)
o |
=

>
>
>

Stochastic Adaptive Control (02421)

Lecture 3

Tobias K. S. Ritschel
Section for Dynamical Systems
Department of Applied Mathematics and Computer Science

Technical University of Denmark

f(x+Ax):§ (?TX&[‘)(x) 8 ‘

DTU Compute
Department of Applied Mathematics and Computer Science



Lecture Plan

@ System theory
® Stochastics
© State estimation 1

@ State estimation 2
@ Optimal control 1

@ System identification 1 + adaptive
control 1

@ External models + prediction
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® Optimal control 2
© Optimal control 3
@ System identification 2

@® System identification 3 + model
validation

® System identification 4 + adaptive
control 2

® Adaptive control 3

—

Design
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System

Controller
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Today’s Topics

® Follow-up from last lecture

® The projection theorem

® Derivation of the Kalman filter
® Stationary Kalman filters

® State estimation errors
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Follow-Up from Last Lecture

M

Question 2.6: Sketch the 95% confidence interval for the two last signals

Answer: Use the Matlab function Niveau.m uploaded to DTU Learn
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Normally distributed random variable
X ~ N(m, P) (1)

Plot confidence interval using Niveau(m, P~!, f) where f is the square
root of the x? quantile level with 2 degrees of freedom

See, e.g., Example 3.16 in the Danish book
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Temperature control laboratory (TCLab) =
* USB Serial Connection
Sensor
LED £
> P
Temperature 1
Actuator - @ Digital Pin 9
Analog Pin 0 Digital Pin 5 {
Analog Pin 2 e
Heater 2

Controller . @

Temperature 2

Digital Pin 3

o Heater 1

Link: https://apmonitor.com/pdc/index.php/Main/ArduinoTemperatureControl
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TCLab model

M
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[Body 1 ] Q12 ‘ Body 2 ]
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Heater Heater
N S
Q3 Q4

Figure: Four-compartment model of TCLab device.
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Filters and Estimation
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Objective: Obtain estimate, Z¢, of the signal z; based on measurements

Yon =1|% W
and a state-output relation, e.g.,
yr = Cxy + ey

Different types of estimation

@ Smoothing (t < ty): Use both past and future
data to estimate the states

@ Filtering: (t = t): Estimate the current states
based on current and past data

© Prediction: (t > ty): Predict future states
based on past data
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Filter Theory

M

Stochastic discrete-time system

Ty = Axg + Bug +vy, 29 ~ N(mo, Fy), v~ N(0,Ry), (
Yt = CSCt + €, €t N(O, RQ) (5)

~
N—r

We will only consider filtering and prediction in this lecture
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Filter Theory - The Good Estimate

M

Core concepts of filter design

@ Characteristics of the signal and noise
@ Observation model (relation between y, z, €)
© Criterion (what is a good estimate)

O Restrictions (what information is available)
Characteristics: Nature of the states, dynamics, and noises
Observation: Relation between the output, ¥, the state =, and the noise

The criterion: A good estimate minimizes the expected squared deviation
TP
Efl|z — 2] (6)
Restrictions: What data, Y, is available (filter, predict, or smoothe?)
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The filter problem: A good estimator
The law of total expectation

Elg(z)] = Ey [E[g(2)[Y]]

Introduce “inner” objective function

Inner objective function
Jin = E[a:T:c — 3Ty — 273 + ﬁ:Tg%]Y],
=E[z"2|Y] - 2TE[z|Y] — E[z|Y]T 2 + 272
Optimal estimate
Vidin =22 — 2E[z|Y] = 0,
& = E[z]Y]
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Filter Theory - Projection Theorem

M

Normally distributed vector

R .

Projection theorem: The conditional distribution XY ~ N (mgy, Pyy) is

Myly = Mg + nyPy_l(y —my), (16)
Py = Py — PP P, (17)
X-21Y (18)
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Filter Theory - Proof of Projection Theorem

M

Probability density functions

1 1 T p—1
= —3(z=mz)" P (z—m2) 19
fxy(z,y) STy oy L ;o (19)
1 1 Tp—1
fy(y) = e~ 3W=my)" Py (y—my) (20)
(2m)"w /det(Py)

Probability density function of conditional normal distribution

fxy(z,y)
Fom(aly) = XY @0 21
X|Y( ) fy(y) )
=GB e TP ) ) TR ()
(2m)n= det(P,)
1
_ ota (22)
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Filter Theory - Proof of Projection Theorem =
Schur complement
D =P, — PP, ' P}, (23)
Use Woodbury matrix identity on P, !
D1 -D'P,, P!
Pl = [ “1pT p-1 p-1 C1pT hA -1 (24)
-P P, D P+ PP, D™ Py Py
Determinant
det(P,) 1
det(P,) = det(P,) det(D Y. — 2
€ ( ) e ( y) e ( ) det(Pz) det(D) ( 5)
Factor
det(P, 1
K = © ( y) = (26)
(2m)n= det(Ps) (2m)"= det(D)
Exponent
Q= (z—mz)TPz_l(z—mz) - (y—my)TPy_l(y—my) (27)

= o = (mq + Poy Py (y = my)]" D7 [z = (ma + Poy P (y — my)]

16 DTU Compute Stochastic Adaptive Control 13.{.&%4)



=
—
=

Filter Theory - Proof of Projection Theorem =
Mean and covariance of conditional distribution
E[X|Y] = my)y = mg + Poy Py (y — my) (29)
Cov(X|Y) = P, = D = P, — P,y P, ' P}, (30)

Covariance (are the variables independent?)

Cov(X —my),,Y) = Cov(X,Y) — Py P, ' Cov(Y,Y) (31)
= Py — PoyP,'Py=0 (32)

As X and Y are Gaussian, they are independent
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State estimation

Stochastic discrete-time system

Tip1 = Azy + Bug + v, w9 ~ N(20, B),
yr = Cxy + ey,

vy L xg for all s <t ande; L x4 forall s

Mean and covariance of joint distribution

e (] 2 2)

Conditional state distributions

Vg ~ N(O, Rl),
€t ~ N(Oa RQ)

o|Yi1 ~ N(Zyp—1, Prje—1)
ve|Yy = @elye, Vi1 ~ N(i’ﬂta Pt|t)
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State estimation: A recursion =
Measurement equation
yr = Cxy + ey, et ~ N(0, Rg), er L oxg (38)
Mean
E[ys|Yi—1] = CE[x¢|Yi-1] + Eles|Yi-1] = Ciﬂt—l (39)
Covariance

Cov(y|Yi-1) = CCOV(:Ct|Yt,1)CT + C Cov(wy, e Yi—1)
+ Cov(er, 24| Yi—1)CT + Cov(er|Yi—1) = CPyy_1C" + Ry (40)
Cross-covariance
Cov(yt, x|Yi—1) = C Cov(z¢|Yi—1) + C Cov(zy, €4|Yi—1) (41)
= CPt|t—1 (42)

Conditional distribution

Tt jt‘t—l P)t|t—1 Pt|t_1CT
L e 43
|}/;| ’ o <lcxt|t—1] [CPt|t—1 CPt|t_1CT + Ry ( )
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State Estimation 4: The Current Estimate =
Conditional distribution
Te|ye, Yio1 = 24|y ~ N (244, Pyyy) (44)

Use projection theorem

Zyp = Byp—1 + Pt|t—1CT<CPt\t—1CT + Ro) 'y — Ciy—1), (45)
Pyt = Pyy—1 — Pyy_1CT(CPyy_1C" + Ry) "' CPyyy (46)
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State Estimation 5: Prediction Estimate
State equation

Zi41 = Axy + Bug + vy, v~ N(0,Ry), v Lagforalls<t
Mean

Elze1[Yi] = AE[24|Yi] + BE[us[Yi] + Efve|Y{]
== Ai‘t‘t + But

Covariance

Cov(zi11|Y;) = A Cov(z|Y;) AT + Cov(ve|Y:) + A Cov(ay, ve|Y7)
+ Cov(vy, xt|Yt)AT = APt‘tAT + Ry

Prediction estimate

ft—i—llt = A:%ﬂt "‘ B’I,Lt,
Py = Apt\tAT + R’
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Filter Theory - Kalman Filter =
Data/measurement-update (inference)
By = Byp—1 + me(ye — OZyp—), (54)
Kt = Pt\thCT(CPﬂtflCT + Ry) Y, (55)
Pt\t = Pt\t—l - /ftCPt\t—l (56)
Time-update (prediction)
‘%t+1‘t = A*@t‘t + BUt, i'0|0 = .’io, (57)
Py = APt|tAT + Ry, Pojo = Fo (58)
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Example: Pseudocode - Kalman Filter/Simulation
Implementation

Initial values: xqg_1, Pyj—1, To

fort=0,...,N
Measurement from true system:
y; = Measurement(xy, €;)

Data update:
[Z4¢, Py, ki) = DataUpdate(y, T4s—1, Pyjt—1; C, R2)

Compute control:

uy = Actuator (i)

Apply control:

xpy1 = Simulator(wy, ug, ve)

Time update:
[‘%t+1‘t7 Pt+1‘t} = TimeUpdate(:f:t|t, Pt|t7 Uts A, B, Rl)

end
24 DTU Compute Stochastic Adaptive Control
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Example: Estimation of constant
Estimate scalar constant

Tt41 = T,
yr = x¢ + e, e € N(0,72)

Define ¢; = p;l

Dt 1
[{,t = = s
pt+r2 1+ 7og
1 r2qt ro
= ]_ — K = 1 —_ > = = y
Prr = e < 1+ rog; bt 1+ ?“261tpt 1+ rogy
1 14 rog: 1 t+1
qi+1 = = =¢+—=q + ;
Pt+1 2 T2 2
Zpp1 = By + Ke(ye — Ty)
If go =0 (po = o0),
1 =
i1 =3+ ——(p— 2 or Ty =— ;
Ti41 = X + 1 +t(yt t) t 7 2 Yi
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Two different forms of the Kalman filter

Ordinary Kalman filter

z T T
te ]|y [Tele | | Tttt
Pt|t Pt+1\t Pt+1|t+1

Ordinary Kalman Filter

Predictive Kalman filter

Tpli— T z
=1 | _y | Tele| _y | el
Py Py Py

Predictive Kalman Filter
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Ordinary Kalman filter e
Time-update (prediction)

Zyp1)e = AZyy + Buy, Zojo = Zo, (68)
Pyi1y = AP AT + Ry, Pojo =P (69)

Data-update (inference)

By = g1 + me(ye — OZyp—), (70)
Kt = Pt\t—lcT(CPﬂt—lCT + Ry) T, (71)
Pt\t = Pt\t—l - "ftCPt\t—l (72)

Ordinary Kalman filter

':%t‘t = (I — K}tc) (A':i‘t—l‘t—l —+ BUt_1> —+ KRtYt, (73)
Py = AP,_y;_1 A" + Ry — 5,C(AP,_1;_1 A" + Ry), (74)
Kt = (Aptfl\tflAT + Rl)CT(C(APt—utflAT +R)CT + Ry)~' | (75)
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Predictive Kalman filter
Time-update (prediction)

Zyp1)p = AZyy + Buy, Zojo = o,
T
Pt+1|t = APﬂtA + Ry, PO\O =F

Data-update (inference)

Tojp = Tope—1 + Fe(ye — Cyp—1),
Kt = Pt\tflcT(CPth‘,flCT +Ry) 7,
Pt\t = Pt\t—l - HtCPt\t—l

Predictive Kalman filter

Zoy1e = (A — Ky C)2ypp—y + Bug + Ky,
P = APt|t71AT + Ry — KtCPt\tflATv
Ki = Aky = APy, _1CT(CPyy1CT + Ry) ™
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Stationary Kalman Filters

M

Stationary covariance of the predictive Kalman filter

PP = AP2 AT 4+ Ry — APL.CT(CPPCT + Ry)tC PP AT (84)

Stationary covariance of the ordinary Kalman filter

PS = AP2 AT 4+ Ry — (AP AT + Ry)CT
(C(AP2 AT + R))CT 4+ Ry)1C(AP2 AT + Ry) (85)

Relation between stationary covariances

PP = AP2 AT + Ry (86)
(PL) ' =(PR) '+ CTRy'C (87)
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Stationary Kalman Filter - The Riccati Equation

M

Discrete Riccati equation
X1 = AX AT + Ry — AX,CT(CX,CT + Ry) 'O X, AT (88)
Discrete algebraic Riccati equation (DARE)
X =AXAT + Ry — AxcT(CcxCT + Ry)~tex AT (89)

o If (A, C) is observable, a positive semi-definite solution X exists for each X

e If (A, O) is observable, (A, R) is reachable (RRT = R;), R; =0, and Ry >~ 0,
the solution is unique and independent of Xy and A — K C' is asymptotically
stable (its eigenvalues are strictly within the unit circle)

Hint: Use Matlab's idare function
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Kalman Errors =
Estimation errors (if the model is correct)

Typ = ¢ — -%t|tv Ty ~ N(0, Pt|t)7 (90)
jt|1t—1 =Tt — fft|t—1a jt\t—l ~ N(0, Pt|t—1)7 (91)
et = yr — Cyjpa, e~ N(0,CPy1CT + Ra) | (92)

The innovation errors are white (es L € for s # t) and can be used for
@ model validation (i.e., validating estimates of A4, B, ...)

@ system representation

© fault detection

Discrete-time systems for estimation errors

Trprprr = (I — ki1 C)(AZyy + vg) — Kep1€i41, (93)
jt+1|t = (A — KtC).%ﬂt,l — Ktet + Ut (94)

The relation between the Kalman gains is K; = Axy
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Example of Prediction Error =
Discrete-time system
xer1 = 0.5z + vy, vy ~ N(0,0.1), (95)
Yt = Tt + €4, e ~ N(0,0.5) (96)

Prediction error
e ~ N(0,0.625) (97)
Empirical mean and variance
Ele] = —0.0047, Var(e;) = 0.6218 (98)

Empirical autocorrelation indicates that ¢; is white

Sample Autocorrelation Function

Sample AL

T 0 PR R
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Theory - Standard Kalman Assumptions

The Kalman filter is designed for systems in the form

riy1 = Axy + Bug + vy,
yr = Czy + ¢
It assumes the following noise distributions
@ o ~ N(&o, o)
A v, ~ N(0,P,), white
Oe: ~ N(0, P,), white
O Cov(vg,et) =0
Ou,er Lzg, s<t

In lecture 4, we will relax some of these assumptions
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Questions

Questions?
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