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Today’s Agenda

• Follow-up from last lecture
• Probability theory
• Stochastic dynamical systems
• Discretization
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Follow-up from Last Time: Exercise 4
Find eigenvalues and path to/from origin

xk+1 =

0 1 2
0 0 3
0 0 0

xk +

0
1
0

uk = Axk +Buk (1)

1) The eigenvalues indicate asymptotic stability:

eig(A) = {0, 0, 0} (2)

2-3)

A2 =

0 0 3
0 0 0
0 0 0

 , A3 =

0 0 0
0 0 0
0 0 0

 , AB =

1
0
0

 (3)

Consequently, U =
[
0 0 0

]
drives the states to the origin, whereas

U =
[
−3 0

]
does so in the minimum number of steps.

4) No, the system cannot be driven from the origin to
[
1 1 1

]T
because

we cannot affect state 3.
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Demonstration
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Probability theory
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02421 - Stochastics
Stochastics

Real systems are usually stochastic in nature

xk+1 = Axk +Buk + vk, vk ∼ N(0, R1), (4)
yk = Cxk +Duk + ek, ek ∼ N(0, R2) (5)

Stochastic: being uncertain, described by a random distribution and
cannot be predicted precisely.

Sources: measurements, model inaccuracy (unmodeled phenomena),
unknown disturbances, unknown/time-varying parameters, etc.
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02421 - Stochastics
Stochastic scalar variables

Stochastic variable

X ∼ F(p) (6)

Cumulative distribution function FX(y) (cdf)

FX(y) = Pr{X ≤ y} ∈ [0, 1], Pr{a ≤ X ≤ b} = FX(b) − FX(a) (7)

Probability density function fX(z) ≥ 0
(pdf)

FX(y) =
∫ y

−∞
fX(z) dz, (8)

F (−∞) = 0, F (∞) = 1 (9)
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02421 - Stochastics
Confidence Interval

1 − p confidence interval CI(p)

Pr{a ≤ X ≤ b} = 1 − p (10)

Confidence interval based on inverse cdf

Pr{X ≤ a} = p/2 or Pr{X ≤ b} = 1 − p/2 (11)
CI(p) = [F−1

X (p/2), F−1
X (1 − p/2)] (12)

Use Matlab routines (or look-up tables) to compute F−1(p/2)

X ∈ mX ± σXF
−1(p/2) (13)

Example: Let X ∼ N(10, 4). Then, a 95% CI is

10 − 2 · 1.96 ≤ X ≤ 10 + 2 · 1.96 or 6.08 ≤ X ≤ 13.92 (14)
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02421 - Stochastics
Moments

For a real function g(X)

Nth moment of g(X): E[gn(X)] =
∫

Ω
gn(x)f(x) dx (15)

Moments represent certain properties of stochastic variables.

Mean (1st moment): E[X] = mx (16)
Variance (2nd central moment): Var(X) = E[(X −mx)2]

= E[X2] − E[X]2 = σ2
x (17)

Skewness (std.* 3rd central moment): E[(X −mx)3]/σ3
x (18)

*Standardized.
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02421 - Stochastics
Moments - Sample Moments

Let {xi}N
i=1 be samples of X

Estimates of first and second order moments

E[X] =
N∑

i=1

xi

N
(19)

Var(X) =
N∑

i=1

(xi − E[X])2

N
(20)

Unbiased estimate of variance

Var(X) =
N∑

i=1

(xi − E[X])2

N − 1 (21)

(22)
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02421 - Stochastics
Probabilities: Joint probability and independence

Marginal probability that a single statement (X ≤ x) is true

Pr{X ≤ x} = FX(x) (23)

Joint probability that two (or more) statements are true

Pr{X ≤ x, Y ≤ y} = FX,Y (x, y) (24)

Compute the marginal distribution from the joint distribution

fX(x) =
∫

Ωy

fX,Y (x, y) dy (25)

Joint distributions for independent variables

FX,Y (x, y) = FX(x)FY (y), fX,Y (x, y) = fX(x)fY (y) (26)
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02421 - Stochastics
Covariance
Covariance is a measure of how two stochastic variables varies relatively to
each other

Cov(X,Y ) = E[(X −mx)(Y −my)] (27)

Variance is covariance between the same variable

Var(X) = Cov(X,X) (28)

Correlation coefficient

ρ = Cov(X,Y )√
Var(X) Var(Y )

, −1 ≤ ρ ≤ 1 (29)

Covariance of independent variables

Cov(X,Y ) = ρ = 0 (30)

Note: The reverse if not true
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02421 - Stochastics
Conditional distribution – Bayes’ theorem

Conditional probability and Bayes’ theorem

Pr(A|B) Pr(B) = Pr(A,B) = Pr(B|A) Pr(A), (31)
Pr{X ≤ x|Y ≤ y} Pr{Y ≤ y} = Pr{X ≤ x, Y ≤ y} (32)

= Pr{Y ≤ y|X ≤ x} Pr{X ≤ x} (33)

Conditional probability density function

fX|Y (x|y)fY (y) = fX,Y (x, y) = fY |X(y|x)fX(x) (34)

The same can be done for the moments if Var(X|Y ) < ∞ exists

E[X|Y ] = mx|y =
∫

Ωx

xfX|Y (x|y) dx (35)

Var(X|Y ) = E[(X −mx|y)2|Y ] (36)
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02421 - Stochastics
Stochastic Vectors
Vector-valued random variables

X =
[
X1, . . . , Xn

]T
(37)

cdf: FX(x) = Pr(X1 ≤ x1, . . . , Xn ≤ xn, ) (38)
marginal cdf: FX1(x1) = Pr(X1 ≤ x1) (39)

1st and 2nd order moments

mx = E[X] =
[
E[X1], . . . ,E[Xn]

]T
(40)

Px = P T
x = Cov(X) = E[(X − mx)(X − mx)T ] ⪰ 0 (41)

Positive semi-definiteness (⪰) means that xTPxx ≥ 0.

Covariance matrices are diagonalizable, e.g., for n = 2

Px =
[

Var(X1) Cov(X1, X2)
Cov(X2, X1) Var(X2)

]
(42)
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02421 - Stochastics
Mathematical properties of Moments: 1st and 2nd
Let A and m be a constant matrix and vector

Expectations

E[X +m] = E[X] +m

E[AX] = AE[X]
E[X + Y] = E[X] + E[Y]
E[XTAX] = Tr(ACov(X)) + E[X]TAE[X]

(43)
(44)
(45)
(46)

Covariances

Cov(X) = E[XXT ] − E[X]E[X]T

Cov(X +m) = Cov(X)
Cov(AX) = ACov(X)AT

Cov(X + Y) = Cov(X) + Cov(Y) + Cov(X,Y) + Cov(X,Y)T

(47)
(48)
(49)
(50)
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02421 - Stochastics
Vector Covariance and Variance
Further covariances

Cov(X,Y) = E[(X −mx)(Y −my)T ]
Cov(X,X) = Cov(X) = Px

Cov(Y,X) = Cov(X,Y)T

Cov(AX,Y) = ACov(X,Y)
Cov(X, AY) = Cov(X,Y)AT

Cov(X + V,Y) = Cov(X,Y) + Cov(V,Y)

(51)
(52)
(53)
(54)
(55)
(56)

Principal directions of the variance (PCA)

[Λ,V] = eig(Px) (57)
PxVi = λiVi (58)

The columns in V indicate the main directions of the variation and the
elements of Λ indicate the associated variance
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02421 - Stochastics
Different Distributions - Gaussian and χ2

Gaussian/normal distribution

X ∼ N(mx, σ
2
x) (59)

Y = X −mx

σx
∼ N(0, 1) standard Gaussian (60)

fX(x) = 1√
2πσx

exp
(

−(x−mx)2

2σ2
x

)
(61)

FX(x) = FY

(
x−mx

σx

)
(62)

χ2-distribution

X =
n∑

i=1
ψ2

i ∼ χ2(n), ψi ∼ N(0, 1), ψi ⊥ ψj (63)

f(x) = 1
Γ(n/2)x

n/2−1 exp
(

−x

2

)
(64)

E[X] = n Var(X) = 2n (65)

18 DTU Compute Stochastic Adaptive Control 6.2.2024



02421 - Stochastics
Different Distributions - Gamma
Gamma distribution (χ2(n) = Γ(n/2, 2))

X ∼ Γ(k, θ), 0 < X < ∞ (66)

fX(x) = 1
Γ(k)θk

xk−1 exp
(

−x

θ

)
(67)

E[X] = kθ, Var(X) = kθ2 (68)

Gamma function

Γ(k) =
∫ ∞

0
tk−1e−tdt (69)

Γ(k + 1) = kΓ(k) (70)

Γ(1) = 1, Γ
(1

2

)
=

√
π (71)

Erlang distribution (Gamma distribution for integer values of k)

Γ(k) = (k − 1)!, Γ
(
k + 1

2

)
= (2k − 1)!

2k

√
π (72)
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02421 - Stochastics
Other Related Distributions

The F-distribution

X = Zm

Y n
∼ F (n,m) (73)

Z ∼ χ2(n), Y ∼ χ2(m), Z ⊥ Y (74)

Student’s t-distribution

X = Z√
Y

√
n ∼ t(n) (75)

Z ∈ N(0, 1), Y ∼ χ2(n), Z ⊥ Y (76)

The Rayleigh distribution:

X =
√
Y 2

1 + Y 2
2 ∼ Ray(σ2

y), Yi ∼ Niid(0, σ2
y) (77)
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02421 - Stochastics
Generate random variables in Matlab
Stochastic variable change (use Matlab’s randn)

X ∼ N(m,P ), Z ∼ N(0, I)
X = SZ +m

P = SST

(78)
(79)
(80)

Cholesky factorization
ST = chol(P ) (81)

Eigenvalue decomposition

Pvi = λivi → PV = V D

S = V
√
D

(82)
(83)

Alternative: Use Matlab’s mvnrnd

Hint: Don’t use routines with limited functionality, e.g., normrnd
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02421 - Stochastics
Stochastics in Matlab

Sampling from distributions in Matlab

22 DTU Compute Stochastic Adaptive Control 6.2.2024



Stochastic discrete-time systems
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02421 - Stochastic Processes
A Stochastic System

We will now extend the discrete-time (deterministic) systems

xk+1 = Axk +Buk, (84a)
yk = Cxk +Duk (84b)

to discrete-time stochastic systems of the form

xk+1 = Axk +Buk +Gvk, (85a)
yk = Cxk +Duk + Fek (85b)

Two sources of uncertainty/noise
• {vk, k ∈ N} denotes the process noise
• {ek, k ∈ N} denotes the measurement/sampling noise

xk is a random variable and the evolution of the system is a stochastic
process
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02421 - Stochastic Processes
Stochastic Processes

A stochastic process can be described using a marginal cdf or pdf

FXt(xt, t) = Pr{Xt ≤ xt} (86)
fXt(xt, t) = ∇xtFXt(xt, t) (87)

or if the different times are related, using joint probabilities

FXt,Xs(xt, xs, t, s) = Pr{Xt ≤ xt, Xs ≤ xs} (88)
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02421 - Stochastic Processes
Properties of Stochastic processes

Mean

mx(t) = E[x(t)] =
∫ ∞

−∞
zfx(t)(z) dz, (89)

Variance

Px(t) = Var(x(t)) = E
[(
x(t) − E[x(t)]

)(
x(t) − E[x(t)]

)T ]
, (90)

Auto-covariance

rx(t1, t2) = Cov(x(t1), x(t2)) = E
[(
x(t1) − E[x(t1)]

)(
x(t2) − E[x(t2)]

)T ]
,

(91)

Note that rx(t, t) = Px(t)
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02421 - Stochastic Processes
Auto-covariance and auto-correlation

Auto-correlation function

ρx(t1, t2) = rx(t1, t2)√
Px(t1)Px(t2)

(92)

For stationary processes, only the time difference τ = t1 − t2 is relevant

rx(τ) = Cov
[
x(t), x(t+ τ)

]
(93a)

ρx(τ) = rx(τ)
Px(τ) (93b)
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02421 - Stochastic Processes
Stationarity

Steady state of deterministic systems: The state does not change in time

Stationary distributions of stochastic systems: The state distribution does
not change in time

Strong stationarity

fx(t1),...,x(tn)(z1, . . . , zn) = fx(t1+∆t),...,x(tn+∆t)(z1, . . . , zn), (94)

for any n ∈ N and ∆t ∈ R.

Weak stationarity: The first two moments (mean and covariance) do not
change in time
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02421 - Stochastic Processes
Normal process and Markov process

Normal process: Any probability density function fx(t1),...,x(tn)(z1, . . . , zn) is
a multivariate normal distribution for any n ∈ N

Probability density function with mean µ and covariance Σ

fY (y) = 1
(2π)n/2

√
det(Σ)

exp
(

−1
2(y − µ)T Σ−1(y − µ)

)
(95)

Markov process: For any t1 < t2 < · · · < tn, the distribution of x(tn) given
(x(t1), . . . , x(tn−1)) is the same as the distribution of x(tn) given x(tn−1)

Pr
(
x(tn) ≤ x | x(tn−1), . . . , x(t1)

)
= Pr

(
x(tn) ≤ x | x(tn−1)

)
(96)

29 DTU Compute Stochastic Adaptive Control 6.2.2024



02421 - Stochastic Processes
Stochastic State-Space Models
Discrete-time system

xk+1 = Axk +Buk +Gvk, vk ∼ N(µv, R1) (97a)
yk = Cxk +Duk + Fek, ek ∼ N(µe, R2) (97b)

Mean and covariance

µk+1 = Aµk +Buk +Gµv, µ0 = E[x0],
Pk+1 = APkA

T +GR1G
T , P0 = Cov(x0)

(98a)
(98b)

Note that uk is deterministic.

Stationary mean and covariance

µ∞ = Aµ∞ +Bu∞ +Gµv,

P∞ = AP∞A
T +GR1G

T

(99a)
(99b)

Stationary auto-covariance (if A has full-rank and the eigenvalues lie within
the unit circle)

rx,∞(τ) = AτP∞ (100)
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02421 - Stochastic Processes
Continuous-Time Stochastic Processes (SDE)

Continuous-time system

ẋ(t) = f(t, x(t), u(t)) (101)

First attempt at stochastic differential equation

ẋ(t) = f(t, x(t), u(t)) + g(t, x(t), u(t))v(t) (102)

Process noise
• v(t) ⊥ v(s) for any t ̸= s (independence)
• v(t) is continuous and has bounded variance
• E[v(t)] = 0 (zero-mean)

Theorem 4.1 in Chapter 3 of the book "Stochastic Control Theory" by
Åström (1970): E[v2(t)] = 0
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02421 - Stochastic Processes
Continuous-Time Stochastic Processes (SDE)

Stochastic difference equation

x(t+ ∆t) − x(t) = f(t, x(t))∆t+ g(t, x(t))v(t)∆t+ o(∆t). (103)

Replace v(t)∆t with ∆w(t) = w(t+ ∆t) − w(t), which has stationary
independent zero-mean increments (Wiener process)

∆x(t) = f(t, x(t))∆t+ g(t, x(t))∆w(t) + o(∆t). (104)

Take the limit ∆t → 0

dx(t) = f(t, x(t)) dt+ g(t, x(t)) dw(t) (105)

x(t) = x(t0) +
∫ t

t0
f(τ, x(τ)) dτ +

∫ t

t0
g(τ, x(τ)) dw(τ) (106)
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02421 - Stochastic Processes
Continuous-Time Stochastic Processes (SDE)

The two first conditional moments of the difference process

E
[
∆x(t)

∣∣ x(t)
]

= f(t, x(t))∆t+ o(∆t) (107a)

Var
(
∆x(t)

∣∣ x(t)
)

= g2(t, x(t))∆t+ o(∆t) (107b)

Variance of process noise increment

E
[
∆w2(t)

]
= ∆t (108)

Note that the variance is proportional to ∆t and not ∆t2

Distribution of process noise increment (increment of Wiener process)

∆w(t) = w(t+ ∆t) − w(t) ∼ N(0,∆t) (109)
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02421 - Stochastic Processes
Linear Stochastic Differential Equations
Linear stochastic differential equations

dx(t) = (A(t)x(t) +B(t)u(t)) dt+G(t) dw(t), x(t0) ∼ N(m0, P0)
(110)

A(t) and B(t) are continuous functions of time

State expectation

E[x(t)] = E[x0] + E
[∫ t

t0
A(τ)x(τ) +B(τ)u(τ) dτ

]
+ E

[∫ t

t0
G(τ) dw(τ)

]
(111)

= E[x0] +
∫ t

t0
A(τ)E[x(τ)] +B(τ)u(τ) dτ = mx(t) (112)

Expected value

ṁx(t) = Amx(t) +B(t)u(t), mx(t0) = m0. (113)
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02421 - Stochastic Processes
Linear Stochastic Differential Equations

State-transition matrix

∂Φ(t; t0)
∂t

= A(t)Φ(t; t0), Φ(t0; t0) = I. (114)

Auto-covariance of x (s ≥ t)

R(s, t) = Cov(x(s), x(t)) = Φ(s, t)P (t) (115)

Covariance

Ṗ (t) = A(t)P (t) + P (t)AT (t) +G(t)GT (t), P (t0) = P0, (116)
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Discretization
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02421 - Stochastic Processes
Linear stochastic differential equation
Linear continuous-time state space model

dx(t) = (Ax(t) +Bu(t)) dt+G dw(t), dw(t) ∼ N(0, I dt), (117a)
y(t) = Cx(t) +Du(t) + Fe(t), e(t) ∼ N(me, Re) (117b)

Zero-order-hold parametrization of manipulated inputs

u(t) = uk, t ∈ [tk, tk+1[ (118)

Approximation of process noise (not rigorous)

dw(t) = w̃(t) dt, w̃(t) ∼ N(0, I) (119)

Analytical solution

x(tk+1) = eA(tk+1−tk)x(tk) +
∫ tk+1

tk

eA(tk+1−τ)Bu(tk) dτ + v(tk), (120a)

y(tk) = Cx(tk) +Du(tk) + Fe(tk), e(tk) ∼ N(me, Re) (120b)
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02421 - Stochastic Processes
Zero-order-hold parametrization and approximation

Discrete-time process noise

v(tk) =
∫ tk+1

tk

eA(tk+1−τ)Gw̃(τ) dτ (121a)

Mean

E[v(tk)] =
∫ tk+1

tk

eA(tk+1−τ)GE[w̃(τ)] dτ = 0 (122)
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02421 - Stochastic Processes
Zero-order-hold parametrization and approximation

Covariance

Cov(v(tk)) = E[v(tk)vT (tk)] (123)

= E
[ ∫ tk+1

tk

eA(tk+1−τ)Gw̃(τ) dτ
∫ tk+1

tk

w̃T (s)GT eAT (tk+1−s) ds
]

(124)

=
∫ tk+1

tk

∫ tk+1

tk

eA(tk+1−τ)GE
[
w̃(τ)w̃T (s)

]
GT eAT (tk+1−s) dτ ds (125)

=
∫ tk+1

tk

eA(tk+1−τ)GE
[
w̃(τ)w̃T (τ)

]
GT eAT (tk+1−τ) dτ (126)

=
∫ tk+1

tk

eA(tk+1−τ)GGT eAT (tk+1−τ) dτ (127)
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02421 - Stochastic Processes
Stochastic discrete-time state space models
Linear discrete-time stochastic state space model

xk+1 = Adxk +Bduk + vk, vk ∼ N(0, R1), (128)
yk = Cdxk +Dduk + ek, ek ∼ N(0, R2) (129)

System matrices in the state equation[
Ad Bd

0 I

]
= exp

([
A B
0 0

]
Ts

)
,[

Ad R̃1
0 A−T

d

]
= exp

([
A GGT

0 −AT

]
Ts

)
, R1 = R̃1A

T
d[

A−1
d R̃T

1
0 AT

d

]
= exp

([
−A GGT

0 AT

]
Ts

)
, R1 = AdR̃

T
1

(130)

(131)

(132)

System matrices in the measurement equation

Cd = C, Dd = D, R2 = FReF
T (133)
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02421 - Stochastic Processes
Proof of discretization
Exponential form

M =
[
X Y
0 Z

]
= exp

([
F G
0 H

]
t

)
= exp(Kt) (134)

Differential form
Ṁ = KM, M(t0) = I (135)

Individual differential equations
Ẋ = FX, X(t0) = I, (136)
Ẏ = FY +GZ, Y (t0) = 0, (137)
Ż = HZ, Z(t0) = I (138)

Solutions
X = eF (t−t0)X(t0) = eF (t−t0), (139)
Z = eH(t−t0)Z(t0) = eH(t−t0), (140)

Y = eF (t−t0)Y (t0) +
∫ t

t0
eF (t−τ)GeH(τ−t0)Z(t0) dτ =

∫ t

t0
eF (t−τ)GeH(τ−t0) dτ
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02421 - Stochastic Processes
Proof of discretization

Let F = A, H = −AT , G = GGT , t0 = tk, and t = tk+1 (tk+1 − tk = Ts)

X = eATs = Ad, (141)

Z = e−AT Ts = A−T
d , (142)

Y =
∫ tk+1

tk

eA(tk+1−τ)GGT eAT (tk+1−τ) dτ e−AT Ts = R̃1 = R1A
T
d (143)

The proof of the other approach is similar, but has one more step:
A change of variables in the integral
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02421 - Stochastic Processes
Questions

Questions?
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