

Stochastic Adaptive Control (02421)

Lecture 3

Tobias K. S. Ritschel

Section for Dynamical Systems

Department of Applied Mathematics and Computer Science

Technical University of Denmark

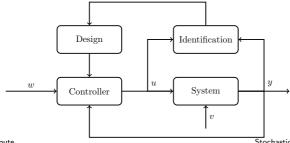
DTU Compute

Department of Applied Mathematics and Computer Science

Lecture Plan

- System theory
- 2 Stochastics
- **3** State estimation 1
- 4 State estimation 2
- 6 Optimal control 1
- $oldsymbol{6}$ System identification 1+ adaptive control 1
- **7** External models + prediction

- **8** Optimal control 2
- Optimal control 3
- System identification 2
- System identification 3 + model validation
- System identification 4 + adaptive control 2
- Adaptive control 3



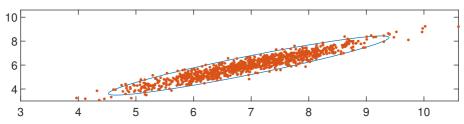
Today's Topics

- Follow-up from last lecture
- The projection theorem
- Derivation of the Kalman filter
- Stationary Kalman filters
- State estimation errors

Follow-Up from Last Lecture

Question 2.6: Sketch the 95% confidence interval for the two last signals

Answer: Use the Matlab function Niveau.m uploaded to DTU Learn



Normally distributed random variable

$$X \sim N(m, P) \tag{1}$$

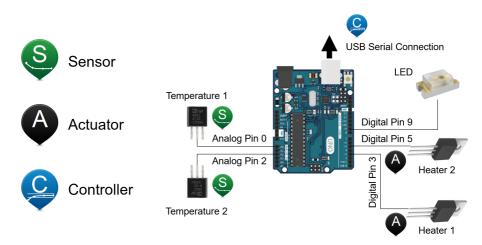
Plot confidence interval using Niveau (m, P^{-1}, f) where f is the square root of the χ^2 quantile level with 2 degrees of freedom

See, e.g., Example 3.16 in the Danish book

13.2.2024

Demonstration

Temperature control laboratory (TCLab)



Link: https://apmonitor.com/pdc/index.php/Main/ArduinoTemperatureControl

6 DTU Compute Stochastic Adaptive Control 13.2.2024

TCLab model

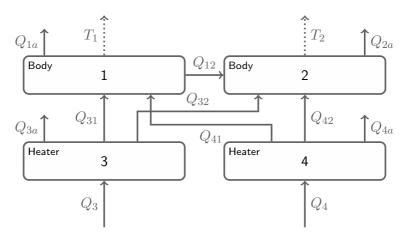


Figure: Four-compartment model of TCLab device.

13.2.2024

State Estimation

Filters and Estimation

Objective: Obtain estimate, \hat{x}_t , of the signal x_t based on measurements

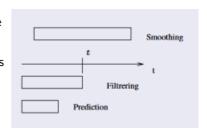
$$Y_{0:N} = \begin{bmatrix} y_0 & y_1 & \cdots & y_N \end{bmatrix} \tag{2}$$

and a state-output relation, e.g.,

$$y_t = Cx_t + e_t \tag{3}$$

Different types of estimation

- **1** Smoothing $(t < t_N)$: Use both past and future data to estimate the states
- 2 Filtering: $(t=t_N)$: Estimate the current states based on current and past data
- **3** Prediction: $(t > t_N)$: Predict future states based on past data



Filter Theory

Stochastic discrete-time system

$$x_{t+1} = Ax_t + Bu_t + v_t, \quad x_0 \sim N(m_0, P_0), \quad v_t \sim N(0, R_1), \quad (4)$$

$$y_t = Cx_t + e_t, e_t \sim N(0, R_2) (5)$$

We will only consider filtering and prediction in this lecture

Filter Theory - The Good Estimate

Core concepts of filter design

- 1 Characteristics of the signal and noise
- 2 Observation model (relation between y, x, e)
- 3 Criterion (what is a good estimate)
- 4 Restrictions (what information is available)

Characteristics: Nature of the states, dynamics, and noises

Observation: Relation between the output, y, the state x, and the noise

The criterion: A good estimate minimizes the expected squared deviation

$$\mathbb{E}[||x - \hat{x}||^2] \tag{6}$$

Restrictions: What data, Y, is available (filter, predict, or smoothe?)

State Estimation

DTU

The filter problem: A good estimator

The law of total expectation

$$\mathbb{E}[g(x)] = \mathbb{E}_Y[\mathbb{E}[g(x)|Y]] \tag{7}$$

Introduce "inner" objective function

$$J = \mathbb{E}[\|x - \hat{x}\|^2] \tag{8}$$

$$= \mathbb{E}[(x - \hat{x})^T (x - \hat{x})] \tag{9}$$

$$= \mathbb{E}_Y[\mathbb{E}[(x-\hat{x})^T(x-\hat{x})|Y]] = \mathbb{E}_Y[J_{in}]$$
(10)

Inner objective function

$$J_{in} = \mathbb{E}[x^T x - \hat{x}^T x - x^T \hat{x} + \hat{x}^T \hat{x} | Y], \tag{11}$$

$$= \mathbb{E}[x^T x | Y] - \hat{x}^T \mathbb{E}[x | Y] - \mathbb{E}[x | Y]^T \hat{x} + \hat{x}^T \hat{x}$$
(12)

Optimal estimate

$$\nabla_{\hat{x}} J_{in} = 2\hat{x} - 2\mathbb{E}[x|Y] = 0, \tag{13}$$

$$\hat{x} = \mathbb{E}[x|Y] \tag{14}$$

The projection theorem

Filter Theory - Projection Theorem

Normally distributed vector

$$Z = \begin{bmatrix} X \\ Y \end{bmatrix} \sim N \left(\begin{bmatrix} m_x \\ m_y \end{bmatrix}, \begin{bmatrix} P_x & P_{xy} \\ P_{xy}^T & P_y \end{bmatrix} \right)$$
 (15)

Projection theorem: The conditional distribution $X|Y \sim N(m_{x|y}, P_{x|y})$ is

$$m_{x|y} = m_x + P_{xy}P_y^{-1}(y - m_y),$$
 (16)

$$P_{x|y} = P_x - P_{xy}P_y^{-1}P_{xy}^T, (17)$$

$$X - \hat{x} \perp Y \tag{18}$$

14 DTU Compute

Filter Theory - Proof of Projection Theorem

Probability density functions

$$f_{X,Y}(x,y) = \frac{1}{(2\pi)^{n_x + n_y} \sqrt{\det(P_z)}} e^{-\frac{1}{2}(z - m_z)^T P_z^{-1}(z - m_z)},$$
(19)

$$f_{X,Y}(x,y) = \frac{1}{(2\pi)^{n_x + n_y} \sqrt{\det(P_z)}} e^{-\frac{1}{2}(z - m_z)^T P_z^{-1}(z - m_z)}, \qquad (19)$$

$$f_Y(y) = \frac{1}{(2\pi)^{n_y} \sqrt{\det(P_y)}} e^{-\frac{1}{2}(y - m_y)^T P_y^{-1}(y - m_y)} \qquad (20)$$

Probability density function of conditional normal distribution

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

$$= \sqrt{\frac{\det(P_y)}{(2\pi)^{n_x} \det(P_z)}} e^{-\frac{1}{2}(z-m_z)^T P_z^{-1}(z-m_z) + \frac{1}{2}(y-m_y)^T P_y^{-1}(y-m_y)}$$

$$= \kappa e^{-\frac{1}{2}\alpha}$$
(22)

Filter Theory - Proof of Projection Theorem

Schur complement

$$D = P_x - P_{xy}P_y^{-1}P_{xy}^T (23)$$

Use Woodbury matrix identity on P_{\sim}^{-1}

$$P_z^{-1} = \begin{bmatrix} D^{-1} & -D^{-1}P_{xy}P_y^{-1} \\ -P_y^{-1}P_{xy}^TD^{-1} & P_y^{-1} + P_y^{-1}P_{xy}^TD^{-1}P_{xy}P_y^{-1} \end{bmatrix}$$
(24)

Determinant

$$\det(P_z) = \det(P_y) \det(D) \qquad \Leftrightarrow \qquad \frac{\det(P_y)}{\det(P_z)} = \frac{1}{\det(D)}$$
 (25)

Factor

$$\kappa = \sqrt{\frac{\det(P_y)}{(2\pi)^{n_x} \det(P_z)}} = \frac{1}{\sqrt{(2\pi)^{n_x} \det(D)}}$$
 (26)

Exponent

$$\alpha = (z - m_z)^T P_z^{-1} (z - m_z) - (y - m_y)^T P_y^{-1} (y - m_y)$$
(27)

$$= [x - (m_x + P_{xy}P_y^{-1}(y - m_y))]^T D^{-1}[x - (m_x + P_{xy}P_y^{-1}(y - m_y))]$$

Filter Theory - Proof of Projection Theorem

Mean and covariance of conditional distribution

$$\mathbb{E}[X|Y] = m_{x|y} = m_x + P_{xy}P_y^{-1}(y - m_y)$$
 (29)

$$Cov(X|Y) = P_{x|y} = D = P_x - P_{xy}P_y^{-1}P_{xy}^T$$
 (30)

Covariance (are the variables independent?)

$$Cov(X - m_{x|y}, Y) = Cov(X, Y) - P_{xy}P_y^{-1}Cov(Y, Y)$$
(31)

$$= P_{xy} - P_{xy}P_y^{-1}P_y = 0 (32)$$

As X and Y are Gaussian, they are independent

Derivation of the Kalman filter

18 DTU Compute Stochastic Adaptive Control 13.2.2024

State estimation

Stochastic discrete-time system

$$x_{t+1} = Ax_t + Bu_t + v_t, \quad x_0 \sim N(\hat{x}_0, P_0), \quad v_t \sim N(0, R_1),$$
 (33)

$$y_t = Cx_t + e_t, e_t \sim N(0, R_2) (34)$$

 $v_t \perp x_s$ for all $s \leq t$ and $e_t \perp x_s$ for all s

Mean and covariance of joint distribution

$$\begin{bmatrix} x_t \\ y_t \end{bmatrix} | Y_{t-1} \sim N \left(\begin{bmatrix} \times \\ \times \end{bmatrix}, \begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix} \right), \quad Y_t = \begin{bmatrix} Y_{t-1} \\ y_t \end{bmatrix}$$
 (35)

Conditional state distributions

$$x_t|Y_{t-1} \sim N(\hat{x}_{t|t-1}, P_{t|t-1})$$
 (36)

$$x_t|Y_t = x_t|y_t, Y_{t-1} \sim N(\hat{x}_{t|t}, P_{t|t})$$
 (37)

State estimation: A recursion

Measurement equation

$$y_t = Cx_t + e_t,$$
 $e_t \sim N(0, R_2),$ $e_t \perp x_s$ (38)

Mean

$$\mathbb{E}[y_t|Y_{t-1}] = C\mathbb{E}[x_t|Y_{t-1}] + \mathbb{E}[e_t|Y_{t-1}] = C\hat{x}_{t|t-1}$$
(39)

Covariance

$$Cov(y_t|Y_{t-1}) = C Cov(x_t|Y_{t-1})C^T + C Cov(x_t, e_t|Y_{t-1}) + Cov(e_t, x_t|Y_{t-1})C^T + Cov(e_t|Y_{t-1}) = CP_{t|t-1}C^T + R_2$$
 (40)

Cross-covariance

$$Cov(y_t, x_t | Y_{t-1}) = C Cov(x_t | Y_{t-1}) + C Cov(x_t, e_t | Y_{t-1})$$

$$= CP_{t|_{t-1}}$$
(41)

Conditional distribution

$$\begin{bmatrix} x_t \\ y_t \end{bmatrix} | Y_{t-1} \sim N \left(\begin{bmatrix} \hat{x}_{t|t-1} \\ C\hat{x}_{t|t-1} \end{bmatrix}, \begin{bmatrix} P_{t|t-1} & P_{t|t-1}C^T \\ CP_{t|t-1} & CP_{t|t-1}C^T + R_2 \end{bmatrix} \right)$$
(43)

State Estimation 4: The Current Estimate

Conditional distribution

$$x_t|y_t, Y_{t-1} = x_t|Y_t \sim N(\hat{x}_{t|t}, P_{t|t})$$
 (44)

Use projection theorem

$$\hat{x}_{t|t} = \hat{x}_{t|t-1} + P_{t|t-1}C^T(CP_{t|t-1}C^T + R_2)^{-1}(y_t - C\hat{x}_{t|t-1}), \tag{45}$$

$$P_{t|t} = P_{t|t-1} - P_{t|t-1}C^{T}(CP_{t|t-1}C^{T} + R_2)^{-1}CP_{t|t-1}$$
(46)

State Estimation 5: Prediction Estimate

State equation

$$x_{t+1} = Ax_t + Bu_t + v_t, \quad v_t \sim N(0, R_1), \quad v_t \perp x_s \text{ for all } s \leq t \quad (47)$$

Mean

$$\mathbb{E}[x_{t+1}|Y_t] = A\mathbb{E}[x_t|Y_t] + B\mathbb{E}[u_t|Y_t] + \mathbb{E}[v_t|Y_t]$$
(48)

$$=A\hat{x}_{t|t}+Bu_t\tag{49}$$

Covariance

$$Cov(x_{t+1}|Y_t) = A Cov(x_t|Y_t)A^T + Cov(v_t|Y_t) + A Cov(x_t, v_t|Y_t)$$
 (50)

$$+ \operatorname{Cov}(v_t, x_t | Y_t) A^T = A P_{t|t} A^T + R_1$$
 (51)

Prediction estimate

$$\hat{x}_{t+1|t} = A\hat{x}_{t|t} + Bu_t, \tag{52}$$

$$P_{t+1|t} = AP_{t|t}A^T + R_1 (53)$$

Filter Theory - Kalman Filter

Data/measurement-update (inference)

$$\hat{x}_{t|t} = \hat{x}_{t|t-1} + \kappa_t (y_t - C\hat{x}_{t|t-1}),$$

$$\kappa_t = P_{t|t-1}C^T (CP_{t|t-1}C^T + R_2)^{-1},$$

$$P_{t|t} = P_{t|t-1} - \kappa_t CP_{t|t-1}$$
(54)
(55)

$$\kappa_t = P_{t|t-1}C^T(CP_{t|t-1}C^T + R_2)^{-1},$$
(55)

$$P_{t|t} = P_{t|t-1} - \kappa_t C P_{t|t-1}$$
 (56)

Time-update (prediction)

$$\hat{x}_{t+1|t} = A\hat{x}_{t|t} + Bu_t, \qquad \hat{x}_{0|0} = \hat{x}_0, \qquad (57)$$

$$\hat{x}_{t+1|t} = A\hat{x}_{t|t} + Bu_t, \hat{x}_{0|0} = \hat{x}_0, (57)$$

$$P_{t+1|t} = AP_{t|t}A^T + R_1, P_{0|0} = P_0$$
(58)

Example: Pseudocode - Kalman Filter/Simulation Implementation

Initial values: $x_{0|-1}$, $P_{0|-1}$, x_0

for
$$t = 0, \ldots, N$$

Measurement from true system:

$$y_t = \texttt{Measurement}(x_t, e_t)$$

Data update:

$$[\hat{x}_{t|t}, P_{t|t}, \kappa_t] = \mathtt{DataUpdate}(y_t, \hat{x}_{t|t-1}, P_{t|t-1}; C, R_2)$$

Compute control:

$$u_t = \texttt{Actuator}(\hat{x}_{t|t})$$

Apply control:

$$x_{t+1} = \mathtt{Simulator}(x_t, u_t, v_t)$$

Time update:

$$[\hat{x}_{t+1|t}, P_{t+1|t}] = \mathtt{TimeUpdate}(\hat{x}_{t|t}, P_{t|t}, u_t; A, B, R_1)$$

Example: Estimation of constant

Estimate scalar constant

$$x_{t+1} = x_t, (59)$$

$$y_t = x_t + e_t, \quad e_t \in N(0, r_2)$$
 (60)

Define $q_t = p_t^{-1}$

$$\kappa_t = \frac{p_t}{p_t + r_2} = \frac{1}{1 + r_2 q_t},\tag{61}$$

$$p_{t+1} = (1 - \kappa_t)p_t = \left(1 - \frac{1}{1 + r_2 q_t}\right)p_t = \frac{r_2 q_t}{1 + r_2 q_t}p_t = \frac{r_2}{1 + r_2 q_t}, \quad (62)$$

$$q_{t+1} = \frac{1}{p_{t+1}} = \frac{1 + r_2 q_t}{r_2} = q_t + \frac{1}{r_2} = q_0 + \frac{t+1}{r_2},$$
(63)

$$\hat{x}_{t+1} = \hat{x}_t + \kappa_t (y_t - \hat{x}_t) \tag{64}$$

If $q_0 = 0 \ (p_0 = \infty)$,

$$\hat{x}_{t+1} = \hat{x}_t + \frac{1}{1+t}(y_t - \hat{x}_t)$$
 or $\hat{x}_t = \frac{1}{t} \sum_{i=0}^{t-1} y_i$ (65)

Two different forms of the Kalman filter

Ordinary Kalman filter

$$\underbrace{\begin{bmatrix} \hat{x}_{t|t} \\ P_{t|t} \end{bmatrix} \rightarrow \begin{bmatrix} \hat{x}_{t+1|t} \\ P_{t+1|t} \end{bmatrix} \rightarrow \begin{bmatrix} \hat{x}_{t+1|t+1} \\ P_{t+1|t+1} \end{bmatrix}}_{\text{Ordinary Kalman Filter}} \tag{66}$$

Predictive Kalman filter

$$\underbrace{\begin{bmatrix} \hat{x}_{t|t-1} \\ P_{t|t-1} \end{bmatrix} \rightarrow \begin{bmatrix} \hat{x}_{t|t} \\ P_{t|t} \end{bmatrix} \rightarrow \begin{bmatrix} \hat{x}_{t+1|t} \\ P_{t+1|t} \end{bmatrix}}_{\text{Predictive Kalman Filter}} \tag{67}$$

26 DTU Compute

Ordinary Kalman filter

Time-update (prediction)

$$\hat{x}_{t+1|t} = A\hat{x}_{t|t} + Bu_t, \qquad \hat{x}_{0|0} = \hat{x}_0, \tag{68}$$

$$P_{t+1|t} = AP_{t|t}A^{T} + R_1, P_{0|0} = P_0 (69)$$

Data-update (inference)

$$\hat{x}_{t|t} = \hat{x}_{t|t-1} + \kappa_t (y_t - C\hat{x}_{t|t-1}), \tag{70}$$

$$\kappa_t = P_{t|t-1}C^T(CP_{t|t-1}C^T + R_2)^{-1}, \tag{71}$$

$$P_{t|t} = P_{t|t-1} - \kappa_t C P_{t|t-1} \tag{72}$$

Ordinary Kalman filter

$$\hat{x}_{t|t} = (I - \kappa_t C)(A\hat{x}_{t-1|t-1} + Bu_{t-1}) + \kappa_t y_t,$$
(73)

$$P_{t|t} = AP_{t-1|t-1}A^T + R_1 - \kappa_t C(AP_{t-1|t-1}A^T + R_1), \tag{74}$$

$$\kappa_t = (AP_{t-1|t-1}A^T + R_1)C^T(C(AP_{t-1|t-1}A^T + R_1)C^T + R_2)^{-1}$$
 (75)

Predictive Kalman filter

Time-update (prediction)

$$\hat{x}_{t+1|t} = A\hat{x}_{t|t} + Bu_t, \qquad \hat{x}_{0|0} = \hat{x}_0, \tag{76}$$

$$P_{t+1|t} = AP_{t|t}A^{T} + R_1, P_{0|0} = P_0 (77)$$

Data-update (inference)

$$\hat{x}_{t|t} = \hat{x}_{t|t-1} + \kappa_t (y_t - C\hat{x}_{t|t-1}), \tag{78}$$

$$\kappa_t = P_{t|t-1}C^T(CP_{t|t-1}C^T + R_2)^{-1},\tag{79}$$

$$P_{t|t} = P_{t|t-1} - \kappa_t C P_{t|t-1} \tag{80}$$

Predictive Kalman filter

$$\hat{x}_{t+1|t} = (A - K_t C)\hat{x}_{t|t-1} + Bu_t + K_t y_t, \tag{81}$$

$$P_{t+1|t} = AP_{t|t-1}A^{T} + R_1 - K_tCP_{t|t-1}A^{T},$$
(82)

$$K_t = A\kappa_t = AP_{t|t-1}C^T(CP_{t|t-1}C^T + R_2)^{-1}$$
(83)

Stationary Kalman filters

29 DTU Compute Stochastic Adaptive Control 13.2.2024

Stationary Kalman Filters

Stationary covariance of the predictive Kalman filter

$$P_{\infty}^{p} = A P_{\infty}^{p} A^{T} + R_{1} - A P_{\infty}^{p} C^{T} (C P_{\infty}^{p} C^{T} + R_{2})^{-1} C P_{\infty}^{p} A^{T}$$
 (84)

Stationary covariance of the ordinary Kalman filter

$$P_{\infty}^{o} = AP_{\infty}^{o}A^{T} + R_{1} - (AP_{\infty}^{o}A^{T} + R_{1})C^{T}$$

$$(C(AP_{\infty}^{o}A^{T} + R_{1})C^{T} + R_{2})^{-1}C(AP_{\infty}^{o}A^{T} + R_{1})$$
(85)

Relation between stationary covariances

$$P_{\infty}^{p} = A P_{\infty}^{o} A^{T} + R_{1}$$

$$(P_{\infty}^{o})^{-1} = (P_{\infty}^{p})^{-1} + C^{T} R_{2}^{-1} C$$
(86)

$$(P_{\infty}^{o})^{-1} = (P_{\infty}^{p})^{-1} + C^{T} R_{2}^{-1} C$$
 (87)

Stationary Kalman Filter - The Riccati Equation

Discrete Riccati equation

$$X_{t+1} = AX_tA^T + R_1 - AX_tC^T(CX_tC^T + R_2)^{-1}CX_tA^T$$
 (88)

Discrete algebraic Riccati equation (DARE)

$$X = AXA^{T} + R_{1} - AXC^{T}(CXC^{T} + R_{2})^{-1}CXA^{T}$$
(89)

- If (A, C) is observable, a positive semi-definite solution X exists for each X_0
- If (A, C) is observable, (A, R) is reachable $(RR^T = R_1)$, $R_1 \succeq 0$, and $R_2 \succ 0$, the solution is unique and independent of X_0 and A KC is asymptotically stable (its eigenvalues are strictly within the unit circle)

Hint: Use Matlab's idare function

Estimation errors

32 DTU Compute Stochastic Adaptive Control 13.2.2024

Kalman Errors

Estimation errors (if the model is correct)

$$\tilde{x}_{t|t} = x_t - \hat{x}_{t|t}, \qquad \qquad \tilde{x}_{t|t} \sim N(0, P_{t|t}),$$
 (90)

$$\tilde{x}_{t|t} = x_t - \hat{x}_{t|t}, \qquad \tilde{x}_{t|t} \sim N(0, P_{t|t}), \qquad (90)$$

$$\tilde{x}_{t|t-1} = x_t - \hat{x}_{t|t-1}, \qquad \tilde{x}_{t|t-1} \sim N(0, P_{t|t-1}), \qquad (91)$$

$$\epsilon_t = y_t - C\hat{x}_{t|t-1}, \qquad \epsilon_t \sim N(0, CP_{t|t-1}C^T + R_2)$$
(92)

$$\epsilon_t = y_t - C\hat{x}_{t|t-1}, \qquad \epsilon_t \sim N(0, CP_{t|t-1}C^T + R_2)$$
 (92)

The innovation errors are white $(\epsilon_s \perp \epsilon_t \text{ for } s \neq t)$ and can be used for

- \bigcirc model validation (i.e., validating estimates of A, B, \ldots)
- 2 system representation
- 6 fault detection

Discrete-time systems for estimation errors

$$\tilde{x}_{t+1|t+1} = (I - \kappa_{t+1}C)(A\tilde{x}_{t|t} + v_t) - \kappa_{t+1}e_{t+1}, \tag{93}$$

$$\tilde{x}_{t+1|t} = (A - K_t C)\tilde{x}_{t|t-1} - K_t e_t + v_t \tag{94}$$

The relation between the Kalman gains is $K_t = A\kappa_t$

Example of Prediction Error

Discrete-time system

$$x_{t+1} = 0.5x_t + v_t,$$
 $v_t \sim N(0, 0.1),$ (95)

$$y_t = x_t + e_t,$$
 $e_t \sim N(0, 0.5)$ (96)

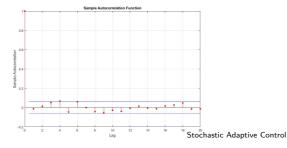
Prediction error

$$\epsilon_t \sim N(0, 0.625) \tag{97}$$

Empirical mean and variance

$$\mathbb{E}[\epsilon_t] = -0.0047, \quad \text{Var}(\epsilon_t) = 0.6218$$
 (98)

Empirical autocorrelation indicates that ϵ_t is white



Theory - Standard Kalman Assumptions

The Kalman filter is designed for systems in the form

$$x_{t+1} = Ax_t + Bu_t + v_t, (99)$$

$$y_t = Cx_t + e_t (100)$$

It assumes the following noise distributions

- **1** $x_0 \sim N(\hat{x}_0, P_0)$
- $\mathbf{2} v_t \sim N(0, P_v)$, white
- $e_t \sim N(0, P_e)$, white

In lecture 4, we will relax some of these assumptions

Matlab example

36 DTU Compute Stochastic Adaptive Control 13.2.2024

State Estimation

Questions

Questions?

37 DTU Compute Stochastic Adaptive Control 13.2.2024