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Lecture Plan

@ System theory

® Stochastics

© State estimation 1
@ State estimation 2
@ Optimal control 1

@ System identification 1 + adaptive
control 1

@ External models + prediction
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® Optimal control 2
© Optimal control 3
i System identification 2

@® System identification 3 + model
validation

® System identification 4 + adaptive
control 2

® Adaptive control 3
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Design
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Controller
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Today’s Agenda

°* AR, MA, ARMA, and ARMAX processes
® General properties
® Spectral factorization

® Prediction
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Follow-up from last time

Questions?
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The Moving-Average (MA) Process

MA(n) process

n
Yt =&+ Z CkEt—k»
k=1

{ek} is a white-noise process (independent and Gaussian with variance ¢7)
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The Moving-Average (MA) Process

Shift operator, ¢

q 'y = 1,

MA(n) process (compact notation)
Yo = C(q_l)gt’
Polynomial
n
Clg)=1+> aq™”
k=1
Transfer function

C(z) =

P 22:1 Ckzn—k

Z’I’L
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The Moving-Average (MA) Process

Properties of finite-order MA processes

® Always stationary

® |nvertible if the zeros of C' lie within the unit circle

Invertibility: The innovations can be represented as functions of past
observations
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The Moving-Average (MA) Process

Auto-covariance of MA(n) process

v(k) = U?(Ck+clck+1 +"'+Cnfkcn)7 k| =0,...,4q,
07 ’k\>0,,n

Variance (constant)

05 =7(0) = o2 <1 + Z ci)
k=1

Spectral density of MA(n) process
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o = 0 ()€ () = | S| welonal ()
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The Auto-Regressive (AR) Process

AR(m) process
m
Yt + Z kYt—k = Et,
k=1

{ek} is a white-noise process
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The Auto-Regressive (AR) Process
AR(m) process (compact notation)
Alg Ny = & (10)
Polynomial
Al =1+ arg" (11)
k=1

1
Transfer function: m

It is called auto-regressive because 1; can be viewed as a regression on past
values

m
Yt =€t — Z ALYt—k (12)
k=1
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The Auto-Regressive (AR) Process

Properties of finite-order AR processes
® Always invertible

® Stationary if the roots of A lie within the unit circle

Characteristic equation

A(z) =0
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The Auto-Regressive (AR) Process

Auto-covariance function of an AR(m) process

(k) + > ajy(k - §) =0, k>0
j=1

Initial condition
7(0) + Y ajy(j) = o?
=1

Symmetry of auto-covariance functions: (k) = v(—k)

Spectral density

2
b(w) = !

27 114+ 37 ape—ikw 2
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The ARMA Process

ARMA(m,n) process
m n
Yt + Z aRYi—k = €t + Z CkEt—k
k=1 k=1

{ek} is a white-noise process
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The ARMA Process

ARMA(m,n) process (compact notation)

Alg Dy =Clg e

Shift polynomials

Alg ) =1+ arg ™, Clg ) =1+> aq "
k=1 k=1

Transfer function:

q
A(g™)
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Advanced External Model structures

ARMAX

Box-Jenkins

L-Structure

16 DTU Compute
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_ Bl , Cah),

" Fa " D) )

A1y, — Bla) C(q™! 2

= P+ S, (22)
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Covariance functions

Auto covariance function

rz(s,t) = Cov(zs, x¢) = E[mszn;‘r] — E[:BS]E[:B;‘F]
cross covariance function

ray(s,t) = Cov(zs, yr) = Elzsy | — Ela]E[y/ ]

Rules and notation

ro(k) =rp(t+k,t) ray(k) =ryy(t+k,t)
ra(k) =13 (=k)  ray(k) =y, (=k)
2t =T+ Yy ro(k) = ra(k) + Ty(k) + "”wy(k’) + T;Fy( k)
7o (k) = ro(k) + r;‘fy(—k)
2z = Axy : (k) = Arg (k) AT 1. (k) = Arg (k)
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Variance and Spectral properties

ARMA model
w .
Al Dy =Cla e, w=) hig'er, e~ N(0,07)
1=0

Cross covariance

-~ -~ 1 k=0,
A(g " )rye(k) = Clq™")oko?, Oy =
0 else,

rye(k) = hyo?
Auto-covariance (Yule-Walker equation)

Alg )y (k) = Clg™")rey (k)
ry(k) = o2hy * h_g
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Spectrum and Spectral density

Spectrum
U(2) = Zp{rs(k)} = Z re(k)z 7k
k=—0oc0
Vay(2) = Zp{ray(k)} = Z sz(k)z_k
k=—0c0

Spectral density (spectrum evaluated on the unit circle, z = e/*)
Pu(w) = Wa(e?) = Flra(k)), w € [—m, ]
Relation between spectral density and auto-covariance
1 [ .
rolh) = 5= [ daw)ede
21 J_r

F and Z, are the Fourier and bilateral Z-transforms, respectively
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Spectrum and spectral density
ARMA transfer function model
Cbot bzt by

H(z) = 39
(2) l+az7t+... +ap,z"" (39)
Spectrum
— ny _ . .
bo + Z bi(z‘ + Zil)
U(z) = H(2)H(z"") = o (40)
ap+ Y, ai(2 + 277
i=1
Na B np
Zli = Zajaj_i, bi = Z bjbj_i (41)
j=i j=i
Spectral density
bo + Zb 2b; cos(iw)
d(w) = V() = — (42)
ap + Y. 2a; cos(iw)
i=1
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Spectrum and spectral density

ARMA Transfer function model
yr = H(2)e
Spectrum and cross-spectrum

U, (2) = H(z)H (2 ")o? Uye(2) = H(z)o?

e’

Spectral and cross-spectral density

¢y(w) = H(/*)H(e™7")o? Sye(w) = H(e™*)o?

e’
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Spectral Factorization
Problem: Assume that you know ¢(w) from data
Can you determine H(z) such that
p(w) = H()YH (e 7*)o?? (46)
The representation theorem: A weak stationary stochastic process with
rational spectral density ¢(w) > 0 can be represented by
ye = H(q)ey, e; is white (47)

H(q) and its inverse are asymptotically stable and the spectral density of y;

s o(w)
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Spectral factorization — iterative method

Assume that the polynomial ¥(z) is known
U(z)=rpz "+ e SR L (48)
Then, there exists a polynomial P(z) such that

U(z) = P(="1)P(2) (49)
Pz Y =po+pizt+. .. +puz " (50)

whose zeros are within the unit circle.

The spectrum of H(z) can be considered a ratio of spectra:

_ C(z)C(z71 C(z)C(z7! Vol(z
Up(z)=H(x)H(z"") = Agz; AEZ‘1; B Agz;AEZ_lg N ‘yigzi =
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Spectral Factorization
We can compute the factorized polynomial using a correction polynomial,
X(z), and an iterative approach
O Lz HXi(2)+ Pi(2)X;(271) =2U(2)
O P 1(z7") = 5(Pi(z7") + Xi(271))
Each correction is obtained by solving the linear system

Pn 0o ... 0 o 0 ... 0 po | [xo Tn

Pn-1 Pn ... O |z 0 ... po p1| |21 Tn—1
: . _ o 1 =2
bo b1 ... DPn Tn pPo ... DPn-1 DPn In To
(52)
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Stochastic systems on external form

Transfer function model
yr = Hy(q)ur + Hg(q)vy, v ~ N(O,O’2) is white

Stochastic description

Elye] = my = Hu(q)ue,
Al Yry(k) = Cla™Hro(k),
Alg~ ) ry(k) = C(q~ l)rvy(k)a
ruy (k) = 1y, (=)
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(54)
(55)
(56)
(57)

If v4 is not white, substitute v; = Hye; where H,, and its inverse are asymp.

stable
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Stochastic systems on external form
Asymptotically stable transfer function model

Yt = Hu(q)ut + Hd(Q)Ut, vt ~ F(/"U? 0’3)

If vy is weakly stationary, then 3, is also weakly stationary with the
properties

=
S

I
=
<

!
5
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o
+
=
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g

If v; is Gaussian, y; is strongly stationary

Spectra
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System gains
System in internal and external form
xi41 = Azy + Bey,
yi = Cxy + Dey = (C(ql — A)"'B+ D)ey = H(q)e,
DC-Gain
Kge=22 =H1)=CI-A)'B+D
€0

AC-Gain (also called variance-Gain)
2
o
Kac:;g) etNN(Ovo-g)
e

Equivalent expressions

P, = APA”T + Bo2BT, o2 = / H()H (e 77 dw o2,

05 = CP,CT + Do?>DT

30 DTU Compute Stochastic Adaptive Control
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System gains - Variance

External description of the variance
™ . .
05 :/ H(e/“YH (e 7¥)dw o2,
—Tr

Variance of an nth order system

2 _ Jg = bi
%= ; i
Parameters
a; ! = af — apaf_;, ax = ag/ag,
0 = 0F = Brbli_s, Br. = bl /ag,
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al = a;, (73)

b = b, (74)
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Polynomials and Transfer functions =

Polynomials (time and frequency domain)

B(g ) =bo+big  + -+ bug ", (75)
B(z)=by+ bzt 4+ 4 bpz" (76)

The polynomial is order n if b, £ 0 and b; =0 for i > n
If b = 1, the polynomial is monic

The transfer function H(q) can be written in infinitely many ways
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Rewrite transfer function
B(g~! bo+big 4+ +byg "

() _bo+big "+ +bng (78)

Algh)  1+aigt+ - +ang ™
L(by = boay) + (by — boas)g ™t 4 -+ + (b — boan)g~ ™D

— by + g~
o Lt arg "+ + ang "

(79)

Define the transfer function

B(q™) _151(g7h)

H(q) = =7 = 90 +¢ ; 80
@ Alg ) — % A(g™1) (80)
Sl(qfl) =so+s1g P 4.+ Snyq M, (81)
go =bo, 8;=Dbi—1 —boai—1 (82)

where n; = n — 1 is the order of S}
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Polynomials and Transfer functions

Repeat the rewriting for Al SA?, etc.
_ -1y, —mSm(@h)
1 m—1 m~m
H(q) =go+g1q4"" + -+ gm-14 (m=1) 1 ¢ Wa (83)
- - Sm(q_l)
=Gu(qg )+ gm0t 2 84
() Al (84)
Diophantine equation
B(g ") = Alg )Gmlg ) + 4 " Sm(g™) (85)
The order of S, is max(n, — 1,n, —m) and the order of G,, is m — 1
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How to solve the Diophantine equation

This (simple) Diophantine equation can be solved iteratively

36
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% Initialize
G = [
S = [B, 0]; % Pad B with zeros to make S as long as A
for i = 1:m
% Augment with first element of S
G =[G, S(1)];

% Update S

S = [S(2:end) — S(1)*A(2:end), O0];
end

% Remove last element
S = S(l:end—1);
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General Diophantine equation
General Diophantine equation

Cla™") =A@ YR(g")+Ba"HS@™) (86)
Polynomials
C(q_l) =co+eig 4+ Cn.q e, (87)
Blg )= big ot byg ™, by =0, (88)
A(q_l) =14+ ag 4+ + an,q " (89)

The solution R and S exist if and only if all common factors of A and B
are shared with C'

In general, the solution is not unique
R(g™') = Ro(a™") + B¢ )F(a™)
S(a™") =So(a™") — Alg™)F(g™"

The solution is unique if n, = ny — 1 and ny = max(ng — 1,n. — nyp)
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Diophantine - Sylvester method

Solution to the general Diophantine

0 an
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Prediction in the ARMA Structure
Weakly stationary process

Alg Ny =Clg e

e¢ is a white noise signal F(0,02) and A and C are monic

m-step prediction based on solution to the Diophantine equation

_Clh _ -1 Sm(a”")
Yitm = A(q_1)€t+m =Gm(q )etsm + A1) €t

Prediction and error

o Spla™) Sw@ ) (A@Y) N Swmleh)
Yemlt = 4(q 1) T TA(g ) (C(q‘l)yt> “C@H™

gt+m|t = Gm (q_ ! )et+m

4+ and 7 are independent

This approach requires that C'(¢!) is inversely stable
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Prediction in the ARMAX structure

M

System
Alg Nye = a "Bla™u + Clg e (97)
k is the control delay

m-step prediction

Otmlt = C(;_l)(B(q_l)Gm(q_l)uHmk + Sm(a " )we), (98)

gt+m|t = Gm(qil)et-‘rm (99)
Diophantine equation
Clg™") = Al )Gmlg™ ") +a ™ Smla™) (100)

The order of G and S are m — 1 and max(n, — 1,n, —m) and G(0) =1
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Proof of ARMAX prediction

Rewrite future output using the Diophantine equation

Ye = 70((1_1),%
O
_ A )Gmla ) + ¢ Smla )
- C(q_l) Yt+m
_Gula™h) Sm(q™")
- Clg™Y) Al gem + ClgH ™
Substitute system description
_Gmla™) -1 Sm(a™")
Yt+m = W(B(q Jurtm—k + C(q )etim) + Clg ) Yt
Gm(a~")B(a™) Sm(a™)

C(q_l) ut+m k + C(q_l) Yt + m(q )€t+m
= Utym|t + Jemit
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Questions

Questions?
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Examples

Today's Matlab example topics:

® Spectrum/Spectral density: back and forth
® Spectral factorization

® Addition of Spectra

® Plotting Spectra

® Matlab functions
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