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Stochastic Adaptive Control - Stochastic Control
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Stochastic Adaptive Control - Stochastic Control
Today’s Agenda

• Info about Assignment 1
• Follow-up from last lecture
• Pole-placement
• Linear quadratic regulation (LQR)
• Linear quadratic Gaussian (LQG) control

3 DTU Compute Stochastic Adaptive Control 27.2.2024



Stochastic Adaptive Control - Stochastic Control
Info: Assignment 1

1 Available: 10:00, March 5th

2 Deadline: 23:59, April 9th

3 Page limit: 20 pages

4 Format: Individual Reports
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Stochastic Adaptive Control - Stochastic Control
Follow-up from last time: Ship trajectory

Confidence interval for ship trajectory

1 p l o t ( xcord , yco rd ) % t r u e path
2 p l o t ( xcord_est , y co rd_es t ) % e s t . path
3 f o r i = 1 :N
4 c = [ xco rd_es t ( i ) , y co rd_es t ( i ) ]
5 P = Pcord ( : , : , i ) % v a r i a n c e
6 Niveau ( c , i n v (P) , . . .
7 s q r t ( c h i 2 i n v ( 0 . 9 5 , 2) ) )
8 end
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Stochastic Adaptive Control - Stochastic Control
Follow-up from last time

Questions?
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Stochastic Adaptive Control - Stochastic Control
General Linear Control Theory - introduction

System

xt+1 = Axt + But + d (1)

Control law

ut = −Lxt + wt (2)

Design control gain, L, and wt such that
• the system is stable
• the disturbance is mitigated
• the setpoint/reference/tracking target is followed

Closed-loop system

xt+1 = (A − BL)xt + Bwt + d (3)
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Demonstration
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Demonstration
Temperature control laboratory (TCLab)

Link: https://apmonitor.com/pdc/index.php/Main/ArduinoTemperatureControl
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Demonstration
TCLab model

3

1
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Figure: Four-compartment model of TCLab device.
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Pole placement
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Demonstration
Pole placement

Objective: Stabilize system by changing its poles

Relationship between poles, eigenvalues and time constants, τ

discrete-time poles λd = eig(Ad) = e− Ts
τ , (4)

continuous-time poles λc = eig(Ac) = −1
τ

(5)

Straightforward for external models

u = Hd(q)w, Hd(q) = A(q−1)
Ad(q−1) , (6)

y = H(q)u = B(q−1)
A(q−1)u = B(q−1)

A(q−1)
A(q−1)
Ad(q−1)w = B(q−1)

Ad(q−1)w (7)
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Demonstration
Pole placement
Controller canonical form

A =


−a1 ... −an−1 −an

1 ... 0 0
. . . ...

...
0 . . . 1 0

 , B =


1
0
...
0

 , (8)

C = (b1 − b0a1, b2 − b0a2, . . . , bn − b0an), D = b0 (9)

where ai is the i’th coefficient in A(q)

Control gain (αi is the i’th coefficient in Ad(q))

L = [α1 − a1, . . . , αn − an] (10)

Polynomials’ relation to the poles

A(q) =
n∏

i=1
(q − λi) (11)
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Demonstration
Pole placement – Example

System

xk+1 =
[
6 −8
1 0

]
xk +

[
1
0

]
uk, eig(Ax) = [2, 4] (12)

A(q) = q2 − 6q + 8 (13)

Polynomial for desired poles 0.5 and −0.5

Ad(q) = q2 + 0q − 0.25 (14)

Controller gain

L =
[
0 − (−6) −0.25 − 8

]
=

[
6 −8.25

]
, (15)

Acl = A − BL =
[
0 0.25
1 0

]
, eig(Acl) = [0.5, −0.5] (16)
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Demonstration
General pole placement

Control law (for system in controller canonical form)

uk = −Lxk, L =
[
α1 − a1 · · · αn − an

]
(17)

α and a are the coefficients of the desired and actual polynomial

General system

xk+1 = Axk + Buk (18)

Controllability matrix

Wc =
[
B AB A2B · · · An−1B

]
(19)
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Demonstration
General pole placement
Similarity transform

x̄k = Txk (20)
Transformed system

x̄k+1 = Txk+1 (21)
= TAxk + TBuk (22)
= TAT −1︸ ︷︷ ︸

Ā

x̄k + TB︸︷︷︸
B̄

uk (23)

Feedback matrix for system in controller canonical form
uk = −Lccx̄k (24)

Feedback law for the original system
uk = −LccTxk (25)

= −Lxk (26)
Control gain for original system

L = LccT (27)
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Demonstration
General pole placement: Procedure (see also Matlab’s place)
1 Choose desired poles, {λd,i}n

i=1, and compute actual poles, {λi}n
i=1

2 Compute coefficients of the desired, {αi}n
i=1, and actual, {ai}n

i=1, polynomial

Ad(q) =
n∏

i=1
(q − λd,i), A(q) =

n∏
i=1

(q − λi) (28)

3 Compute feedback matrix, Lcc, for system in controller canonical form

Lcc =
[
α1 − a1 · · · αn − an

]
(29)

4 Compute similarity transformation matrix

T = Wc,ccW −1
c (30)

Wc,cc is the controllability matrix for the controller canonical form
5 Compute feedback matrix for the original system

L = LccT (31)
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Linear quadratic regulator
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Demonstration
Optimal Control - Quadratic cost functions
System

xk+1 = Axk + Buk + vk, x0 ∼ N(m0, P0), vk ∼ N(0, R1), (32a)
yk = Cxk + ek, ek ∼ N(0, R2), vk ⊥ ek ⊥ xk (32b)

Deviation from reference and control usage

J = E
[

N−1∑
k=0

(yk − wk)T Qy(yk − wk) + uT
k Quuk | F

]
(33)

Deviation from reference and initial control

J = E
[

N−1∑
k=0

(yk − wk)T Qy(yk − wk) + (uk − u0)T Qu(uk − u0) | F
]

(34)

Deviation from reference and control rate-of-movement

J = E
[

N−1∑
k=0

(yk − wk)T Qy(yk − wk) + (uk − uk−1)T Qu(uk − uk−1) | F
]

(35)
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Demonstration
Optimal Control - Linear Quadratic Regulator

Important: Specify which data/information that is available

Assume perfect state information (yk = xk)

J = E
[
xT

N Q0xN +
N−1∑
k=0

(
xT

k Q1xk + uT
k Q2uk

)]
(36)

Split the equation at time t

J = E
[

t−1∑
k=0

(
xT

k Q1xk + uT
k Q2uk

)]
(37)

+ E
[
xT

N Q0xN +
N−1∑
k=t

(
xT

k Q1xk + uT
k Q2uk

)]
(38)

The first term is independent of ut, . . . , uN−1
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Demonstration
Optimal Control - minimum and definition

Assume that l(x, u) has a unique minimum with respect to u for all x, and
let u0(x) denote the value of u where this minimum is attained. Then,

min
u(x)

E [l(x, u)] = E
[
l(x, u0(x))

]
= E

[
min

u
l(x, u)

]
(39)

Apply result

min
ut,...,uN−1

E
[
xT

N Q0xN +
N−1∑
k=t

(
xT

k Q1xk + uT
k Q2uk

)]
= E

[
Vt(xt)

]
(40)

where

Vt(xt) = min
ut,...,uN−1

E
[
xT

N Q0xN +
N−1∑
k=t

(
xT

k Q1xk + uT
k Q2uk

)
| xt

]
(41)
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Demonstration
Optimal Control - Dynamic Programming

Repeat to obtain the Bellman equation

Vt(xt) = min
ut

E
[
xT

t Q1xt + uT
t Q2ut + Vt+1(xt+1) | xt

]
(42a)

= min
ut

xT
t Q1xt + uT

t Q2ut + E [Vt+1(xt+1) | xt] (42b)

End-point condition (t = N)

VN (xN ) = min
uN

E
[
xT

N Q0xN | xN

]
= xT

N Q0xN (43)

The solution to this end value problem is a quadratic function

Vt(xt) = xT
t Stxt + st (44)

St is non-negative definite
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Demonstration
Optimal Control - Dynamic Programming

It is true for t = N

VN (xN ) = xT
N Q0xN (45)

Proof by induction: Assume that it holds for t + 1 and show that it holds
for t

By assumption

Vt+1(xt+1) = xT
t+1St+1xt+1 + st+1 (46)

Substitute xt+1 = Axt + But + vt where vt ∼ N(0, R1)

E [Vt+1(xt+1) | xt] = (Axt + But)T St+1 (Axt + But) (47)
+ Tr(St+1R1) + st+1 (48)
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Demonstration
Optimal Control - Dynamic Programming
Insert result from previous slide

Vt(xt) = min
ut

xT
t Q1xt + uT

t Q2ut + (Axt + But)T St+1(Axt + But) (49)

+ Tr(St+1R1) + st+1 (50)

Minimum

ut = −Ltxt (51)

Control gain

Lt = (Q2 + BT St+1B)−1BT St+1A (52)

Collect terms

Vt(xt) = xT
t (AT St+1A + Q1 − LT

t (Q2 + BT St+1B)Lt)xt (53)
+ Tr(St+1R1) + st+1 (54)
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Demonstration
Optimal Control - Dynamic Programming

Vt(xt) is quadratic

St = AT St+1A + Q1 − LT
t (Q2 + BT St+1B)Lt (55a)

st = Tr(St+1R1) + st+1 (55b)

We still need to show that St is non-negative definite

Rearrange terms

St = (A − BLt)T St+1(A − BLt) + LT
t Q2Lt + Q1 (56)

If St+1 is non-negative definite, then St is also non-negative definite
(due to the properties of Q1 and Q2)
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Demonstration
Optimal Control - Dynamic Programming

Optimal control law

ut = −Ltxt (57)

Optimal control gain

Lt = (Q2 + BT St+1B)−1BT St+1A (58)

The matrix St is

St = (A − BLt)T St+1(A − BLt) + LT
t Q2Lt + Q1 (59)

End condition

SN = Q0 (60)
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Demonstration
LQR - Linear Quadratic Regulator w. complete state info

Finite-horizon LQR

Jt = E
[

t+N∑
k=t

[
xT

k uT
k

] [
Q1 Q12
QT

12 Q2

] [
xk

uk

] ]
, xt ∼ N(m0, P0) (61)

xk+1 = Axk + Buk + vk, vk ∼ N(0, R1) (62)

Optimal control law

ut = −Ltxt = −(BT St+1B + Q2)−1(BT St+1A + QT
12)xt (63)

Optimal state weight

St = AT St+1A + Q1 − AT St+1B(BT St+1B + Q2)−1BT St+1A

St+N+1 = 0
(64)
(65)
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Demonstration
LQR - Closed-loop analysis (complete state info)
System

xt+1 = Axt + But + vt, (66)
yt = Cxt + Dut + et (67)

Closed-loop description (ut = −Ltxt)

xt+1 = (A − BLt)xt + vt = Aclxt + vt, (68)
yt = (C − DLt)xt = Cclxt + et (69)

State mean/variance

E[xt] = AclE[xt−1], E[x0] = m0, (70)
Cov(xt) = Acl Cov(xt−1)AT

cl + R1, Cov(x0) = P0 (71)

Output mean/variance

E[yt] = CclE[xt], (72)
Cov(yt) = Ccl Cov(xt)CT

cl + R2 (73)
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Demonstration
LQR - stationary control

Infinite horizon LQR (N = ∞) is a stationary controller

Discrete algebraic Ricatti equation (DARE)

S∞ = AT S∞A + Q1 − AT S∞B(BT S∞B + Q2)−1BT S∞A,

L∞ = −(BT S∞B + Q2)−1(BT S∞A + Q12)
(74)
(75)

This applicable iff (A, B) is at least stabilizable (controllable, reachable)

If (A, Q1) is observable, then the DARE has a unique positive semi-definite
solution, and A − BL is asymptotically stable
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Demonstration
LQR - complete/incomplete state information
More general form of the Bellman equation (Ft ∈ {xt, Yt, Yt−1})

Vt(Ft) = min
ut,...,ut+N

E
[

t+N∑
k=t

Ik(xk, uk) | Ft

]
(76)

= min
ut

E [It(xt, ut) + Vt+1(Ft+1) | Ft] (77)

Using the same derivation, the LQR control law becomes

ut = −LtE [xt | Ft] , (78)
Lt = (BT St+1B + Q2)−1(BT St+1A + Q12), (79)
St = AT St+1A + Q1 − LT

t (BT St+1B + Q2)Lt, (80)
St+N+1 = 0 (81)

Control law for incomplete state information

ut = −LtE[xt | Yt] = −Ltx̂t|t, (82)
ut = −LtE[xt | Yt−1] = −Ltx̂t|t−1 (83)
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Linear quadratic Gaussian control
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Demonstration
Optimal linear quadratic Gaussian observer-based controller
We have discussed both controllers and observers/state estimation
1 LQR: Optimal state control based on perfect state and system knowledge

2 Kalman filter: Optimal state estimation based on perfect system knowledge

When full state knowledge is not possible, we combine the controller with
an observer

The optimal observer-based controller is the linear quadratic Gaussian
controller (LQG)

min
ut,...,ut+N

E
[

t+N∑
k=t

[
xk

uk

]T [
Q1 Q12
Q12 Q2

] [
xk

uk

]
| F

]
, (84)

xk+1 = Axk + Buk + vk, vk ∼ N(0, R1), (85)
yk = Cxk + ek, ek ∼ N(0, R2), Cov(vk, ek) = R12 (86)

The controller and observer can be designed independently (the separation
principle)
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Demonstration
LQG - Duality and Stationarity
Control vs. observation - two sides of the same coin

Consider quadratic optimal control (LQ) and quadratic optimal observers
(Kalman filter)

Optimal gains

LT
t = (AT St+1B + Q12)(BT St+1B + Q2)−1, (87)

Kt = (APtC
T + R12)(CPtC

T + R2)−1 (88)

Riccati equations

St = AT St+1A + Q1 − LT
t (BT St+1B + Q2)Lt, SN+1 = 0, (89)

Pt+1 = APtA
T + R1 − Kt(CPtC

T + R2)KT
t , P0 is given (90)

Algebraic Riccati Equations (Stationary case)

S = AT SA + Q1 − (AT SB + Q12)(BT SB + Q2)−1(BT SA + QT
12), (91)

P = APAT + R1 − (APCT + R12)(CPCT + R2)−1(CPAT + RT
12) (92)
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Demonstration
Sketch of proof of separation principle

Separation principle:
Independently designed optimal controller and observer design is optimal

System

xt+1 = Axt + But + vt, (93)
yt = Cxt + et (94)

Closed-loop system (predictive Kalman filter)[
xt+1
x̂t+1|t

]
=

[
A −BLt

KtC A − KtC − BLt

] [
xt+1
x̂t|t−1

]
+

[
I 0
0 Kt

] [
vt

et

]
(95)

Lt and Kt are LQR and Kalman filter gains
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Demonstration
Sketch of proof of separation principle

The LQR control law is the same for complete and partial state information

Consequently, we only need to prove that the Kalman filter is optimal for
the LQR control law

System estimation error (x̃t|t−1 = xt − x̂t|t−1)[
xt+1
x̃t+1|t

]
=

[
A − BLt BLt

0 A − KtC

] [
xt+1
x̃t|t−1

]
+

[
I 0
I −Kt

] [
vt

et

]
(96)

The estimation error is independent of the control gain and true state

The system matrix is triangular: Its eigenvalues only depend on the
eigenvalues of A − BLt and A − KtC
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Demonstration
Closed loop LQG - Predictive
Closed-loop system: LQG controller based on predictive Kalman filter[

xt+1
x̃t+1|t

]
=

[
A − BLt BLt

0 A − KtC

] [
xt+1
x̃t|t−1

]
+

[
I 0
I −Kt

] [
vt

et

]

= Acl

[
xt+1
x̃t|t−1

]
+ G

[
vt

et

] (97)

(98)

Closed-loop mean and covariance

mt+1 = Aclmt → 0 (iff asym. stable)

Σt+1 = AclΣtA
T
cl + GR̄1GT →

[
Px P∞
P∞ P∞

]
(iff asym. stable)

R̄1 = diag(Rv, Re)

(99)

(100)

(101)

Stationary covariance (Ricatti equation for the predictive Kalman filter)

P∞ = AP∞AT + R1 − K∞(CP∞CT + R2)KT
∞ (102)
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Demonstration
Closed loop LQG - Predictive

Closed-loop system: LQG controller based on predictive Kalman filter[
xt+1
x̃t+1|t

]
=

[
A − BLt BLt

0 A − KtC

] [
xt+1
x̃t|t−1

]
+

[
I 0
I −Kt

] [
vt

et

]
(103)

= Acl

[
xt+1
x̃t|t−1

]
+ G

[
vt

et

]
(104)

Closed-loop input and output mean and covariance

ut = −Ltx̂t|t−1

= −Lt(xt − x̃t|t−1) ∼ N

( [
−Lt Lt

]
mt,

[
−Lt Lt

]
Σt

[
−LT

t

LT
t

] )
,

yt = Cxt ∼ N

([
C 0

]
mt,

[
C 0

]
Σt

[
C
0

])
= N(Cmx,t, CPx,tC

T )

(105)

(106)

(107)

Stationary: x̃ ∼ N(0, P∞)
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Demonstration
Closed loop LQG - Ordinary
Closed-loop system: LQG controller based on ordinary Kalman filter[

xt+1
x̃t+1|t+1

]
=

[
A − BLt BLt

0 A − κtCA

] [
xt

x̃t|t

]
+

[
I 0

I − κC −κt

] [
vt

et

]
= Acl

[
xt

x̃t|t

]
+ G

[
vt

et

] (108)

(109)

Closed-loop mean and covariance

mt+1 = Aclmt → 0 (iff asym. stable)

Σt+1 = AclΣtA
T
cl + GR̄1GT →

[
Px P̄∞
P̄∞ P̄∞

]
(iff asym. stable)

R̄1 = diag(Rv, Re)

(110)

(111)

(112)

Stationary covariance (Riccati equation for the ordinary Kalman filter)

P̄∞ = (I − κ∞C)(AP̄∞AT + R1)(I − κ∞C)T + κ∞R2κ∞ (113)
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Demonstration
Closed loop LQG - Ordinary
Closed-loop system: LQG controller based on ordinary Kalman filter[

xt+1
x̃t+1|t+1

]
=

[
A − BLt BLt

0 A − κtCA

] [
xt

x̃t|t

]
+

[
I 0

I − κC −κt

] [
vt

et

]
(114)

= Acl

[
xt

x̃t|t

]
+ G

[
vt

et

]
(115)

Closed-loop input and output mean and covariance

ut = −Ltx̂t|t

= −Lt(xt − x̃t|t) ∼ N

( [
−Lt Lt

]
mt,

[
−Lt Lt

]
Σt

[
−LT

t

LT
t

] )
,

yt = Cxt ∼ N

([
C 0

]
mt,

[
C 0

]
Σt

[
C
0

])
= N(Cmx,t, CPx,tC

T )

(116)

(117)

(118)

Stationary: x̃ ∈ N(0, P̄∞).
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Demonstration
Questions

Questions?
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