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Stochastic Adaptive Control - External and Internal Models
Today’s Agenda

• AR, MA, ARMA, and ARMAX processes
• General properties
• Spectral factorization
• Prediction
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Stochastic Adaptive Control - External and Internal Models
Follow-up from last time

Questions?
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AR, MA, ARMA, and ARMAX processes
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Stochastic Adaptive Control - External Models
The Moving-Average (MA) Process

MA(n) process

yt = εt +
n∑

k=1
ckεt−k, c0 = 1 (1)

{εk} is a white-noise process (independent and Gaussian with variance σ2
ε)
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Stochastic Adaptive Control - External Models
The Moving-Average (MA) Process

Shift operator, q

q−1yt = yt−1, (2)

MA(n) process (compact notation)

yt = C(q−1)εt, (3)

Polynomial

C(q−1) = 1 +
n∑

k=1
ckq−k (4)

Transfer function

C(z) = zn +
∑n

k=1 ckzn−k

zn
(5)
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Stochastic Adaptive Control - External Models
The Moving-Average (MA) Process

Properties of finite-order MA processes

• Always stationary
• Invertible if the zeros of C lie within the unit circle

Invertibility: The innovations can be represented as functions of past
observations
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Stochastic Adaptive Control - External Models
The Moving-Average (MA) Process

Auto-covariance of MA(n) process

γ(k) =
{

σ2
ε

(
ck + c1ck+1 + · · · + cn−kcn

)
, |k| = 0, . . . , q,

0, |k| > 0, . . . , n
(6)

Variance (constant)

σ2
y = γ(0) = σ2

ε

(
1 +

n∑
k=1

c2
k

)
(7)

Spectral density of MA(n) process

ϕ(ω) = σ2
ε

2π
C
(
eiω
)

C
(
e−iω

)
= σ2

ε

2π

∣∣∣∣∣1 +
n∑

k=1
cke−ikω

∣∣∣∣∣
2

, ω ∈ [−π, π] (8)
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Stochastic Adaptive Control - External Models
The Auto-Regressive (AR) Process

AR(m) process

yt +
m∑

k=1
akyt−k = εt, a0 = 1 (9)

{εk} is a white-noise process

10 DTU Compute Stochastic Adaptive Control 10.3.2024



Stochastic Adaptive Control - External Models
The Auto-Regressive (AR) Process

AR(m) process (compact notation)

A(q−1)yt = εt (10)

Polynomial

A(q−1) = 1 +
m∑

k=1
akq−k (11)

Transfer function: 1
A(z)

It is called auto-regressive because yt can be viewed as a regression on past
values

yt = εt −
m∑

k=1
akyt−k (12)
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Stochastic Adaptive Control - External Models
The Auto-Regressive (AR) Process

Properties of finite-order AR processes
• Always invertible
• Stationary if the roots of A lie within the unit circle

Characteristic equation

A(z) = 0 (13)
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Stochastic Adaptive Control - External Models
The Auto-Regressive (AR) Process

Auto-covariance function of an AR(m) process

γ(k) +
m∑

j=1
ajγ(k − j) = 0, k > 0 (14)

Initial condition

γ(0) +
m∑

j=1
ajγ(j) = σ2

ε (15)

Symmetry of auto-covariance functions: γ(k) = γ(−k)

Spectral density

ϕ(ω) = σ2
ε

2π

1
|1 +

∑m
k=1 ake−ikω|2

(16)
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Stochastic Adaptive Control - External Models
The ARMA Process

ARMA(m,n) process

yt +
m∑

k=1
akyt−k = εt +

n∑
k=1

ckεt−k (17)

{εk} is a white-noise process
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Stochastic Adaptive Control - External Models
The ARMA Process

ARMA(m,n) process (compact notation)

A(q−1)yt = C(q−1)εt (18)

Shift polynomials

A(q−1) = 1 +
m∑

k=1
akq−k, C(q−1) = 1 +

n∑
k=1

ckq−k (19)

Transfer function: C(q−1)
A(q−1)
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Stochastic Adaptive Control - External Models
Advanced External Model structures

ARMAX

A(q−1)yt = B(q−1)ut + C(q−1)et (20)

Box-Jenkins

yt = B(q−1)
F (q−1)ut + C(q−1)

D(q−1)et (21)

L-Structure

A(q−1)yt = B(q−1)
F (q−1)ut + C(q−1)

D(q−1)et (22)
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General properties
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Stochastic Adaptive Control - External Models
Covariance functions

Auto covariance function

rx(s, t) = Cov(xs, xt) = E[xsxT
t ] − E[xs]E[xT

t ] (23)

cross covariance function

rxy(s, t) = Cov(xs, yt) = E[xsyT
t ] − E[xs]E[yT

t ] (24)

Rules and notation

rx(k) = rx(t + k, t) rxy(k) = rxy(t + k, t) (25)
rx(k) = rT

x (−k) rxy(k) = rT
yx(−k) (26)

zt = xt + yt : rz(k) = rx(k) + ry(k) + rxy(k) + rT
xy(−k) (27)

rzx(k) = rx(k) + rT
xy(−k) (28)

zt = Axt : rz(k) = Arx(k)AT rzx(k) = Arx(k) (29)
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Stochastic Adaptive Control - External Models
Variance and Spectral properties

ARMA model

A(q−1)yt = C(q−1)et, yt =
∞∑

i=0
hiq

−iet, et ∼ N(0, σ2
e) (30)

Cross covariance

A(q−1)rye(k) = C(q−1)δkσ2
e , δk =

{
1 k = 0,

0 else,
(31)

rye(k) = hkσ2
e (32)

Auto-covariance (Yule-Walker equation)

A(q−1)ry(k) = C(q−1)rey(k) (33)
ry(k) = σ2

ehk ⋆ h−k (34)
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Stochastic Adaptive Control - External Models
Spectrum and Spectral density

Spectrum

Ψx(z) = Zb{rx(k)} =
∞∑

k=−∞
rx(k)z−k (35)

Ψxy(z) = Zb{rxy(k)} =
∞∑

k=−∞
rxy(k)z−k (36)

Spectral density (spectrum evaluated on the unit circle, z = ejω)

ϕx(ω) = Ψx(ejω) = F(rx(k)), ω ∈ [−π, π] (37)

Relation between spectral density and auto-covariance

rx(k) = 1
2π

∫ π

−π
ϕx(ω)ejωkdω (38)

F and Zb are the Fourier and bilateral Z-transforms, respectively
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Stochastic Adaptive Control - External Models
Spectrum and spectral density
ARMA transfer function model

H(z) = b0 + b1z−1 + . . . + bnb
z−nb

1 + a1z−1 + . . . + anaz−na
(39)

Spectrum

Ψ(z) = H(z)H(z−1) =
b̄0 +

nb∑
i=1

b̄i(zi + z−i)

ā0 +
na∑
i=1

āi(zi + z−i)
(40)

āi =
na∑
j=i

ajaj−i, b̄i =
nb∑
j=i

bjbj−i (41)

Spectral density

ϕ(w) = Ψ(ejw) =
b̄0 +

nb∑
i=1

2b̄i cos(iw)

ā0 +
na∑
i=1

2āi cos(iw)
(42)
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Stochastic Adaptive Control - External Models
Spectrum and spectral density

ARMA Transfer function model

yt = H(z)et (43)

Spectrum and cross-spectrum

Ψy(z) = H(z)H(z−1)σ2
e , Ψye(z) = H(z)σ2

e (44)

Spectral and cross-spectral density

ϕy(w) = H(ejw)H(e−jw)σ2
e , ϕye(w) = H(e−jw)σ2

e (45)
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Spectral factorization
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Stochastic Adaptive Control - External Models
Spectral Factorization

Problem: Assume that you know ϕ(ω) from data

Can you determine H(z) such that

ϕ(ω) = H(ejω)H(e−jω)σ2? (46)

The representation theorem: A weak stationary stochastic process with
rational spectral density ϕ(ω) ≥ 0 can be represented by

yt = H(q)et, et is white (47)

H(q) and its inverse are asymptotically stable and the spectral density of yt

is ϕ(ω)
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Stochastic Adaptive Control - External Models
Spectral factorization – iterative method

Assume that the polynomial Ψ(z) is known

Ψ(z) = rnz−n + rn−1z−(n−1) + . . . + rn−1zn−1 + rnzn (48)

Then, there exists a polynomial P (z) such that

Ψ(z) = P (z−1)P (z) (49)
P (z−1) = p0 + p1z−1 + . . . + pnz−n (50)

whose zeros are within the unit circle.

The spectrum of H(z) can be considered a ratio of spectra:

ΨH(z) = H(z)H(z−1) = C(z)
A(z)

C(z−1)
A(z−1) = C(z)C(z−1)

A(z)A(z−1) = ΨC(z)
ΨA(z) (51)
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Stochastic Adaptive Control - External Models
Spectral Factorization

We can compute the factorized polynomial using a correction polynomial,
X(z), and an iterative approach
1 Pi(z−1)Xi(z) + Pi(z)Xi(z−1) = 2Ψ(z)

2 Pi+1(z−1) = 1
2 (Pi(z−1) + Xi(z−1))

Each correction is obtained by solving the linear system
pn 0 . . . 0

pn−1 pn . . . 0
...

...
...

p0 p1 . . . pn




x0
x1
...

xn

+


0 . . . 0 p0
0 . . . p0 p1
... . . . . . .

p0 . . . pn−1 pn




x0
x1
...

xn

 = 2


rn

rn−1
...

r0


(52)
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Stochastic systems on external form
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Stochastic Adaptive Control - External Models
Stochastic systems on external form

Transfer function model

yt = Hu(q)ut + Hd(q)vt, vt ∼ N(0, σ2) is white (53)

Stochastic description

E[yt] = mt = Hu(q)ut, (54)
A(q−1)ryv(k) = C(q−1)rv(k), (55)
A(q−1)ry(k) = C(q−1)rvy(k), (56)

rvy(k) = rT
yv(−k) (57)

If vt is not white, substitute vt = Hnet where Hn and its inverse are asymp.
stable
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Stochastic Adaptive Control - External Models
Stochastic systems on external form
Asymptotically stable transfer function model

yt = Hu(q)ut + Hd(q)vt, vt ∼ F (µv, σ2
v) (58)

If vt is weakly stationary, then yt is also weakly stationary with the
properties

E[yt] = µy,t = Hu(1)u0 + Hd(1)µv, (59)
A(q−1)ryv(k) = C(q−1)rv(k), (60)
A(q−1)ry(k) = C(q−1)rvy(k), (61)

rvy(k) = rT
yv(−k) (62)

If vt is Gaussian, yt is strongly stationary

Spectra

Ψy(z) = Hd(z)Ψv(z)HT
d (z−1), (63)

Ψyv(z) = Hd(z)Ψv(z) (64)
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Stochastic Adaptive Control - Gains
System gains
System in internal and external form

xt+1 = Axt + Bet, (65)
yt = Cxt + Det = (C(qI − A)−1B + D)et = H(q)et (66)

DC-Gain

Kdc = y∞
e∞

= H(1) = C(I − A)−1B + D (67)

AC-Gain (also called variance-Gain)

Kac =
σ2

y

σ2
e

, et ∼ N(0, σ2
e) (68)

Equivalent expressions

Px = APxAT + Bσ2
eBT , σ2

y =
∫ π

−π
H(ejw)H(e−jw)dw σ2

e , (69)

σ2
y = CPxCT + Dσ2

eDT (70)
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Stochastic Adaptive Control - Gains
System gains - Variance

External description of the variance

σ2
y =

∫ π

−π
H(ejw)H(e−jw)dw σ2

e , H(z) = B(z)
A(z) (71)

Variance of an nth order system

σ2
y = σ2

e

a0

n∑
i=0

bi
iβi (72)

Parameters

ak−1
i = ak

i − αkak
k−i, αk = ak

k/ak
0, an

i = ai, (73)
bk−1

i = bk
i − βkbk

k−i, βk = bk
k/ak

0, bn
i = bi (74)

31 DTU Compute Stochastic Adaptive Control 10.3.2024



Diophantine equations
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Stochastic Adaptive Control - Diophantine equations
Polynomials and Transfer functions

Polynomials (time and frequency domain)

B(q−1) = b0 + b1q−1 + · · · + bnq−n, (75)
B(z) = b0 + b1z−1 + · · · + bnz−n (76)

The polynomial is order n if bn ̸= 0 and bi = 0 for i > n

If b0 = 1, the polynomial is monic

The transfer function H(q) can be written in infinitely many ways

H(q) = B(q−1)
A(q−1) = C(q−1)B(q−1)

C(q−1)A(q−1) (77)
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Stochastic Adaptive Control - Diophantine equations
Polynomials and Transfer functions

Rewrite transfer function

B(q−1)
A(q−1) = b0 + b1q−1 + · · · + bnq−n

1 + a1q−1 + · · · + anq−n
(78)

= b0 + q−1 (b1 − b0a1) + (b2 − b0a2)q−1 + · · · + (bn − b0an)q−(n−1)

1 + a1q−1 + · · · + anq−n

(79)

Define the transfer function

H(q) = B(q−1)
A(q−1) = g0 + q−1 S1(q−1)

A(q−1) , (80)

S1(q−1) = s0 + s1q−1 + . . . + sn1q−n1 , (81)
g0 = b0, si = bi−1 − b0ai−1 (82)

where n1 = n − 1 is the order of S1
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Stochastic Adaptive Control - Diophantine equations
Polynomials and Transfer functions

Repeat the rewriting for S1
A , S2

A , etc.

H(q) = g0 + g1q−1 + · · · + gm−1q−(m−1) + q−m Sm(q−1)
A(q−1) , (83)

= Gm(q−1) + q−m Sm(q−1)
A(q−1) (84)

Diophantine equation

B(q−1) = A(q−1)Gm(q−1) + q−mSm(q−1) (85)

The order of Sm is max(na − 1, nb − m) and the order of Gm is m − 1
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Stochastic Adaptive Control - Diophantine equations
How to solve the Diophantine equation

This (simple) Diophantine equation can be solved iteratively
% I n i t i a l i z e
G = [ ] ;
S = [ B, 0 ] ; % Pad B with z e r o s to make S as l ong as A

f o r i = 1 :m
% Augment wi th f i r s t e l ement o f S
G = [ G, S (1 ) ] ;

% Update S
S = [ S ( 2 : end ) − S (1) ∗A( 2 : end ) , 0 ] ;

end

% Remove l a s t e l ement
S = S ( 1 : end −1) ;
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Stochastic Adaptive Control - Diophantine equations
General Diophantine equation
General Diophantine equation

C(q−1) = A(q−1)R(q−1) + B(q−1)S(q−1) (86)

Polynomials

C(q−1) = c0 + c1q−1 + · · · + cncq−nc , (87)
B(q−1) = b1q−1 + · · · + bnb

q−nb , b0 = 0, (88)
A(q−1) = 1 + a1q−1 + · · · + anaq−na (89)

The solution R and S exist if and only if all common factors of A and B
are shared with C

In general, the solution is not unique

R(q−1) = R0(q−1) + B(q−1)F (q−1), (90)
S(q−1) = S0(q−1) − A(q−1)F (q−1) (91)

The solution is unique if nr = nb − 1 and ns = max(na − 1, nc − nb)
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Stochastic Adaptive Control - Diophantine equations
Diophantine - Sylvester method

Solution to the general Diophantine

1 0 . . . 0 0 0 . . . 0

a1 1 . . . ... b1 0 . . . ...
a2 a1 0 b2 b1 0
...

... 1
...

... 0
ana ana−1 . . . a1 bnb

bnb−1 . . . b1

0 ana

... 0 bnb

...
... . . . ana−1

... . . . bnb−1
0 0 ana 0 0 bnb





r0
r1
...

rnr

s0
s1
...

sns


=



c0
c1
...

cnc

0
0
...
0


(92)
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Prediction
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Stochastic Adaptive Control - Prediction
Prediction in the ARMA Structure
Weakly stationary process

A(q−1)yt = C(q−1)et (93)

et is a white noise signal F(0, σ2) and A and C are monic

m-step prediction based on solution to the Diophantine equation

yt+m = C(q−1)
A(q−1)et+m = Gm(q−1)et+m + Sm(q−1)

A(q−1) et (94)

Prediction and error

ŷt+m|t = Sm(q−1)
A(q−1) et = Sm(q−1)

A(q−1)

(
A(q−1)
C(q−1)yt

)
= Sm(q−1)

C(q−1) yt, (95)

ỹt+m|t = Gm(q−1)et+m (96)

ŷt and ỹt are independent

This approach requires that C(q−1) is inversely stable
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Stochastic Adaptive Control - Prediction
Prediction in the ARMAX structure

System

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (97)

k is the control delay

m-step prediction

ŷt+m|t = 1
C(q−1)(B(q−1)Gm(q−1)ut+m−k + Sm(q−1)yt), (98)

ỹt+m|t = Gm(q−1)et+m (99)

Diophantine equation

C(q−1) = A(q−1)Gm(q−1) + q−mSm(q−1) (100)

The order of G and S are m − 1 and max(na − 1, nc − m) and G(0) = 1
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Stochastic Adaptive Control - Prediction
Proof of ARMAX prediction
Rewrite future output using the Diophantine equation

yt+m = C(q−1)
C(q−1)yt+m (101)

= A(q−1)Gm(q−1) + q−mSm(q−1)
C(q−1) yt+m (102)

= Gm(q−1)
C(q−1) A(q−1)yt+m + Sm(q−1)

C(q−1) yt (103)

Substitute system description

yt+m = Gm(q−1)
C(q−1) (B(q−1)ut+m−k + C(q−1)et+m) + Sm(q−1)

C(q−1) yt (104)

= Gm(q−1)B(q−1)
C(q−1) ut+m−k + Sm(q−1)

C(q−1) yt + Gm(q−1)et+m (105)

= ŷt+m|t + ỹt+m|t (106)
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Stochastic Adaptive Control - Prediction
Questions

Questions?
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Stochastic Adaptive Control - Prediction
Examples

Today’s Matlab example topics:
• Spectrum/Spectral density: back and forth
• Spectral factorization
• Addition of Spectra
• Plotting Spectra
• Matlab functions
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