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Lecture Plan

@ System theory

® Stochastics

© State estimation 1
@ State estimation 2
@ Optimal control 1

@ System identification 1 + adaptive
control 1

@ External models + prediction
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@ System identification 2
@® System identification 3 + model
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® System identification 4 + adaptive
control 2
® Adaptive control 3
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Today’s Agenda

® Follow-up from last lecture
® Probability theory
® Stochastic dynamical systems

® Discretization
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Follow-up from Last Time: Exercise 4
Find eigenvalues and path to/from origin

01 2 0
Tpy1 = |0 0 3|zp+ |1 up = Az + Buy (1)
0 00 0
1) The eigenvalues indicate asymptotic stability:
eig(A) = {0,0,0} (2)
2-3)
0 0 3 0 00 1
A2=10 0 0|, A*=1|0 0 0|, AB=|0 (3)
000 0 00 0

Consequently, U = [0 0 0} drives the states to the origin, whereas

U= [—3 0} does so in the minimum number of steps.

T
4) No, the system cannot be driven from the origin to [1 1 1} because

we cannot affect state 3.
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Stochastics

Real systems are usually stochastic in nature

Trr1 = Axg + Bug + v, Vk NN(O,Rl),
yr = Cxp + Dug, + ey, ekNN(O,R2>

Stochastic: being uncertain, described by a random distribution and
cannot be predicted precisely.

Sources: measurements, model inaccuracy (unmodeled phenomena),
unknown disturbances, unknown /time-varying parameters, etc.
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Stochastic scalar variables

Stochastic variable
X ~ F(p)
Cumulative distribution function Fx (y) (cdf)

Fx(y) =Pr{X <y} €]0,1], Pr{a <X <b} =Fx(b)— Fx(a)

Probability density function fx(z) >0 N
(pdf)
Fe) = [ fx@ds @)
F(—) =0, F(x)=1 (9)

4 s 2 a4 o 1 2 a3 4
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Confidence Interval
1 — p confidence interval CI(p)

Pria <X <b}=1-p
Confidence interval based on inverse cdf

Pr{X <a}=p/2 o Pr{X<b}=1-p/2
CI(p) = [Fx'(p/2), Fx' (1 - p/2)]

Use Matlab routines (or look-up tables) to compute F~1(p/2)
Xemx+toxF 1(p/2)

Example: Let X ~ N(10,4). Then, a 95% Cl is

10-2-196< X <10+2-1.96 0or 6.08 < X <13.92
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Moments

M

For a real function g(X)
Nth moment of g(X): E[¢"(X)] = /Qg”(x)f(x) dz (15)

Moments represent certain properties of stochastic variables.

Mean (1st moment): E[X] = m, (16)

Variance (2nd central moment): Var(X) = E[(X — m,)?]
=E[X? -E[X]*=0¢2 (17)
Skewness (std.* 3rd central moment): E[(X —m,)3]/o> (18)

*Standardized.
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Moments - Sample Moments
Let {x;}}¥, be samples of X

Estimates of first and second order moments

N .
Var(X) = Z —~

Unbiased estimate of variance

N .
Var(X) = Z w1

s
Il
—
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Probabilities: Joint probability and independence
Marginal probability that a single statement (X < z) is true
Pr{X <z} = Fx(x)
Joint probability that two (or more) statements are true
Pr{X <z,Y <y} = Fxy(z,y)

Compute the marginal distribution from the joint distribution
fx(z) = /Q fxy(z,y)dy
Y

Joint distributions for independent variables

Fxy(v,y) = Fx(x)Fy(y), fxv(z,y)= fx(@)fr(y)
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Covariance

Covariance is a measure of how two stochastic variables varies
each other

Cov(X,Y) = E[(X —my,)(Y —m,)]
Variance is covariance between the same variable
Var(X) = Cov(X, X)

Correlation coefficient

. Cov(X,Y) 1<p<i

v/ Var(X) Var(Y)’ -

Covariance of independent variables

Cov(X,Y)=p=0

Note: The reverse if not true

DTU

>
>
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(27)

(28)
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Conditional distribution — Bayes’ theorem

Conditional probability and Bayes’ theorem

Pr(A|B)Pr(B) = Pr(A, B) = Pr(B|A) Pr(A),
Pr{X <z|Y <y}Pr{V <y} =Pr{X <z, Y <y}
=Pr{V <y|X <z} Pr{X <z}

Conditional probability density function

Ixiy @) fy () = fxy(@,y) = fyix(ylz) fx (o)

The same can be done for the moments if Var(X|Y) < co exists

BIX|Y] = myy, = [ afxy(aly)do

xT

Var(X\Y) = E[(X - mx|y)2|Y]
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Stochastic Vectors
Vector-valued random variables

xz[Xl,...,Xn}T

cdf: Fx(x) =Pr(X1 <z1,..., X, < zp,)
marginal cdf: Fx,(z1) = Pr(X; <)

1st and 2nd order moments
T
m, = E[X] = [E[X1],...,E[X,]|
P, = PT = Cov(X) = E[(X — m,)(X —m,)T] = 0
Positive semi-definiteness (=) means that 7 P,z > 0.

Covariance matrices are diagonalizable, e.g., for n = 2

p_ [ Var(X7) COV(X17X2)1
r COV(XQ,Xl) Var(Xg)

15 DTU Compute Stochastic Adaptive Control
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Mathematical properties of Moments: 1st and 2nd

Let A and m be a constant matrix and vector

Expectations

E[X +m] = E[X] +m (43)
E[AX] = AE[X] (44)
E[X + Y] = E[X] + E[Y] (45)
E[XT AX] = Tr(A Cov(X)) + E[X]T AE[X] (46)
Covariances
Cov(X) = E[XXT] — EX]E[X]" (47)
Cov(X +m) = Cov(X) (48)
Cov(AX) = A Cov(X)AT (49)
Cov(X 4 Y) = Cov(X) + Cov(Y) 4+ Cov(X,Y) + Cov(X,Y)"'|  (50)
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Vector Covariance and Variance =
Further covariances
Cov(X,Y) =E[(X — mz)(Y —my)"] (51)
Cov(X,X) = Cov(X) = P, (52)
Cov(Y,X) = Cov(X,Y)T (53)
Cov(AX,Y) = A Cov(X,Y) (54)
Cov(X, AY) = Cov(X,Y)AT (55)
Cov(X 4+ V,Y) = Cov(X,Y) + Cov(V,Y) (56)
Principal directions of the variance (PCA)
[A, V] = eig(P) (57)
PV = \V; (58)

The columns in V indicate the main directions of the variation and the
elements of A indicate the associated variance
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Different Distributions - Gaussian and y?

Gaussian/normal distribution

X ~ N(myg,02)

X —my .
= UEIY N(0,1) standard Gaussian

Oy

1 (x —my)?
Ix(@) = V2mo, P <_ 202 )

T —my
Fx(x) = Fy < )
Oy

x2-distribution

X =Y i ~x*(n), ¢i~N(0,1), i Ly
=1
1 n/2—1 _z
1@ = v ® eXp( 2)

E[X]=n Var(X)=2n

18 DTU Compute Stochastic Adaptive Control
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Different Distributions - Gamma
Gamma distribution (x2(n) = I'(n/2,2))

X ~T(k,0), 0<X<o0
_ 1 k—1 (_93>

E[X] =k, Var(X) = k6>

Gamma function

Erlang distribution (Gamma distribution for integer values of k)

rk)y=k-1!, T <k+;> = (21<:2;1)'ﬁ

19 DTU Compute Stochastic Adaptive Control
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Other Related Distributions

The F-distribution

Student’s t-distribution

Z
X = ﬁ\/ﬁwt(n)

ZeN(0,1), Y~x*n), ZLY

The Rayleigh distribution:

X = /Y2 + Y%~ Ray(oz), Yi~ Niia(0,07)
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Generate random variables in Matlab =
Stochastic variable change (use Matlab's randn)
X ~N(m,P), Z~ N(0,I) (78)
X=SZ+m (79)
P =255T (80)
Cholesky factorization
ST = chol(P) (81)
Eigenvalue decomposition
Pv; = Njv; - PV =VD (82)
S=vVvD (83)

Alternative: Use Matlab’'s mvnrnd

Hint: Don’t use routines with limited functionality, e.g., normrnd
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Stochastics in Matlab

Sampling from distributions in Matlab

22 DTU Compute

Stochastic Adaptive Control

=
—
=

M

6.2.2024



23

DTU Compute

Stochastic discrete-time systems

Stochastic Adaptive Control

=
—
=

M

6.2.2024



A Stochastic System

We will now extend the discrete-time (deterministic) systems

Ty1 = Azg + Buy,
yr = Cxy, + Duy,

to discrete-time stochastic systems of the form

Tpy1 = Az + Buy + Gy,
yr = Cxp + Duy + Feg

Two sources of uncertainty/noise
® {vy, k € N} denotes the process noise

e {¢x, k € N} denotes the measurement/sampling noise

=
—
=

M

(84a)
(84b)

(85a)
(85b)

x) is a random variable and the evolution of the system is a stochastic

process
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Stochastic Processes

M

A stochastic process can be described using a marginal cdf or pdf

FXt (:L‘t, t) = PI‘{Xt § i‘t} (86)
th(xtat) = vatFXt(xt’t) (87)

or if the different times are related, using joint probabilities

FXt,Xs(fL'tyl'sat’ 3) = Pr{Xt S xtaXs S l's} (88)
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Properties of Stochastic processes

Mean

Variance
P, (t) = Var(a(t)) = E[(x(t) — Elz()]) (2(t) — Elz(0)]) "], (90)
Auto-covariance

ru(ti,tz) = Cov(a(t), 2(t2)) = E[(x(h) — E[e(t)]) (z(t2) — E[z(t2)])" ],
(91)

Note that r,(t,t) = P,(t)
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Auto-covariance and auto-correlation

M

Auto-correlation function

2 (t1,t2)
Px(tl)Px(tQ)

For stationary processes, only the time difference 7 = t; — to is relevant

pa(tr,t2) = (92)

ra(r) = Cov [w(t), a(t + 7)] (93a)
- TI(T)
pa(T) = Po(r) (93b)
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Stationarity

Steady state of deterministic systems: The state does not change in time

Stationary distributions of stochastic systems: The state distribution does
not change in time

Strong stationarity

Jat)atn) (21 -+ o5 20) = fo(i4a0),..a(tn+ar) (2155 2n), (94)

for any n € N and At € R.

Weak stationarity: The first two moments (mean and covariance) do not
change in time

28 DTU Compute Stochastic Adaptive Control 6.2.2024



=
—
=

M

Normal process and Markov process

Normal process: Any probability density function fy(,) . 2t.) (21, .., 25) is
a multivariate normal distribution for any n € N

Probability density function with mean p and covariance %

1 1 _
fr(y) = 22y P <—2(y —w)'E Ny - u)) (95)

Markov process: For any t1 < to < --- < t;, the distribution of x(t,,) given
(z(t1),...,2(tn,—1)) is the same as the distribution of x(t,) given x(t,_1)

Pr((ty) <@ | 2(ta ), a(tr)) = Pr(a(ts) <o | a(ta-1))  (96)
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Stochastic State-Space Models
Discrete-time system

Tp+1 = Az + Bug + Gug, v ~ N(uy, R1)
yk:ka+Duk+Fek, €L NN(ME,RQ)

Mean and covariance

k1 = Apg + Bug + Gy, po = Elxo],

Py = APkAT + GRlGT, Py = COV({E(])

Note that uy is deterministic.

Stationary mean and covariance

Py = AP AT + GRGT

=
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M

(97a)
(97b)

(98a)
(98b)

(99a)
(99b)

Stationary auto-covariance (if A has full-rank and the eigenvalues lie within

the unit circle)

T2,00(T) = AT Poo
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Continuous-Time Stochastic Processes (SDE)

Continuous-time system

o(t) = f(t,x(t),u(t)) (101)
First attempt at stochastic differential equation
o(t) = f(t,x(t),u(t)) + g(t, x(t), u(t))v(t) (102)

Process noise

® u(t) L v(s) for any t # s (independence)

® y(t) is continuous and has bounded variance
® E[v(t)] = 0 (zero-mean)

Theorem 4.1 in Chapter 3 of the book "Stochastic Control Theory" by
Astrom (1970): E[v2(t)] =0
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Continuous-Time Stochastic Processes (SDE)

Stochastic difference equation
x(t + At) —x(t) = f(t,z(t)) At + g(t, z(t))v(t) At + o( At). (103)

Replace v(t)At with Aw(t) = w(t + At) — w(t), which has stationary
independent zero-mean increments (Wiener process)

Ax(t) = f(t,z(t)) At + g(t, z(t)) Aw(t) + o(At). (104)

Take the limit At — 0

da(t) = f(t,2(t)) dt + g(t, z(t)) dw(t) (105)
z(t) = z(to) + \ f(rz(r))dr + \ g9(7,2(7)) dw(r) (106)
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Continuous-Time Stochastic Processes (SDE) =
The two first conditional moments of the difference process
E[Az(t) | 2(t)] = (L, 2(£) At + o(At) (107a)
Var (Az(t) | 2(t)) = g(t, 2(£) At + o(At) (107b)
Variance of process noise increment
E|Aw?(t)| = At (108)
Note that the variance is proportional to At and not At?
Distribution of process noise increment (increment of Wiener process)
Aw(t) = w(t + At) —w(t) ~ N(0, At) (109)
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Linear Stochastic Differential Equations
Linear stochastic differential equations

da(t) = (A()z(t) + B(u(t)) dt + G(t) dw(t), z(to) ~ N(mo, R)
(110)

A(t) and B(t) are continuous functions of time

State expectation

E[z(t)] = E[zo] + E [ tA(T):L‘(T) + B(7)u(T) dT:| +E [ t; G(71) dw(r)]

! (111)

_ Elzo] + t: A(ME[z(r)] + B(r)u(r) dr = mq(?) (112)
Expected value

alt) = Ama(t) + BOu(t),  malto) = mo. (113)
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Linear Stochastic Differential Equations

State-transition matrix

DD (t; to)

TR A(t)®(t; to), D(to;to) = 1.

Auto-covariance of x (s > t)
R(s,t) = Cov(z(s),z(t)) = ®(s,t)P(t)
Covariance

P(t) = A(t)P(t) + P(AT(t) + G()G" (1), Plto) = R,
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Linear stochastic differential equation
Linear continuous-time state space model

Q.
8
—~~
=
I

(Az(t) + Bu(t))dt + Gdw(t), dw(t) ~ N(0,Idt), (117a)
y(t) = Cx(t) + Du(t) + Fe(t), e(t) ~ N(me, R.) (117b)

Zero-order-hold parametrization of manipulated inputs
u(t) = ug, t € [tg, tey1] (118)
Approximation of process noise (not rigorous)
dw(t) = w(t) dt, w(t) ~ N(0,1) (119)

Analytical solution

¢

2 (tpyr) = et g (1) + o eAt 177 Bu(ty) dr + v(ty,), (120a)
ty

y(tp) = Cx(ty) + Du(ty) + Fe(ty), e(ty) ~ N(me, Re) (120b)
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Zero-order-hold parametrization and approximation =
Discrete-time process noise
le+1
v(ty) :/ " At =T G (1) dr (121a)
tg
Mean
tht1 Altrsr— ~
E[v(ty)] :/ A1 =D GE[d(r)] dr = 0 (122)
tg
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Zero-order-hold parametrization and approximation

Covariance
Cov(v(ty)) = E[v(ty)v” (1)) (123)

t t
= E[/ o EA(tk"'l_T)GQZ}(T) dT/ o wT(S)GTeAT(t’““_S) ds| (124)
ty

tg

t t
:/Hl/k+1 A=) QR [@(T)@T(S)‘| GT A" th1-5) dr ds (125)
tr ti

tr
= / - eAlte1=7) R [w(T)wT(T)] GT e thr1=7) 47 (126)
tr
= fe At =T GGT AT th1-7) 4r (127)
tg
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Stochastic discrete-time state space models

Linear discrete-time stochastic state space model

Tp+1 = Agxy, + Bauy, + vy, v ~ N(0, Ry),
yr = Caxp + Dguy, + ex, ex ~ N(0, Ra)
System matrices in the state equation
Ay Bg| A B -
o 1] Pllo o]/
Ay Ry ] (A GGT -
[ Od AC;T = exp ( 0 —AT] Ts> ) Ry = RlAz;
AL RT —A GGT -
[ g Aép = exp ( 0 AT T |, Ry = A4RT

System matrices in the measurement equation

Cqa=0C,

Dy=D, Ry = FR.F”
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Proof of discretization
Exponential form

M = [)0( lZ/] = exp ([g ]er] t) = exp(K't) (134)

Differential form

M

M=KM, Mty =1I (135)
Individual differential equations
X =FX, X(to) =1, (136)
Y =FY +GZ, Y (to) =0, (137)
Z=HZ, Z(tg) =1 (138)
Solutions
X = Pt X (9) = eF'(t=10) (139)
7 = eft=10) 7 (1) = H(t=t0) (140)

t t
Y = WY () + [ NG 07 (1) dr = [ OGN dr
t t
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Proof of discretization

M

Llet F=A H=-AT, G=GGT, tg =ty, and t =t 1 (tpr1 —tp = Ts)

X = 6ATS = Ad, (141)
AT _

Z=e"T=A7T (142)

Y = s A=) GGT A" tht1=7) qr o= ATTs — Ry = R1AdT (143)
tg

The proof of the other approach is similar, but has one more step:
A change of variables in the integral
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Questions

Questions?
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