tuning
Let us now discuss the self-tuning methods in terms of the minimum
variance controller, the so-called basic self-tuning controller

We combine a recursive estimation approach for

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (40)
B(q−1) = b0 + b1q

−1 + · · · + bnb
q−nb , b0 ̸= 0 (41)

et ∼ F(0, σ2) and white (42)

with the design of the minimum variance controller for the objective

J = E[y2
t+k] (43)

u = func(Yt) (44)

Self-tuning methods come in two variants: Explicit and implicit
1 Explicit: Estimation of model used to design the control

2 Implicit: Estimation of the controller parameters + C(q−1)
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Stochastic Adaptive Control - Adaptive Control
The Basic Self tuner - Explicit
In the explicit method, we are interested in identifying the model

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt (45)

to use in the control We do this using a chosen estimation method

yt = ϕT
t θt−1 + et (46)

θ̂t = arg min
t∑

i=1
ϵ2i (47)

Using the estimate, we compute the control as

ut = arg minE[y2
t+k] (48)

and we repeat at the next sampling time.

For a correct estimation (ϵt = et), we have that the sum of control errors:

Je(t) =
t∑

i=1
ϵ2i ≃ tσ2 (49)
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Stochastic Adaptive Control - Adaptive Control
The Basic Self tuner - Explicit: example
First, we apply RML estimation:

ϕt = (−yt−1, ..., ut−k, ..., ϵt−1, ...)T , ψt = 1
Ĉ(q−1)

ϕt (50)

θ = (a1, ..., b0, ..., c1, ...)T (51)
P−1

t = P−1
t−1 + ψtψ

T
t (52)

ϵt = yt − ϕT
t θt−1 (53)

θ̂t = θ̂t−1 + Ptψtϵt (54)

Then, we obtain the control by solving the simple Diophantine equation,

Ĉ(q−1) = Â(q−1)G(q−1) + q−kS(q−1) (55)
R(q−1) = B̂(q−1)G(q−1) (56)

with the control law given by

ut = −S

R
yt = − 1

r0
(s0yt + s1yt−1 + · · · − r1ut−1 − r2ut−2 − · · · ) (57)
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Stochastic Adaptive Control - Adaptive Control
The Basic Self tuner - Explicit: ARX example

Let us consider the simple ARX system with a single delay:

Â(q−1)yt = q−1B̂(q−1)ut + ϵt (58)

Our controller is then given by the Diophantine:

1 = Â(q−1) + q−1S(q−1) (59)
G(q−1) = 1; (60)

With the controller polynomials and law given as

S(q−1) = q(1 − Â(q−1)) (61)
R(q−1) = B(q−1) (62)

ut = −S

R
yt (63)
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Stochastic Adaptive Control - Adaptive Control
The Basic Self tuner - Explicit: properties

The control loss function of the explicit self tuner:

Jr(t) =
t∑

i=1
y2

t ≃ E[y2
t ]t (64)

Ju(t) =
t∑

i=1
u2

t ≃ E[u2
t ]t (65)

For a correct estimate of the parameters, we have that ϵt = et, therefore
the residuals loss function follows

Je(t) =
t∑

i=1
ϵ2t ≃ σ2t (66)
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Stochastic Adaptive Control - Adaptive Control
Explicit MV0 Control

Identified system (general method):

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt + d̂ (67)

Controller optimality criteria:

J = E[(yt+k − wt)2] (68)

Controller design:

B̂(q−1)G(q−1)ut = Ĉ(q−1)wt − S(q−1)yt −G(1)d̂ (69)
Ĉ(q−1) = Â(q−1)G(q−1) + q−kS(q−1) (70)

QRS form:

Q = Ĉ(q−1), R = B̂(q−1)G(q−1), ξ0 = G(1)d̂ (71)
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Stochastic Adaptive Control - Adaptive Control
Explicit Pole Placement Control
Identified system (general method):

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt + d̂ (72)

Controller optimality criteria:

J = E[(Am(q−1)yt+k −Bm1(q−1)B̂−(q−1)wt)2] (73)
B̂(q−1) = B̂+(q−1)B̂−(q−1) (74)

Controller and Design:

B̂+(q−1)G(q−1)ut = Bm1(q−1)Ĉ(q−1)wt − S(q−1)yt − G(1)
B−(1) d̂ (75)

Am(q−1)Ĉ(q−1) = Â(q−1)G(q−1) + q−kB̂−(q−1)S(q−1) (76)

QRS form:

Q = Bm1(q−1)Ĉ(q−1), R = B̂+(q−1)G(q−1), ξ0 = G(1)
B−(1) d̂ (77)

34 DTU Compute Stochastic Adaptive Control 13.5.2024



Stochastic Adaptive Control - Adaptive Control
Explicit PZ Control - B− = 1 & B+ = B

Identified system (general method):

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt + d̂ (78)

Controller optimality criteria:

J = E[(Am(q−1)yt+k −Bm(q−1)wt)2] (79)

Controller and Design:

B̂(q−1)G(q−1)ut = Bm(q−1)Ĉ(q−1)wt − S(q−1)yt −G(1)d̂ (80)
Am(q−1)Ĉ(q−1) = Â(q−1)G(q−1) + q−kS(q−1) (81)

QRS form:

Q = Bm(q−1)Ĉ(q−1), R = B̂(q−1)G(q−1), ξ0 = G(1)d̂ (82)
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Stochastic Adaptive Control - Adaptive Control
Explicit GMV Control
Identified system (general method):

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt + d̂ (83)

Controller optimality criteria (monic denominators):

J = E
[(
By(q−1)
Ay(q−1)yt+k − Bw(q−1)

Aw(q−1)wt

)2
+ ρ

(
Bu(q−1)
Au(q−1)ut

)2]
(84)

Controller and Design:

R(q−1)ǔt = Q(q−1)w̌t − S(q−1)y̌t − ξ0 (85)
By(q−1)Ĉ(q−1) = Ay(q−1)ÂG(q−1) + q−kS(q−1) (86)

QRS form:

Q = Ĉ, R = AuB̂G+ ρ

b̂0
BuĈ, ξ0 = G(1)d̂ (87)

ǔt = 1
Au

ut, y̌t = 1
Ay

yt, w̌t = Bw

Aw
wt (88)
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Stochastic Adaptive Control - Adaptive Control
Explicit LQG Control
Identified system (general method):

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt + d̂, B̄ = q−kB̂ (89)

Controller optimality criteria (monic denominators):

J = lim
N→∞

E
[ 1
N

N∑
i=t

(yi − wi)2 + ρu2
t

]
(90)

Controller and Design:

R(q−1)ut = Q(q−1)wt − S(q−1)yt − ξ0 (91)
P (q−1)P (q) = B̄(q−1)B̄(q) + ρÂ(q−1)Â(q) (spectral factorization)

(92)
P (q−1)Ĉ(q−1) = ÂR(q−1) + q−kB̂(q−1)S(q−1) (Diophantine) (93)

QRS form:

Q = P (1)
B̂(1)

Ĉ, R = AuB̂G+ ρ

b̂0
BuĈ, ξ0 = G(1)d̂ (94)
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Stochastic Adaptive Control - Adaptive Control
Matlab

Let us look at some Matlab examples of the explicit MV0 controller.
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Implicit self-tuning controllers
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Stochastic Adaptive Control - Adaptive Control
Implicit Self tuning

In each step of the explicit version, we have to
1 estimate model parameters,

2 solve the Diophantine equation for the controller polynomials, R and S, and

3 compute the control, ut

To simplify the computation, we combine the Diophantine equation and the
system equation:

Cyt+k = [Rut + Syt] + CGet+k (95)

to derive the implicit version

In each step of the implicit version, we
1 estimate the controller parameters and

2 compute the control, ut
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Stochastic Adaptive Control - Adaptive Control
Implicit Self tuning: ARX-model
For the ARX model, our control model is given by

yt+k = [R(q−1)ut + S(q−1)yt] +G(q−1)et+k (96)

The minimum-variance control drives the kth prediction to zero.
Consequently,

R(q−1)ut + S(q−1)yt = 0 = ϕT
t+kθ (97)

θ = (s0, s1, ..., r0, r1, ...)T (98)
ϕt+k = (yt, yt−1, ..., ut, ut−1, ...)T (99)
ϕt = (yt−k, yt−k−1, ..., ut−k, ut−k−1, ...)T (100)

We can then apply an estimation method such as RLS:

θ̂t : yt = ϕT
t θ̂ + ϵt (101)

ut : ϕT
t+kθ̂t = 0 (102)

with the control being computed afterwards
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Stochastic Adaptive Control - Adaptive Control
Implicit Self tuning: ARMAX-model
For the ARMAX model, our control model is given by

yt+k = 1
C(q−1) [R(q−1)ut + S(q−1)yt] +G(q−1)et+k (103)

The minimum-variance control drives the kth prediction to zero.
Consequently,

R(q−1)ut + S(q−1)yt = ϕT
t θ = 0 (104)

Furthermore, if the estimate θ̂ converges, it will reach parameters for which
the regressors and residuals are uncorrelated. Therefore, we can formulate
the model as

yt+k = [R(q−1)ut + S(q−1)yt] + ϵt+k = ϕT
t θ + ϵt+k (105)

ϵt = G(q−1)et, ϵt ⊥ ϕt (106)

As it now has the shape of an ARX model, we can do the estimation and
computation in the same manner which means that RLS can be used for
the ARMAX-model as well.
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Stochastic Adaptive Control - Adaptive Control
Implicit Self tuning: ARMAX-model - simple proof
Consider control, system and model given by

R(q−1)ut−k + S(q−1)yt−k = ϕT
t θ = 0 (107)

S : yt = 1
C(q−1)ϕ

T
t θ +G(q−1)et (108)

M : yt = ϕT
t θ̂ + ϵt (109)

If θ̂ converges to θ, we can formulate the model residual as

ϵt = yt − ϕT
t θ = 1

C(q−1)ϕ
T
t θ +G(q−1)et − ϕT

t θ (110)

= 1 − C(q−1)
C(q−1) ϕT

t θ +G(q−1)et (111)

Given the control design, the residuals become

ϵt = G(q−1)et (112)
E[ϕtϵt] = 0 (113)

where it can be seen that it is independent of the regressor.
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Stochastic Adaptive Control - Adaptive Control
Implicit self tuning: properties

Advantages:
1 Design is simple

2 Can use RLS (even if C ̸= 1)

Disadvantages:
1 More parameters to estimate (k ≫ 1)

2 Not all strategies can be transformed into an implicit strategy (model + design
has to be combined)

3 Estimation must be restarted if the design choice changes
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Stochastic Adaptive Control - Adaptive Control
Implicit MV0 Control
System:

A(q−1)yt = q−kB(q−1)ut + C(q−1)et + d (114)
Controller optimality criteria:

J = E[(yt+k − wt)2] (115)
Estimation and control:

ζt = yt − wt−k = ϕT
t θ̂t−1 + ϵt (116)

ϕT
t+kθ̂t = 0 (117)
θ̂T

t = (s0, ..., r0, ..., q0, ..., ξ) (118)
ϕT

t = (yt−k, ..., ut−k, ...,−wt−k, ..., 1) (119)
ϕT

t+k = (yt, ..., ut, ...,−wt, ..., 1) (120)
The theoretical control law:

R(q−1)ut = Q(q−1)wt − S(q−1)yt − ξ (121)
R = BG, Q = C, S = qk(C −AG), ξ = G(1)d (122)
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Implicit PZ Control
System:

A(q−1)yt = q−kB(q−1)ut + C(q−1)et + d (123)

Controller optimality criteria:

J = E[(Am(q−1)yt+k −Bm(q−1)wt)2] (124)

Estimation and control:

ζt = Am(q−1)yt −Bm(q−1)wt−k = ϕT
t θ̂t−1 + ϵt (125)

ϕT
t+kθ̂t = 0 (126)
θ̂T

t = (s0, ..., r0, ..., q0, ..., ξ) (127)
ϕT

t = (yt−k, ..., ut−k, ...,−wt−k, ..., 1) (128)

The theoretical control law:

R(q−1)ut = Q(q−1)wt − S(q−1)yt − ξ (129)
R = BG, Q = BmC, S = qk(AmC −AG), ξ = G(1)d (130)
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Implicit GMV Control

System:

A(q−1)yt = q−kB(q−1)ut + C(q−1)et + d (131)

Controller optimality criteria (monic denominators):

J = E
[(
By(q−1)
Ay(q−1)yt+k − Bw(q−1)

Aw(q−1)wt

)2
+ ρ

(
Bu(q−1)
Au(q−1)ut

)2]
(132)

Filtered variables

ỹt = By(q−1)
Ay(q−1)yt, w̃t = Bw(q−1)

Aw(q−1)wt, ũt = ρ

b0

Bu(q−1)
Au(q−1)ut (133)
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Stochastic Adaptive Control - Adaptive Control
Implicit GMV Control
Estimation and control:

ζt+k = ỹt+k − w̃t + ρ

b̂0
ũt = ϕT

t θ̂t−1 + ϵt (134)

ϕT
t+kθ̂t = 0 (135)
ut = Au(q−1)ǔt (136)
θ̂T

t = (s0, ..., r0, ..., q0, ..., ξ) (137)
ϕT

t = (y̌t−k, ..., ǔt−k, ...,−w̌t−k, ..., 1) (138)

Theoretical control law:

R(q−1)ǔt = Q(q−1)w̌t − S(q−1)y̌t − ξ (139)

R = AuBG+ ρ

b0
BuC, Q = C, S = qk(ByC −AyAG), (140)

ξ = G(1)d (141)

ǔt = 1
Au

ut, y̌t = 1
Ay

yt, w̌t = Bw

Aw
wt (142)
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Stochastic Adaptive Control - Adaptive Control
Implicit GMV Control

1 Measure yt

2 Create ζt = ỹt − w̃t−k + αũt−k

3 Create y̌t, ǔt, and w̌t

4 Create ϕt = (y̌t−k, . . . , ǔt−k, . . . ,−w̌t−k, . . . , 1)T and ϕt+k

5 Update the parameter estimate:

ϵt = ζt − ϕT
t θ̂t−1, (143)

P−1
t = P−1

t−1 + ϕtϕ
T
t , (144)

θ̂t = θ̂t−1 + Ptϕtϵt (145)

6 Determine ǔt such that ϕT
t+kθ̂t = 0

7 Determine ut = Au(q−1)ǔt
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Examples

Let us return to Matlab, and look at the implicit implementation of a PZ
controller
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Questions

Questions?
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