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Stochastic Adaptive Control - Follow-up
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Stochastic Adaptive Control - Follow-up
Today’s Agenda

• Time-varying estimation
• Design of experiments
• Model validation
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Stochastic Adaptive Control - Follow-up
Follow-up from last time

Questions?
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Heuristics for time-varying systems
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying estimation - first example

ARX model

A(q−1)yt = B(t, q−1)ut + et, (1)
b1(t) = b1,0 + b1,1t (2)

Treat time-varying coefficient as two coefficients with their own inputs

yt = ϕT θ + et (3)

θT =
[
a1 a2 · · · ana b1,0 b1,1 b2 · · · bnb

]
(4)

ϕT =
[
−yt−1 −yt−2 · · · −yt−na ut−1 tut−1 ut−2 · · · ut−nb

]
(5)
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying estimation

For deterministic time varying systems, rearrange the parameters

yt = ϕT
t θt + et (6)

θt = α+ f(t)β =
[
I f(t)

] [α
β

]
(7)

yt =
[
ϕT

t ϕT
t f(t)

] [α
β

]
+ et (8)

For piece-wise linear parameters, rearrange the parameters

yt = ϕT
t θt + et (9)

θt = αi + (t− Ti)βi, Ti ≤ t ≤ Ti+1 (10)

yt =
[
ϕT

t ϕT
t (t− Ti)

] [αi

βi

]
+ et (11)
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems

System with general time-varying parameters

θt+1 = f(t, θt, vt) (12)

• The methods discussed so far cannot estimate the time-varying dynamics and
were not designed to do it

• In practice, the problem is that the correction factor diminishes over time

Pt → 0 (13)
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Forgetting methods: Resetting

Reset the covariance after some time, ti

Pti = Pi > Pti−1, θ̂ti = θ̂ti−1 (14)

The appropriate restarting time depends on the application

For instance, restart at fixed intervals

ti = Ni (15)

This can be useful for periodic systems
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Forgetting methods: Constant Gain

Another method: Keep the correction term large

For instance, keep the correction term κ constant

θ̂t = θ̂t−1 + κϵt (16)
θ̃t = (I − κϕT

t )θ̃t − κet (17)

Alternatively, keep the variance constant

Pt = P (18)
θ̂t = θ̂t−1 + κϵt (19)

κt = Pϕt

1 + ϕT
t Pϕt

(20)
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Forgetting methods: Exponential
Forgetfulness

Another approach: Forget a little bit all the time (exponential forgetfulness)

Jt = 1
2

t∑
i=1

λt−iϵ2i = λJt−1 + 1
2ϵ

2
t (21)

The recursion is similar to the previous methods

θ̂t = θ̂t−1 + Ptϕtϵt (22)
ϵt = yt − ϕT

t θ̂t−1 (23)
P−1

t = λP−1
t−1 + ϕtϕ

T
t (24)

The forgetting factor λ can be expressed in terms of a horizon, N∞

λ = 1 − 1
N∞

(25)
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Stochastic Adaptive Control - Time-variant Estimation
Exponential forgetting - Example

Model

yt = −1
4 yt−1 + 1

2yt−2 + ut−1 + et (26)

New measurement (t = 10)

yt = 1.47, ut−1 = 2 (27)

Covariates, parameter estimate and covariance

ϕt =

2.42
2.57

2

 , θ̂t−1 =

−0.2505
0.4960
0.9991

 , Pt−1 =

 0.1355 −0.0431 −0.1057
−0.0431 0.0620 −0.0088
−0.1057 −0.0088 0.1242


Forgetting factor

λ = 0.95 (28)
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Stochastic Adaptive Control - Time-variant Estimation
Exponential forgetting - Example

Residual

ϵt = yt − ϕT
t θ̂t−1 = 1.47 −

[
2.42 2.57 2

] −0.2505
0.4960
0.9991

 = −1.1967 (29)

Covariance

P−1
t = λP−1

t−1 + ϕtϕ
T
t = 0.95

259.9763 214.2840 236.4348
214.2840 192.9152 196.0344
236.4348 196.0344 223.1583

 (30)

+

2.42
2.57

2

 [2.42 2.57 2
]

=

252.8339 209.7892 229.4530
209.7892 189.8743 191.3727
229.4530 191.3727 216.0004

 (31)
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Stochastic Adaptive Control - Time-variant Estimation
Exponential forgetting - Example

Parameter estimate

θ̂t = θ̂t−1 + Ptϕtϵt =

−0.2505
0.4960
0.9991

 (32)

− 1.1967

 0.1426 −0.0456 −0.1111
−0.0456 0.0638 −0.0081
−0.1111 −0.0081 0.1298


2.42

2.57
2

 =

−0.2574
0.4512
1.0350

 (33)
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Stochastic Adaptive Control - Time-variant Estimation
Exponential forgetting - Exercise
Model

yt = −1
4 yt−1 + 1

2yt−2 + ut−1 + et (34)

New measurement (t = 10)

yt = 1.47, ut−1 = 2 (35)

Covariates, parameter estimate and covariance

ϕt =

2.42
2.57

2

 , θ̂t−1 =

−0.2505
0.4960
0.9991

 , Pt−1 =

 0.1355 −0.0431 −0.1057
−0.0431 0.0620 −0.0088
−0.1057 −0.0088 0.1242


Forgetting factor

λ = 0.90 (36)

Solve the exercise in 15 min.
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Stochastic Adaptive Control - Time-variant Estimation
Exponential forgetting - Exercise

Residual

ϵt = yt − ϕT
t θ̂t−1 = 1.47 −

[
2.42 2.57 2

] −0.2505
0.4960
0.9991

 = −1.1967 (37)

Covariance

P−1
t = λP−1

t−1 + ϕtϕ
T
t = 0.90

259.9763 214.2840 236.4348
214.2840 192.9152 196.0344
236.4348 196.0344 223.1583

 (38)

+

2.42
2.57

2

 [2.42 2.57 2
]

=

239.8351 199.0750 217.6313
199.0750 180.2286 181.5709
217.6313 181.5709 204.8424

 (39)
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Stochastic Adaptive Control - Time-variant Estimation
Exponential forgetting - Exercise

Parameter estimate

θ̂t = θ̂t−1 + Ptϕtϵt =

−0.2505
0.4960
0.9991

 (40)

− 1.1967

 0.1505 −0.0481 −0.1172
−0.0481 0.0672 −0.0085
−0.1172 −0.0085 0.1369


2.42

2.57
2

 =

−0.2577
0.4488
1.0369

 (41)
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Fortescue’s Method
Improve with a time-varying forgetting factor depending on the prediction
error, ϵt

λt = 1 − 1
N0

ϵ2t
σ2st

(42)

N0 is the approx. horizon over which the parameter is roughly constant

Recursion

ϵt = yt − ϕT
t θ̂t−1 (43)

st = 1 + ϕT
t Pt−1ϕt (44)

Kt = Pt−1ϕt

λt + st
(45)

θ̂t = θ̂t−1 +Ktϵt (46)

Pt = (I −Ktϕ
T
t )Pt−1

1
λt

(47)
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Fortescue’s Method

If the variance is unknown, we can introduce an estimate

λt = 1 − 1
N0

ϵ2t
rtst

(48)

rt = rt−1 + 1
t

(
ϵ2t
st

− rt−1

)
, r0 = ϵ20 (49)
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Model Estimators
Introduce model of parameters

θt+1 = θt + vt, vt ∼ N(0, R1σ
2) (50)

yt = ϕT
t θt + et, et ∼ N(0, σ2) (51)

Estimate parameters using the Kalman filter

Data update

θ̂t|t = θ̂t|t−1 + Pt|t−1ϕt(yt − ϕT
t θ̂t|t−1) (52)

P−1
t|t = P−1

t|t−1 + ϕtϕ
T
t (53)

Time update

θ̂t+1|t = θ̂t|t (54)
Pt+1|t = Pt|t +R1 (55)
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Experiment design
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Stochastic Adaptive Control - Time-variant Estimation
Design Configurations

When attempting to identify a system, consider the following:
1 What are the outputs?

2 What are the inputs?

3 What are the disturbances?

Also consider some practical aspects of the system
1 What are we allowed to do?

2 What type of model are we interested in?
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Stochastic Adaptive Control - Time-variant Estimation
Design Configurations

Open Loop Closed Loop
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - Objectives

For any system S, we can construct a set of models M to describe it

S : y = G0(q)u+H0(q)e (56)
M = {G(q, θ), H(q, θ)|θ ∈ D} (57)

Ideally, the system should be included in the set of possible models

S ∈ M (58)

Given two models in M

M1 : y = G1(q)u+H1(q)e1 (59)
M2 : y = G2(q)u+H2(q)e2 (60)

we want to be able to determine which that describes the system better

Therefore, we need to perform an informative (open-loop) experiment
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments
We want to determine an input signal resulting in data that is sufficiently
informative to dinstinguish between models in M

For two models identified using data that is sufficiently informative, the
expectation

E[∆ϵ2] = lim
N→∞

1
N

N∑
t=1

E[∆ϵ2t ] =
∫ π

−π
ϕ1(w) + ϕ2(w)dw = 0 (61)

only holds if

ϕ2(w) =
∣∣∣∣H0∆H
H1H2

∣∣∣∣2 σ2 = 0 ⇒ ∆H(ejw) ≡ 0 (62)

ϕ1(w) =
∣∣∣∣ 1
H1

∣∣∣∣2 ∣∣∣∣∆G+ G0 −G2
H2

∆H
∣∣∣∣2 Φu(w) = 0 (63)

⇒ |∆G(ejw)|2Φu(w) ≡ 0 ⇒ ∆G(ejw) ≡ 0 (64)

Consequently, the input should have a spectrum Φu(w) for which the above
expectation only becomes zero for identical models in M.
25 DTU Compute Stochastic Adaptive Control 18.4.2024



Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - Persistently excited signal

A quasi-stationary signal with spectrum Φu(w) is persistently excited of
order n (pe(n)) if, for all filters in the form

M(q−1) = m0 +m1q
−1 + ...+mn−1q

−(n−1) (65)

the relation

Φz(w) = |M(ejw)|2Φu(w) = 0, zt = M(q−1)ut (66)

implies that for all w

M(ejw) = 0 (67)

M(q−1) has n parameters and n− 1 zeros; implying that M(q)M(q−1) has
at most n− 1 different zeros
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - Persistently excited signal

Equivalently, the spectrum, Φu(w), has to be non-zero at at least n
different points in the interval w ∈ [−π, π]

The reason is that a signal which is pe(n) cannot be filtered to zero by an
MA filter of order n− 1, but n or higher might do it

ut = const ̸= 0, signal is pe(1) (68)
M1(q−1) = 1 − q−1 : M1(q−1)ut = ut − ut−1 = 0 (69)
M0(q−1) = 1 : M0(q−1)ut = ut ̸= 0 (70)

or looking at the spectrum: it is always zero

Φu = d̃δ(w) (71)
ΦM1u = 2(1 − cos(w))d̃δ(w) = 0 (72)
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - Persistently excited signal

Transfer function

G = q−kB(q)
A(q) = q−k b0 + b1q

−1 + · · · + bnb
q−nb

1 + a1q−1 + · · · + anaq
−na

(73)

The signal ut has to be pe(nb + na + 1)

∆G = B1
A1

− B2
A2

= B1A2 −B2A1
A1A2

= 0 ⇒ |B1A2 −B2A1|2Φu(w) = 0

(74)

where it can be seen that the effective part of ∆G has the order nb + na
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - common signals

Crest factor (for zero-mean signals)

C2
r = maxt u

2
t

limN→∞
1
N

∑N
t=1 u

2
t

(75)

The crest factor should be as low as possible (the minimum is 1)

For binary signals, ut = ±ū, the crest factor is minimum, C2
r = 1

Consequently, binary signals are useful for linear systems, but cannot, in
general, handle nonlinear systems

yt = B(q)
A(q)f(ut) (76)

f(ut) = α cos(±ū) = α cos(ū) (77)
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - common signals
Single harmonic signal

ut = A sin(wt), (78)

• Two non-zero frequency components in its spectrum (at ±w)
• It is pe(2)
• Its crest factor is C2

r = 2

Sum of sines

ut =
n∑

k=1
Ak sin(wkt+ ϕt) (79)

• Two components for each wk, so the signal is pe(2n)
• If wk = 0 or wk = π

Ts
, the order goes down by 1 to pe(2n− 1) (by 2 if both)

• The crest factor is, in the worst case, C2
r = 2n, and lowest if the sinusoids are

maximally out of phase
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - common signals

Sum of 2 harmonics, with maximum phase difference (180◦)
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - common signals

Single sine function: The chirp signal

ut = A sin((w0 + αt)t), C2
r =

√
2 (80)
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - common signals

PRBS signal

zt = mod(B(q−1)zt−1, 2) (81)

B is order m and the signal has the maximum length M = 2m − 1

• PRBS signals are deterministic, but have properties similar to those of white noise
• A PRBS signal is pe(M − 1) and C2

r = 1
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - common signals

Alternative: Apply random Gaussian signals that are filtered/colored white
noise signals

ut = Hu(q)ět, ět ∼ Fiid(0, σ2
u)(white) (82)

• In practice, we would have to use a truncated Gaussian to keep the control
bounded, e.g., within ±3σ (≈ 99% coverage), resulting in C2

r = 3
• Random binary signals can be generated by taking the sign of a suitable Random

Gaussian signal
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - common signals
Step and square wave signals are also commonly used

For a step at time M and a square (both between d0 and d1)

C2
r = d2

1

lim
N→∞

Md2
0+(N−M)d2

1
N

= d2
1

d2
1 + lim

N→∞
M
N d2

0
= 1, C2

r = d2
1

1
2d

2
1 + 1

2d
2
0

The pulse can also be represented as an infinite harmonic sum
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Stochastic Adaptive Control - Time-variant Estimation
Informative experiments - Example

ARMAX model

A(q−1)yt = B(q−1)ut + C(q−1)et, et ∼ N(0, 0.05) (83)

Polynomials

A(q−1) = 1 − 1.2q−1 + 0.8q−2, (84)
B(q−1) = − 0.5q−1 + 0.2q−2, (85)
C(q−1) = 1 + 0.3q−1 (86)
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Stochastic Adaptive Control - Time-variant Estimation
Informative experiments - Example

Define system
>> A = [ 1 , −1.2 , 0 . 8 ] ; D = 1 ;
>> B = [ 0 , −0.5 , 0 . 2 ] ; F = 1 ;
>> C = [ 1 , 0 . 3 ] ; R = 0 . 0 5 ;
>> Ts = 1 ;
>> M = i d p o l y (A, B, C , D, F , R , Ts ) ;

Simulate system
>> N = 200 ;
>> u = i d d a t a ( [ ] , i d i n p u t (N, ’ p rb s ’ ) ) ;
>> e = i d d a t a ( [ ] , s q r t (R) ∗ randn (N, 1) ) ;
>> y = sim (M, [ u , e ] ) ;
>> s imdata = [ y . y , u . u ] ;

Visualize simulation
>> f i g u r e (1 ) ;
>> s u b p l o t (211) ;
>> p l o t ( y . y ) ;
>> s u b p l o t (212) ;
>> s t a i r s ( u . u ( [ 1 : end , end ] ) ) ;
>> x l i m ( [ 1 , numel ( u . u ) ] ) ;
>> y l i m ( [ −1.1 , 1 . 1 ] ) ;
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Stochastic Adaptive Control - Time-variant Estimation
Informative experiments - Example
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Stochastic Adaptive Control - Time-variant Estimation
Informative experiments - Exercise

ARMAX model

A(q−1)yt = B(q−1)ut + C(q−1)et, et ∼ N(0, 0.05) (87)

Polynomials

A(q−1) = 1 + 1.3q−1 − 0.7q−2, (88)
B(q−1) = − 0.3q−1 − 0.1q−2, (89)
C(q−1) = 1 + 0.5q−1 (90)
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Stochastic Adaptive Control - Time-variant Estimation
Informative experiments - Exercise

Define system
>> A = [ 1 , 0 . 8 , −0 .1 ] ; D = 1 ;
>> B = [ 0 , −0.3 , −0 .2 ] ; F = 1 ;
>> C = [ 1 , 0 . 5 ] ; R = 0 . 0 5 ;
>> Ts = 1 ;
>> M = i d p o l y (A, B, C , D, F , R , Ts ) ;

Simulate system
>> N = 200 ;
>> u = i d d a t a ( [ ] , i d i n p u t (N, ’ p rb s ’ ) ) ;
>> e = i d d a t a ( [ ] , s q r t (R) ∗ randn (N, 1) ) ;
>> y = sim (M, [ u , e ] ) ;
>> s imdata = [ y . y , u . u ] ;

Visualize simulation
>> f i g u r e (1 ) ;
>> s u b p l o t (211) ;
>> p l o t ( y . y ) ;
>> s u b p l o t (212) ;
>> s t a i r s ( u . u ( [ 1 : end , end ] ) ) ;
>> x l i m ( [ 1 , numel ( u . u ) ] ) ;
>> y l i m ( [ −1.1 , 1 . 1 ] ) ;
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Stochastic Adaptive Control - Time-variant Estimation
Informative experiments - Exercise
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Model validation
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Stochastic Adaptive Control - Time-variant Estimation
Model Validation

We now know how to estimate a model, but how do we check if it is
correctly estimated when we don’t know the true parameters?

Essentially, we are asking the following two questions
1 Is our model too simple?

2 Is our model too complex?
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Stochastic Adaptive Control - Time-variant Estimation
Model Validations

Validate model

Estimate parameters / identify models

Choose set
of models

Choose
criteria

Data

Experiment

Design
of experiment

Prior knowledge
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Stochastic Adaptive Control - Time-variant Estimation
Model Validation

Three available quantities for validation
1 the estimated parameters

2 the uncertainty (the variance)

3 the undescribed model parts (the residuals)

The last is the source of measurement deviations

measurement(y) = model(θ, u) + residual(ϵ) (91)
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Stochastic Adaptive Control - Time-variant Estimation
Model Validation - too complex?

Question: Does our model have too many parameters?

Unbiased estimate

θ̂ ∼ F(θ, P ) (92)

θi is significant if it, with reasonable certainty, is different from zero
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Stochastic Adaptive Control - Time-variant Estimation
Model validation - parameter insignificant?

Use a marginal parameter test to validate that a parameter is significant

For sufficiently many measurements, the distribution approaches a normal
distribution

θ̂ ∼ N(θ, P ) (93)

If the following holds, θi is, with (1 − α)% confidence not insignificant

|θ̂i| > f1− α
2

√
Pi,i (94)

fx is the xth quantile of the standard normal distribution. This approach
requires that the variance, P , is known
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Stochastic Adaptive Control - Time-variant Estimation
Model validation - parameter insignificant?

If the variance, P , was estimated, use the t-distribution

zi = θ̂i√
Pi,i

∼ t(M − dp) (95)

dp is the number of parameters and M is the number of measurements

If the following holds, θi is, with (1 − α)% confidence not insignificant

|θ̂i| > f t
1− α

2
(M − dp)

√
Pi,i (96)

f t
x is the xth quantile of the t-distribution. Again, if M ≫ dp, this will

approach the normal distribution
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Model Validation - Multiple Insignificant Parameters?
More than one parameter might be insignificant, but we cannot tell whether
its some or all

But we can test whether all parameters in a subset θb are significant

θ̂ =
[
θ̂a

θ̂b

]
∼ N

([
θa

θb

]
,

[
Pa Pab

P T
ab Pb

])
(97)

Test statistic for the hypothesis of insignificant parameters (θb = 0)

zb = θ̂T
b P

−1
b θ̂b ∼ F (db,M − dp) (98)

If the following holds, all parameters in θb are, with (1 − α)% confidence
significant

zb > fF
1−α(db,M − dp) (99)

db is the size of the subset and fF
x is the xth quantile of the F-distribution.

For large M , we can apply a χ2(db) instead of the F-distribution
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Model Reduction
Distribution of parameter estimates[

θa

θb

]
∼ N

([
θ̂a

θ̂b

]
,

[
Pa Pab

P T
ab Pb

])
(100)

If a subset of the parameters, θ̂b, is insignificant, we can reduce the model
using the projection theorem

θa|θb ∼ N(ˆ̄θa, P̄a) (101)
ˆ̄θa = θ̂a − P T

abP
−1
b θ̂b (102)

P̄a = Pa − PabP
−1
b P T

ab (103)

When have we used the projection theorem before and what for?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Insignificant: singular analysis of the variance matrix P

Most estimations methods involve solving linear equations in the form

Hθ̂ = g (104)

H is a measure of the data set related to the variance, H−1 = P

P =
(

N∑
i=0

ψiψ
T
i

)−1

σ2 (105)

• If a model is overparameterized, then (in the ideal case) H will be singular
• In the less ideal case, H is invertible, but has eigenvalues that are significantly

smaller than the rest

eig(H)i ≪ eig(H)j ⇔ eig(P )i ≫ eig(P )j (106)

• This requires that the system is sufficiently excited – insufficiently excited
systems will result in similar issues
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Condition number

Another way to evaluate if a model is overparameterized is to consider the
condition number of its variance.

cond(P ) = |λmax|
|λmin|

, λ = eig(P ) (107)

where λmin and λmax are the smallest and largest eigenvalues of P

If cond(P ) is large, it indicates overparameterization

Example:

Model 1: cond(P1) = 1000 (108)
Model 2: cond(P2) = 40 (109)

Model 1 appears to be too complex, while model 2 is more balanced
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Zeros and poles: Cancellation?

If the model is overparameterized, some zeros and poles might be close to
each other

yt = Hyu(q)ut +Hye(q)et (110)

Use linearization to approximate uncertainty in zero and poles

p̂i = fi(θ̂) ≃ fi(θ) + ∂fi

∂θ
θ̃, θ̃ ∼ N(0, P ) (111)

p̂i ∼ N

(
pi,

∂fi

∂θ
P

(
∂fi

∂θ

)T
)

(112)

If the confidence intervals of a pole and a zero overlap, it is a strong
indication that they cancel each other out

Hint: Use Matlab’s zpplot
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Zeros and poles: Example of cancellation

(1 − 1.5q−1 + 0.7q−2)yt = (1 − 0.5q−1)ut + et (113)
(1 − a1q

−1 + ...+ a4q
−4)yt = (b0 + ...+ b3q

−3)ut + et (114)
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Residual Analysis
Question: Is the model too simple?

Residuals

measurement(y) = model(θ, u) + residual(ϵ) (115)

For a perfect model, the residuals would have the following properties
1 ϵt ∼ F(0, σ2).
2 ϵt has a symmetric distribution
3 ϵt is white
4 ϵt is uncorrelated with current and prior inputs

Equivalently (in terms of co-variance functions)

rϵ(k) = E[ϵt+kϵt] =
{
σ2 k = 0,
0 otherwise,

rϵt,ut(k) = E[ϵt+kut] = 0 (116)

Important: use one data set for estimation and another for the validation
(cross-validation)
55 DTU Compute Stochastic Adaptive Control 18.4.2024



Stochastic Adaptive Control - Time-variant Estimation
Residual Analysis - mean and variance test
Simple approach: Test whether the distribution of the residuals has the
right mean and variance

If the below holds, the residuals are not zero mean

|ϵ̄| > f t
1− α

2
(M − 1)

√
S2

M
(117)

ϵ̄ = 1
M

M∑
i=1

ϵi, S2 = 1
M − 1

M∑
i=1

(ϵi − ϵ̄)2 (118)

If either of the below hold, the variance is time-varying

S2
1
S2

2
< fF

α/2(M1,M2) or S
2
1
S2

2
> fF

1−α/2(M1,M2) (119)

S2
i = 1

Mi

Mi∑
j=1

ϵ2i+j (120)

Note: The intervals must be non-overlapping
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Residual Analysis - sign test

Test for whiteness: The number of sign changes, z, should follow (M is the
number of data points)

z ∼ N

(
M − 1

2 ,
M − 1

4

)
(121)

We reject the hypothesis if either of the below holds

z <
M − 1

2 −

√
M − 1

4 fN
1− α

2
or z > M − 1

2 +

√
M − 1

4 fN
1− α

2
(122)

That is, the hypothesis is rejected if the test statistic is outside the
confidence interval
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Residual Analysis - test of co-variance function
Alternative test for whiteness: The auto-covariance must be in the form

rϵ(k) = E[ϵt+kϵt] =
{
σ2 k = 0
0 otherwise

(123)

Estimates of auto-covariance and auto-correlation

r̂ϵ(k) = 1
M

M−k∑
t=1

ϵt+kϵt, ρ̂ϵ(k) = r̂ϵ(k)
r̂ϵ(0) (124)

Test the covariance at each time step

H0 :
√
Mρ̂ϵ(k) ∼ N(0, 1), reject if |ρ̂ϵ(k)| >

fN
1− α

2√
M

(125)

Test if the covariance is zero for k ̸= 0

H0 : z = M
m∑

i=1
ρ̂2

ϵ (i) ∼ χ2(m), reject if z > fχ2

1−α(m) (126)
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Residual Analysis - test of autocorrelation
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Residual Analysis - cross-covariance function test
Test the cross-covariance

rϵ,u(k) = E[ϵt+kut] = 0 (127)

Cross-covariance and cross-correlation

r̂ϵ,u(k) = 1
M

M−k∑
i=1

ϵt+kut, ρ̂ϵ,u(k) = r̂ϵ,u(k)√
r̂ϵ(0)r̂u(0)

(128)

Marginal test of the cross-covariance

H0 :
√
Mρ̂ϵ,u(k) ∼ N(0, 1), reject if |ρ̂ϵ,u(k)| >

fN
1− α

2√
M

(129)

Check if the covariance is zero for k ̸= 0

H0 : z = M
m∑

i=1
ρ̂2

ϵ,u(i) ∼ χ2(m), reject if z > fχ2

1−α(m) (130)
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Residual Analysis - spectral density test

Alternative test for whiteness: Consider the Fourier transformed residuals

X(wk) = 1
M

M∑
t=1

ϵte
jwkt (131)

Hint: Matlab’s fft can be used to compute X(wk)

Estimated spectral density (periodogram)

ϕ̂(wk) = |X(wk)|2 (132)

Hint: Matlab’s etfe can be used to compute ϕ̂(wk)

If xt is white noise

E[ϕ̂(wk)] = 2σ2 (133)
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Residual Analysis - model comparison tests
Question: Can we validate a model using a single data set?

Coefficient of determination

R2 = J0 − J(θ̂)
J0

(134)

J0 = 1
2

M∑
i=1

(yi − ȳ)2, J(θ̂) = 1
2

M∑
i=1

ϵ2i (135)

J(θ̂) is the loss-function and a perfect model results in R2 = 1. Lower
values of R2 indicate worse models

Alternative loss functions

W (θ̂) =
M∑

i=1
ϵ2i , WM (θ̂) = 1

M

M∑
i=1

ϵ2i (136)

The loss functions are monotonically decreasing with model complexity
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Residual Analysis - model comparison: F-test

Objective: Compare two model classes, M1 and M2 using the F-test

Hypothesis: Mtrue ⊂ M1 ⊂ M2 where d2 ≥ d1 are the number of model
parameters. Consequently, the loss-function Ji = Ji(θ̂) does not decrease
significantly by increasing the model size if M1 ⊂ M2

Test statistic

H0 : z = J1 − J2
J2

M − d2
d2 − d1

∼ F (d2 − d1,M − d2) (137)

Reject hypothesis if

z > fF
1−α(d2 − d1,M − d2) (138)
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Residual Analysis - model comparison: Information Criteria
Information criteria
1 Akaike’s Information Criterion (AIC); tends towards higher complexity

AIC =
(

1 + 2d
M

)
WM (139)

2 Bayesian Information Criterion (BIC);

BIC =
(

1 + log(M)d
M

)
WM (140)

3 Akaike’s Final Prediction Error (FPE) Criterion; expresses the variance of the
prediction error, also FPE → AIC,M ≫ d

FPE = M + d

M − d
WM =

(
1 + 2d

M − d

)
WM (141)

If two models have the same d, choose the one with the lowest loss function
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Residual Analysis - model comparison: Information Criteria

Information criteria

AIC =
(

1 + 2d
M

)
WM (142)

BIC =
(

1 + log(M)d
M

)
WM (143)

FPE = M + d

M − d
WM =

(
1 + 2d

M − d

)
WM (144)

What happens to the criteria as M → ∞?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Model validation - Example
ARMAX model

A(q−1)yt = B(q−1)ut + C(q−1)et, et ∼ N(0, 0.05) (145)

Polynomials

A(q−1) = 1 − 1.2q−1 + 0.8q−2, (146)
B(q−1) = − 0.5q−1 + 0.2q−2, (147)
C(q−1) = 1 + 0.3q−1 (148)

Define system
>> A = [ 1 , −1.2 , 0 . 8 ] ; D = 1 ;
>> B = [ 0 , −0.5 , 0 . 2 ] ; F = 1 ;
>> C = [ 1 , 0 . 3 ] ; R = 0 . 0 5 ;
>> Ts = 1 ;
>> M = i d p o l y (A, B, C , D, F , R , Ts ) ;

Simulate system
>> N = 200 ;
>> u = i d d a t a ( [ ] , i d i n p u t (N, ’ p rb s ’ ) ) ;
>> e = i d d a t a ( [ ] , s q r t (R) ∗ randn (N, 1) ) ;
>> y = sim (M, [ u , e ] ) ;
>> s imdata = [ y . y , u . u ] ;
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Model validation - Example
Estimate parameters

>> th = armax ( s imdata , [ 2 , 2 , 1 , 1 ] )

Zero-pole cancellation
>> f i g u r e (1 )
>> s u b p l o t (121)
>> z p p l o t ( th2zp ( th , 1) , norminv ( 0 . 9 9 5 ) ) % 99% Gauss i an CI
>> s u b p l o t (122)
>> z p p l o t ( th2zp ( th , 0) , norminv ( 0 . 9 9 5 ) ) % 99% Gauss i an CI

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
OUTPUT # 1  INPUT # 1

-1 -0.5 0 0.5 1
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Model validation - Example

Eigenvalue analysis
>> [TH, P ] = th2pa r ( th ) ;
>> log10 ( e i g (P) )

ans =

−5.1145
−4.8291
−4.7172
−3.8705
−2.3304

Insignificant parameters
>> TH + s q r t ( d i a g (P) ) ∗[ −1 ,1]∗ norminv ( 0 . 9 9 5 )

ans =

−1.2319 −1.1860
0 .7790 0 .8178

−0.5121 −0.4936
0 .1862 0 .2139
0 .1555 0 .5077
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Model validation - Exercise
ARMAX model

A(q−1)yt = B(q−1)ut + C(q−1)et, et ∼ N(0, 0.05) (149)

Polynomials

A(q−1) = 1 − 1.2q−1 + 0.8q−2, (150)
B(q−1) = − 0.5q−1 + 0.2q−2, (151)
C(q−1) = 1 + 0.3q−1 (152)

Estimate the parameters in a model with

na = 3, (153)
nb = 3, (154)
nc = 2, (155)
k = 1 (156)

Solve the exercise in 15 min.
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Model validation - Exercise
Estimate parameters

>> th = armax ( s imdata , [ 3 , 3 , 2 , 1 ] )

Zero-pole cancellation
>> f i g u r e (1 )
>> s u b p l o t (121)
>> z p p l o t ( th2zp ( th , 1) , norminv ( 0 . 9 9 5 ) ) % 99% Gauss i an CI
>> s u b p l o t (122)
>> z p p l o t ( th2zp ( th , 0) , norminv ( 0 . 9 9 5 ) ) % 99% Gauss i an CI
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Model validation - Exercise
Eigenvalue analysis

>> [TH, P ] = th2pa r ( th ) ;
>> log10 ( e i g (P) )

ans =

−5.2588
−5.0938
−4.8826
−4.7356
−4.2485
−2.5110
−2.2328

0 .3504

Insignificant parameters
>> TH + s q r t ( d i a g (P) ) ∗[ −1 ,1]∗ norminv ( 0 . 9 9 5 )

ans =

−2.9920 0 .6649
−1.4583 2 .9499
−1.4232 1 .4888
−0.5054 −0.4884
−0.7291 1 .0882
−0.3571 0 .3749
−1.4256 2 .2050
−0.4790 0 .7077
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Questions

Questions?
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