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Lecture Plan

@ System theory

® Stochastics

© State estimation 1
@ State estimation 2
@ Optimal control 1

@ System identification 1 + adaptive
control 1

@ External models + prediction
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® Optimal control 2
© Optimal control 3
i System identification 2

@® System identification 3 + model
validation

® System identification 4 + adaptive
control 2

® Adaptive control 3
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Controller
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Today’s Agenda

® Closed-loop system identification
e Explicit self-tuning controllers (STCs)

® Implicit self-tuning controllers (STCs)
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Follow-up from last time

Questions?
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Closed-Loop ldentification - why?

Why closed-loop identification?

@ Unstable open-loop system

@® Running process (production/economics)
© Safety

@ Adaptive control
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Closed-Loop Identification - Pitfalls

System and control law

Yyr +ayi—1 = bug_1 + e, e ~ Nig(0, 02)
up = —fy

Closed-loop system (time domain)
Ye + (a+b0f)ye—1 = e
The parameter estimate is not unique

Cl=6lo+’7f7
b=1by—~

v is arbitrary and the controller is therefore too simple
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Closed-Loop Identification
Question: How complex should a controller be?

ARMAX model

Alg Ny = ¢ *Blg ue + Cla Ve,
Control law

()
T R(gY)

Yt

Closed-loop system

=
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er ~ Niza(0,0%)  (6)

(7)

(A(ql)R(ql) + qu(ql)S(ql))yt =R(gHC(g "er  (8)

A controller is sufficiently complex if the order of the closed-loop system is
higher than the number of parameters to be estimated

max(n, —np,ns +k —ng) > 1+mn, (9)

n, is the number of common factors in RC and AR+ ¢ *BS
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Closed-Loop Identification - examples

System (revisited)

Y +ay—1 =bui_1 +e, e ~ Nijg(0,02)
up = —fy

Polynomial orders
ng=1, mn,=0, k=1, n,=0, nyg=0, np,=0
Evaluate controller

max(n, — np,Ns + k — ng)

21+np
max(0—0,0+1—-1)>1+
0>1

The order is too low to identify the system
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Closed-Loop Identification - examples: Minimum Variance =

ARMAX model
Alg Yy = q_kB(q_l)ut +C(g Yer, er ~ Nijg(0,0?)

Minimum variance controller

1
J = Ely}], Yk = 5 (BGur + Syp) + Geren
Control law and closed-loop system
up = —iyt (AG + ¢ %8y, = CGey
BG
Polynomial orders
nr=np+k—1, Ng = Ng — 1, Ny = Ne

Evaluate polynomial orders

max(n, — np,ns + k —ng) =max(k — 1,k —1) > 1+ n,,
k>n.+2
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Closed-Loop Identification - informative Data

® We say that the examples were not sufficiently informative (for k < n. + 2)

® As in the open-loop case, the data must be sufficiently informative in order to
identify the system

® A data set z; is sufficiently informative if
E[[(Mi = M2)z|’]=0 = Mi(w) = Ma(w) (22)

such that we can distinguish between two models, M; € M

® In general, the closed-loop experiment is informative if the reference w; (or
another probing signal) is persistently exciting

® Similarly, time-invariant, nonlinear or higher order feedback controllers should
also provide informative experiments
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Closed-Loop ldentification - challenges

M

Potential pitfalls specific to closed-loop identification

@ The closed-loop experiment may be non-informative even if the input in itself is
persistently exciting. Reason: the controller might be too simple

@® Spectral analysis applied in a straightforward manner will give erroneous results.
The estimate of G will converge to

*_GO¢w_F¢v

= — =Gu+v 23
Gw + FP0y Y (23)

© Correlation analysis will give a biased estimate of the impulse response because
the assumption that E[uv:—x] = 0 is violated.

@ OE methods give unbiased estimates of G in open-loop experiments, even if the
additive noise (v) is not white. This is not true in closed-loop.
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Closed-Loop Identification - Direct approach
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The system is identified in exactly the same way as in open-loop
identification, using the data set [y, u] and ignoring any information about
the feedback structures

Strengths

@ It works regardless of the complexity of the controller and requires no knowledge
about the character of the feedback

® No special algorithms or software are required

© Consistency and optimal accuracy are obtained if model structure contains the
true system

O Unstable systems can be handled without problems (as long as the closed-loop
system and the predictor are stable)

Drawbacks

@ We need good noise models. (Not a problem if the true system (G, H) is
contained in model structure.)

@ If noise model is incorrect (fixed incorrectly or not containing the true noise
model), a bias in G will be introduced.
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Closed-Loop Identification - Indirect Approach =

Closed-loop transfer functions

Yyt = Gue + Hey,  up = wy — Fyy (24)
1
Yyt = Gawe + Haey, Ga=GS, Hgq=HS, 5= [T (25)
Derive the identified system (the control law is known)
. G A .
1—-FGy

Properties of the indirect approach

@ + Any (open-loop) method such as spectral analysis, instrumental variable,
subspace and prediction error methods can be applied.

@® — Any error in F will directly affect the estimate of the model (e.g., saturation,
manual operation).
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Closed-Loop lIdentification - joint input-output

Full closed-loop description
Yt = GSU)t + HSet + GSZt = GSwt + U1t (27)
u = Swy — FSHey + Sz = Swy + vay (28)

where z; is a partial unknown signal part of wu;

In this approach, we utilize the structure of both the input and output to
estimate the closed-loop system and the sensitivity function .S
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Closed-Loop Identification - joint input-output V1

M

First version: Take correlation between v; and vy into account

] -s[ees [ ] o

—FH 1 Zt
Using the variance of [es, 2|7, we can estimate the system parameters
using, e.g., a ML or PEM method

t
_ Tp-1,_ _ €i -1 [ |Y A
J = ; €; R"¢;, R=Var <l211> , 6=™H (|}%] ng> (30)

This is essentially the direct approach extended to controller estimation

wy + S

jj (29)
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Closed-Loop Identification - joint input-output V2 =
Second version: Disregard correlation
ye| _ | Ga ULt
|]h;| N [Guw we v2,1;| (31)
Cost function
1< 2 1< 2
722 - clwz + — Z uwwz , (32)
o1 =1 U 2 =1
The system can then be determined by
. Gaq _GS
G =24 (33)
qu S

Given these polynomials are estimated the cancellation is not perfect,

making G higher order than it should be

A trick for mitigating this is to use independent parametrization of G and S:

G(0) and S(n)
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Closed-Loop lIdentification - joint input-output V2 - 2 step

M

For the independently parametrized estimation, we consider the cost

t t

T =B S (i — GOSmyw)? + Y (ui — Soywi)®, (34)

913 i=1
Estimation in two steps
@ first for 8 = 0, to estimate the parameters of S(7)
@ then use 4y, = S()w; to estimate G(0) from y, = G(0)t; + v1 4
One previously suggested parametrization of S is the non-causal filter

m

Smy= Y skg " (35)

i=—m
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Adaptive Control

Stochastic control relies on a detailed ~ Approach 2:

model which might not be available Alternatively, we can combine online
@ Parameter values cannot be measured identification and control.
@ The underlying physics is not Sy s dtences

Objectives |  Constraints

understood sufficiently well

Approach 1:

A model can be created using
identification methods and a
stochastic controller can be designed

Model Knowledge
If the system varies in time, e.g., due Uncertainty

to aging or wear, the identification
will have to be repeated occasionally

Objective |
]

System

b
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Alternative to adaptive control: Robust control

If the model of a system is uncertain, there also exist other methods than
the adaptive control. One such method is the robust control

@ Robust control: Low sensitivity to the effect of uncertain system parts, a control
that, in some sense, operates after worst-case scenario

@ Adaptive control: Monitors/estimates the uncertain parts, a control law that
changes with the identified system.

In some sense, robust control can be seen as the opposite method to
adaptive control: Adapting the control usage (sensitivity) vs. adapting the
control design

That is the subject of the course 34746 Robust and fault-tolerant control
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Adaptive control - Method Overview

Several schools exist within adaptive control

——.‘"[ Gain Schedule ]

e B S

CE based STC

Cautious

L

Dual

Gradient optimization

-
-~
e J—[:[[

Stability optimization
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Adaptive control - Gain Scheduling Control

A simple approach is to manually
change the model based on the
operating point

@ Linear control of non-linear system:
Airplanes/robots

@ Piecewise systems: Laws for behaviour
at night vs. day

Adaptation is manual, so no
performance feedback to the
adaptations
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DTU
Adaptive control - Model Reference Adaptive Control (MRACES

- Another approach is to adapt the
|| dedd control until the output follows a

desired transfer function with the
least possible deviation

error

. . The focus is on the control problem
i el and the adaptation is feedback on

the model deviations

The concept is similarly to that of
an observer/Kalman filter
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Adaptive control - Self-tuning Control

The self-tuning methods are based
on the combination of an
identification algorithm, a design
method, and a controller

It is further assumed that the
certainty equivalence principle holds
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Adaptive control - Certainty Equivalence Principle
Certainty equivalence principle: Replace true parameters by an estimate
0—0 (36)
For linear systems with additive noise, the principle holds
u=—Lr; — u=—Liy (37)
In adaptive control, the principle is an assumption (minimum variance
control example)
C=AG+q*s — C=AG+q7*s (38)
BGu; = —Sy, — BGu; = —Sy, (39)

The principle does not guarantee optimality — it is assumed for convenience
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Basic Self-tuning =
Let us now discuss the self-tuning methods in terms of the minimum
variance controller, the so-called basic self-tuning controller
We combine a recursive estimation approach for
Al Nye = ¢ " Blgur + Clg e (40)
Blg™ ') =bo+big "+ +bng ™, by #0 (41)
et ~ F(0,0%) and white (42)
with the design of the minimum variance controller for the objective
J = E[yf 4] (43)
u = func(Y}) (44)

Self-tuning methods come in two variants: Explicit and implicit
@ Explicit: Estimation of model used to design the control

@ Implicit: Estimation of the controller parameters + C'(¢~ 1)

28 DTU Compute Stochastic Adaptive Control 13.5.2024



The Basic Self tuner - Explicit

In the explicit method, we are interested in identifying the model
Alg " )ye = ¢ Blg " ue + Clg e
to use in the control We do this using a chosen estimation method
Yt = <l5tT9t—1 + €t
t
0, = arg min Z 622
i=1
Using the estimate, we compute the control as
uy = arg min E[y7, ;]

and we repeat at the next sampling time.
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(45)

(46)

(47)

(48)

For a correct estimation (e¢; = e;), we have that the sum of control errors:

t
Je(t) = Zef ~ to?
i=1
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The Basic Self tuner - Explicit: example
First, we apply RML estimation:

Gt = (—Ytm1y ooos U s €11, ) 5 g = = o (50)
Cla™)
0= (al,...,bo,...,cl,...)T (51)
Pl =P+ (52)
€& = Yt — ¢tT9t71 (53)
0: = 011 + Phres (54)
Then, we obtain the control by solving the simple Diophantine equation,
Cla™") =Alg )G +a7"S(@™) (55)
R(g™") = Blg ")G(¢™") (56)
with the control law given by
S 1
Ut =—ph = ——(Soyt + 81Yt—1+ - —T1Uug—1 — U2 — ) (57)
To

30 DTU Compute Stochastic Adaptive Control 13.5.2024



The Basic Self tuner - Explicit: ARX example

Let us consider the simple ARX system with a single delay:

A

Alg My =q¢ "Bl Hu +

Our controller is then given by the Diophantine:

R(¢™") =B(q!
S
Ut = —Eyt

31 DTU Compute Stochastic Adaptive Control

=
—
=

M

(58)

(59)
(60)

13.5.2024



=
—
=

The Basic Self tuner - Explicit: properties =
The control loss function of the explicit self tuner:
Jo(t) = > i ~ Byt (64)
i=1
t
Ju(t) = Zu? ~ E[u%]t (65)
i=1
For a correct estimate of the parameters, we have that ¢, = ¢4, therefore
the residuals loss function follows
t
Je(t) =D € ~o*t (66)
i=1
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Explicit MV, Control

Identified system (general method):

Al Yy = ¢ " B¢ Hur+ Clg Ner +d
Controller optimality criteria:

J = E[(yrx — wr)?]

Controller design:
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Explicit Pole Placement Control

M

Identified system (general method):

S

Al Yy =a"Blgur + Clg Ve +d (72)

Controller optimality criteria:

J = E[(An(¢ )ik — Bmi(g ) B (g Hwy)?] (73)
B(g™")=By(¢")B-(¢7") (74)

Controller and Design:

Bi(qa")G(a  ur = Bmi (@) C(g Hwe — S(g )y — Jg((ll))cf (75)
An(@ 0@ ) =A(gHYG(@ ) +q *B_(¢7")S(¢™") (76)

QRS form:
Q=B )0, R=Bia G, Q= ghd ()
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Explicit PZ Control - B_ =1 & B, =B =
Identified system (general method):
Algye = a " Bla ue + Clg e +d (78)
Controller optimality criteria:
J = E[(An(g )yers — Bm(gwi)?) (79)

Controller and Design:

B(qg "G (g Yur = Brlq ")C(g Ywe — S(g Yy — G(1)d  (80)
An(g (@) = A(g)G(q ) + ¢ "S(@™) (81)

QRS form:

Q=B "HC(@"), R=B"HG(™"), &©=G1d (82

35 DTU Compute Stochastic Adaptive Control 13.5.2024



Explicit GMV Control
Identified system (general method):

Alg™ye = *Bla e+ Clg e +d
Controller optimality criteria (monic denominators):
By(¢™") Bu(a™) ', (Bula)
7=l G ) (e |
Aya )™ Aue ) Adg )"
Controller and Design:

R(q~ e = Qg e — S(a™ e — &o
By(g)C(g™") = Ay(¢HAG(g™") +¢7"S(¢7")

QRS form:

Q=0C, R:AUBGJrBﬁBué’, € =G(1)d
0

O _ Buw

Ut—AuUta yt—Ayyta wt—Awwt
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Explicit LQG Control
Identified system (general method):

Ay =q¢*BlgYu +C(g e +d, B=q¢*B  (89)

Controller optimality criteria (monic denominators):

M

. 1< 2 2
7= Jim B S = i + o (90)
Controller and Design:
R(g™ue = Qg™ Hwe — S(a™Hye — &o (91)
P(¢YHYP(¢) = B(¢"Y)B(q) + pfl(q_l)fl(q) (spectral factorization)

(92)
P(gH)C(q ) = AR(¢') + ¢ *B(¢g7)S(¢™") (Diophantine)  (93)
QRS form:

i

Q= A(l)é, R=ABG+L2B,C, €=0G1)d (94)
B(1 bo

~—
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Matlab

Let us look at some Matlab examples of the explicit MV{ controller.
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Implicit Self tuning

M

In each step of the explicit version, we have to

@ estimate model parameters,

@ solve the Diophantine equation for the controller polynomials, R and .S, and

© compute the control, u,

To simplify the computation, we combine the Diophantine equation and the

system equation:

Cypyr = [Rug + Syt] + CGeyyy (95)
to derive the implicit version

In each step of the implicit version, we
@ estimate the controller parameters and

@ compute the control, u,
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Implicit Self tuning: ARX-model
For the ARX model, our control model is given by

ek = [R(q Due + Sy + Gla™errn

The minimum-variance control drives the kth prediction to zero.

Consequently,
R(qg Yue+ S(q )y = 0= ¢y, 1,0

9 = (80, S1,---5T0,71, )T
¢t+k = (yt, Yt—1y -y Ut, Ut—1,5 ---

T
O = (yt—lm Yt—k—1y oy Wt—k, Ut—k—1, )

)T

We can then apply an estimation method such as RLS:
00 w=0¢{0+e
Ut - ,tTJrkét =0

with the control being computed afterwards
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Implicit Self tuning: ARMAX-model
For the ARMAX model, our control model is given by

1
Yt+k = W_l)

The minimum-variance control drives the kth prediction to zero.
Consequently,

M

[R(g " ue + S(q Mye] + GlgHersn (103)

Rig DYu+S(q )y =¢{0=0 (104)

Furthermore, if the estimate 0 converges, it will reach parameters for which
the regressors and residuals are uncorrelated. Therefore, we can formulate
the model as

Yirk = [R(que + S(@ )i + et = 0L 0 + €y (105)
e =G(g Ne, e L ¢y (106)

As it now has the shape of an ARX model, we can do the estimation and
computation in the same manner which means that RLS can be used for
the ARMAX-model as well.
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Implicit Self tuning: ARMAX-model - simple proof
Consider control, system and model given by
R(g u—k+ 5@ Ny =¢{0=0
1 T -1
Sy = mgf)t@-FG(q et
My = ¢tTé + €

If § converges to 8, we can formulate the model residual as

1
_ Ty _ T -1 T
6t_yt_¢t0_c(q_1)¢t9+G(q )et_¢t0
_1-Cl@™h) r -1
- C(q_l) ¢t 0 + G(q )et
Given the control design, the residuals become
e = G(g He
Elprer] =0

where it can be seen that it is independent of the regressor.
43  DTU Compute Stochastic Adaptive Control
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Implicit self tuning: properties

Advantages:
@ Design is simple
@ Can use RLS (even if C' # 1)

Disadvantages:

@ More parameters to estimate (k > 1)

=
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M

@ Not all strategies can be transformed into an implicit strategy (model + design

has to be combined)

© Estimation must be restarted if the design choice changes

44  DTU Compute
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Implicit MV, Control
System:

Alg ye =a " Bg " us + Clg e +d
Controller optimality criteria:
J =E[(ye+r — wt)2]
Estimation and control:

G=vyi—wip =60 1+ e

¢tT+k‘§t =0
OF = (50, ., 705 - G0y s €)
AL = Yoy oy Uy ooy — Wiy vy 1)
T (R T T §

The theoretical control law:
R(g Mur = Qg Hwy — S(g Ny — €

R=BG, Q=0C, S=q¢"(C-AG), ¢=G(1)d
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Implicit PZ Control =
System:
A(qil)yt = qikB(qfl)ut + C’(qil)et +d (123)
Controller optimality criteria:
J =E[(An(q ek — Bm(q " )wy)?] (124)
Estimation and control:
G = An(q Dy — Bn(g Dwik = 67 01 + & (125)
¢iy10 =0 (126)
0T = (50, .0, 705 ooy Q0 s €) (127)
QS? = (yt_k,...,ut_k,...,—wt_k,...,l) (128)
The theoretical control law:
R(g Y = Qg )we — S(g My — € (129)

R=BG, Q=B,C, S=d¢A,C—-AG), ¢=G(1)d (130)
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Implicit GMV Control

M

System:
Alg Dy = ¢ *Blg u +Clg e +d (131)

Controller optimality criteria (monic denominators):

ol ) (BA] oo

Filtered variables

By(qil) - BIU(qil) ~ P Bu(qil)
A

Ay(q_l)yh Wey, Ut = %Au(q_l)

w  (133)
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Implicit GMV Control =
Estimation and control:

Citk = Ytk — Wg + Bﬁﬂt = QZ)?étfl + € (134)
0
btirbi =10 (135)
up = Ay(qHily (136)
étT: (80,...,7‘0,...,@[0,...,6) (137)
AL = (t—ky ony Up— oy ooy —Wi_poy oy 1) (138)
Theoretical control law:

R(q~ ")y = Qg )y — (g~ )i — € (139)
R=A,BG + %BuC, Q=0C, S=d"(B,C—AAG), (140)
E=G(1)d (141)
. 1 . 1 . By,

Ut = qut7 Yt = Iyyt, W = Twwt (142)
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Implicit GMV Control

@ Measure y,
@ Create (; = s — Wi—p + Qlly—p,

© Create 3, s, and Wy

O Create ¢y = (Jp—i, - - Up—ppy - - o, —We—p, - -, 1)T and @y y

@ Update the parameter estimate:

€ = (G — tTét—h
Ptil = Ptill + & ;fa
ét = étq + Pire;

@ Determine 1, such that qthJrk,ét =0

@ Determine u; = A, (¢~ ')t
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Examples

M

Let us return to Matlab, and look at the implicit implementation of a PZ
controller
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Questions

Questions?
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