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02421 - Introduction
Course Content

Course details
• Time: Tuesday 08:00 - 12:00

(2 hours lecture, 2 hours exercises)
• 5 ECTS points
• Evaluation: 2 individual reports
• Software: MATLAB (free choice)

Course plan
• Stochastic processes and systems

(state space and transfer function models)
• Filter and control design
• System identification
• Adaptive control
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02421 - Introduction
Teachers

Tobias K. S. Ritschel
Assistant Professor
Course responsible
Contact: tobk@dtu.dk
Office: 303B-052

Henrik Madsen
Professor
Course co-responsible
Contact: hmad@dtu.dk
Office: 303B-004
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02421 - Introduction
You

• Most of you are MSc students.
• A few guest students and single-course students.
• Most of you are from electrical engineering (incl. autonomous systems).
• A few from mathematical engineering and sustainable energy.
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02421 - Introduction
Lecture Plan
1 Systems theory

2 Stochastics

3 State estimation 1

4 State estimation 2

5 Optimal control 1

6 System identification 1 + adaptive control 1

7 External models + prediction

8 Optimal control 2

9 Optimal control 3

10 System identification 2

11 System identification 3 + model validation

12 System identification 4 + adaptive control 2

13 Adaptive control 3
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02421 - Introduction
Structure of lectures

Each lecture will have 1-2 breaks.

• Follow-up from previous lecture: Solution of selected exercises
• Example with TCLab device (if relevant)
• Agenda + practical information
• Lecture content
• Matlab examples

6 DTU Compute Stochastic Adaptive Control 30.1.2024



02421 - Introduction
Workload

Advice for this year

• There are many exercises in the course. Don’t worry if you can’t make it through
all of them.

• If you’re comfortable with the exercises, the two mandatory assignments will be
manageable. But consider working together with your fellow students, even
though the report is individual.

• It’s normal to feel stuck in this course. Therefore, ask questions!
• You will get solutions and solution code to the exercises.

Ambitions for next year
• Exercises based on 3-4 example systems (TCLab device, four tank system, ship)
• Assignments more aligned with exercises + group assignments
• Oral exam in basic concepts
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02421 - Introduction
Matlab toolboxes

Core Matlab toolboxes

• Control toolbox
• System identification toolbox
• Optimization toolbox
• Statistics and machine learning toolbox

You might need commands from these toolboxes as well

• Signal processing toolbox
• Curve fitting toolbox
• Econometrics toolbox
• Fuzzy logic toolbox
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02421 - Introduction
Temperature control laboratory (TCLab)

Link: https://apmonitor.com/pdc/index.php/Main/ArduinoTemperatureControl
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02421 - Introduction
TCLab model
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Figure: Four-compartment model of TCLab device.
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Demonstration
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02421 - Systems Theory
Today’s Agenda

Systems Theory
• Continuous- and discrete-time internal and external models
• Linearization
• Discretization
• Transforms, stability, reachability, and observability
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Dynamical systems
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02421 - Systems Theory
Dynamical Systems: External and Internal Models

We describe dynamical systems in two ways:

Internal Models
• States of the system
• Differential equations

External Models
• Transfer functions
• Zeros and poles

?

U

Y

Y

U

Focus in this course
• Discrete-time state space models
• Discrete-time external models

Nonlinear/continuous-time systems
• Linearize
• Discretize
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02421 - Systems Theory
Dynamical Systems: ODE and Algebraic Equation (Internal)
State space model

ẋ(t) = ∂x

∂t
(t) = f(x(t), u(t); θ) = A(θ)x(t) + B(θ)u(t) (1a)

x(t0) = x0, (1b)

Analytical solution

x(t) = x0 +
∫ t

t0
f(x(τ), u(τ); θ) dτ

= eA(θ)(t−t0)x0 +
∫ t

t0
eA(θ)(τ−t0)B(θ)u(τ) dτ. (2)

Output equation

y(t) = g(x(t), u(t); θ) = C(θ)x(t) + D(θ)u(t) (3)

Steady state (x∗, u∗)

f(x∗, u∗; θ) = 0. (4)
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02421 - Systems Theory
Dynamical systems: ODE (External)
Inhomogeneous N -th order linear time-invariant external model

N∑
k=0

αk
∂ky

∂tk
=

M∑
k=0

βk
∂ku

∂tk
, αk, βk ∈ R (5)

Analytical solution

y(t) = h(t) ∗ u(t) =
∫ ∞

−∞
h(s)u(t − s) ds, (6)

h(t) is the impulse response

Laplace transformed variables

Y (s) = H(s)U(s), U(s) = L(u(t)), (7)

where
H(s) = L(h(t)) =

∫ ∞

−∞
h(s)e−st ds

= C(θ) (sI − A(θ))−1 B(θ) + D(θ). (8)
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02421 - Systems Theory
Time and Frequency Domain

Continuous-time time-domain

t

y(t) = h(t) ∗ u(t)
dy

dt
(t) = sY (s)

Discrete-time time-domain

tk = kTs

yk = Hd(q)uk

uk = u(tk) = u(kTs)
uk−1 = q−1uk

where Ts is the sampling time

Continuous-time frequency-domain

s = a + iw

Y (s) = H(s)U(s)

H(s) =

M∑
k=0

βksk

N∑
k=0

αksk

Discrete-time frequency-domain

z = eTss

Y (z) = Hz(z)U(z)
Hd(q) = Hz(q)
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Linearization
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02421 - Systems Theory
Linearization

Linearize around steady state (x∗, u∗)

f(x∗, u∗; θ) = 0 (9)

Linearization (truncated Taylor expansion)

ẋ = f(x∗, u∗; θ) + ∂f

∂x
(x∗, u∗; θ)(x − x∗) + ∂f

∂u
(x∗, u∗; θ)(u − u∗), (10a)

y = g(x∗, u∗; θ) + ∂g

∂x
(x∗, u∗; θ)(x − x∗) + ∂g

∂u
(x∗, u∗; θ)(u − u∗) (10b)
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02421 - Systems Theory
Linearization
Deviation variables

X = x − x∗,

U = u − u∗,

Y = y − y∗, y∗ = g(x∗, u∗; θ)

(11a)
(11b)
(11c)

System matrices

A(θ, x∗, u∗) = ∂f

∂x
(x∗, u∗; θ), B(θ, x∗, u∗) = ∂f

∂u
(x∗, u∗; θ),

C(θ, x∗, u∗) = ∂g

∂x
(x∗, u∗; θ), D(θ, x∗, u∗) = ∂g

∂u
(x∗, u∗; θ)

(12a)

(12b)

Linear time invariant (LTI) system

Ẋ = A(θ, x∗, u∗)X + B(θ, x∗, u∗)U,

Y = C(θ, x∗, u∗)X + D(θ, x∗, u∗)U
(13a)
(13b)

20 DTU Compute Stochastic Adaptive Control 30.1.2024



Discretization
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02421 - Systems Theory
Discretization: Sampling of Continuous Systems
Sampling

xk = x(t0 + Tsk), yk = y(t0 + Tsk) (14)

Zero-order hold (ZOH) parametrization: Piecewise constant input, u

u(t) = uk, kTs ≤ t < (k + 1)Ts (15)

Shannon’s Sampling Theorem: If the highest frequency of the system is
w0, then a sampling frequency of at least the double is needed for
reconstruction

ws ≥ 2w0, ws = 2π

Ts
(16)

Choosing based on desired samples per rise time:

Ts = tr/Nr, Nr ∈ [2; 4] (17)
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02421 - Systems Theory
Discretization of state space models
Analytical solution for continuous-time state space models

x(tk+1) = eA(θ)(tk+1−tk)x(tk) +
∫ tk+1

tk

eA(θ)(tk+1−τ)B(θ)u(τ) dτ, (18a)

y(tk) = C(θ)x(tk) + D(θ)u(tk). (18b)

Discrete-time state space models

xk+1 = Ad(θ, Ts)xk + Bd(θ, Ts)uk,

yk = C(θ)xk + D(θ)uk

(19)
(20)

Discrete-time matrices

Ad(θ, Ts) = eA(θ)Ts , Bd(θ, Ts), =
∫ Ts

0
eA(θ)τ B(θ) dτ (21)

Matrix exponential[
Ad(θ, Ts) Bd(θ, Ts)

0 I

]
= exp

([
A(θ) B(θ)

0 0

]
Ts

)
(22)
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02421 - Systems Theory
Discretization of transfer function models
Continuous-time transfer function model (frequency domain)

y(s) = H(s)u(s), H(s) = b0sn + b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an
(23)

Discretization with Z-transform (use look-up tables)

Hz(z) = (1 − z−1)Z
(

H(s)
s

)
, z ∈ C (24)

Discrete-time transfer function model (frequency domain)

y(z) = Hz(z)u(z) = b̄0zn + b̄1zn−1 + · · · + b̄n

zn + ā1zn−1 + · · · + ān
u(z) (25)

Discrete-time transfer function model (time domain) - recall that
Hd(q) = Hz(q)

yt = Hd(q)ut = b̄0 + b̄1q−1 + · · · + b̄nq−n

1 + ā1q−1 + · · · + ānq−n
ut (26)

Discrete-time transfer function model (time domain) - difference equations
yt + ā1yt−1 + · · · + ānyt−n = b̄0ut + b̄1ut−1 + · · · + b̄mut−n (27)
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Transforms, stability, reachability, observability, etc.
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02421 - Systems Theory
Poles and Zeros

Consider the factor terms of transfer functions:

H(s) = B(s)
A(s) = b0sn + b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an
= K0

Πi(s − zi)
Πi(s − pi)

(28)

Hd(q) = Bd(q−1)
Ad(q−1) = b0 + b1q−1 + · · · + bnb

q−nb

1 + a1q−1 + · · · + anaq−na
= Kd,0

Πi(q − zd,i)
Πi(q − pd,i)

Transfer function properties

Zeros: H(zi) = 0, (29)
Poles: |H(pi)| = ∞, (30)

DC-gain: H(s = 0), Hz(z = 1) = Hd(q = 1) (31)
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02421 - Systems Theory
Poles

Poles of external models = eigenvalues of internal models

C(A) = A(s) (32)

Instability criteria

Continuous: 0 < Re(pc) (33a)
Discrete: 1 < |pd| (33b)

Poles of discrete- (pd) and continuous-time (pc) systems are related

pd = epcTs (34)
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02421 - Systems Theory
Zeros

Number of zeros m and poles n

Continuous: m ≤ n (35)

Discrete:
{

m = n − 1 (for D = 0)
m = n otherwise

(36)

Zeros of discrete- (pd) and continuous-time (pc) systems are related

zd = ezcTs (37)

Zero-pole cancellation

zi = pi ⇒ H(s) = s − zi

(s − pi)(s − p1) = 1
(s − p1) (38)
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02421 - Systems Theory
Transforms - Similarity Transform and Diagonal Transform
Change internal state variables

zt = Υxt (39)
zt+1 = ΥAΥ−1zt + ΥBut (40)

yt = CΥ−1zt + Dut (41)

The external model is unaffected by the transformation

H(q) = CΥ−1(qI − ΥAΥ−1)−1ΥB + D = C(qI − A)−1B + D (42)

Example: Diagonal transform

Adiag = ΥAΥ−1 =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 (43)

The columns of Υ are the right eigenvectors of A
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02421 - Systems Theory
Transform external to internal models

External system

yt + a1yt−1 + · · · + anyt−n = b0ut + b1ut−1 + · · · + bnut−n (44)

Transfer function

H(q) = B(q−1)
A(q−1) = b0 + b1q−1 + · · · + bnq−n

1 + a1q−1 + · · · + anq−n
=

∞∑
i=0

hiq
−i (45)

Minimal representation: An internal model with minimum number of
states, e.g., the 4 canonical forms
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02421 - Systems Theory
Transforms - Canonical forms

Controller canonical form

Ac =


−a1 · · · −an−1 −an

1 · · · 0 0
. . . ...

...
0 · · · 1 0

 Bc =


1
0
...
0

 (46)

Cc = [b1 − b0a1, b2 − b0a2, . . . , bn − b0an] Dc = b0 (47)

Observer canonical form

Ao =


−a1 1 · · · 0

... . . .
−an−1 0 · · · 1
−an 0 · · · 0

 Bo =


b1 − b0a1
b2 − b0a2

...
bn − b0an

 (48)

Co = [1, 0, · · · , 0] Do = b0 (49)
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02421 - Systems Theory
Transforms - Canonical forms

Controllability canonical form

Aco =


0 · · · 0 −an

1 · · · 0 −an−1
. . . ...

0 · · · 1 −a1

 Bco =


1
0
...
0

 (50)

Cco = (h1, h2, · · · , hn) Dco = h0 (51)

Observability canonical form

Aob =


−a1 · · · −an−1 −an

1 · · · 0 0
. . . ...

...
0 · · · 1 0

 Bob =


h1
h2
...

hn

 (52)

Cob = (1, 0, . . . , 0) Dob = h0 (53)
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02421 - Systems Theory
Transforms - Canonical forms

Relations between canonical forms

Ac = AT
o , Aco = AT

ob, (54)
Bc = CT

o , Bco = CT
ob, (55)

Bo = CT
c , Bob = CT

co, (56)
Dc = Do = Dco = Dob = b0 = h0 (57)
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02421 - Systems Theory
Transforms - Direct realization
General external model

yt + a1yt−1 + · · · + anayt−na = b0ut + b1ut−1 + · · · + bnb
ut−nb

(58)

State

xt =
[
−yt−1 · · · −yt−na ut−1 · · · yt−nb

]
(59)

Non-minimal internal model

Ad =



−a1 · · · −ana−1 −ana −b1 · · · −bnb−1 −bnb

1 0 0 0 · · · 0 0
. . .

...
...

...
...

0 1 0 0 · · · 0 0
0 · · · 0 0 0 · · · 0 0
0 · · · 0 0 1 0 0
...

...
...

. . .
...

0 · · · 0 0 0 1 0


, Bd =



−b0
0
...
0
1
0
...
0


, (60)

Cd = (a1, . . . , ana , b1, . . . , bnb ), Dd = b0 (61)
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02421 - Systems Theory
Controllability and reachability

Definition
A system is said to be controllable, if it is possible to move the system from
an arbitrary state value to the origin in finite time.

Definition
A system is said to be reachable, if it is possible to move the system from
one arbitrary state value to another arbitrary state in finite time.

Reachability ⇒ controllability, not the reverse

An n-state system is reachable if and only if the reachability matrix Wc has
full rank (k > n)

Wc(k) =
[
B AB A2B · · · Ak−1B

]
(62)

The reachability Gramian is given by Σc
k = Wc(k)W T

c (k)
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02421 - Systems Theory
Controllability and reachability - Control

k-step input sequence (not unique)

xk = Akx0 + Wc(k)Uk−1 (63)

UT
k−1 =

[
uk−1 uk−2 · · · u0

]
(64)

brings the system from any x0 to a desired state, x̂

Sequence with minimal control usage

min
uk−1,...,u0

k−1∑
j=0

uT
j uj (65a)

Solution

U∗
k−1 = W T

c (k)(Σc
k)−1

[
x̂ − Akx0

]
(66)

36 DTU Compute Stochastic Adaptive Control 30.1.2024



02421 - Systems Theory
Controllability and reachability in continuous-time

Continuous-time system

ẋ = Ax + Bu, (67)

Reachability Gramian

Σ̇c = AΣc + ΣcAT + BBT (68a)
Σc(t0) = 0. (68b)

The system is reachable if Σc is invertible for any t ≥ t0

Note: For continuous-time systems, reachability ⇔ controllability
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02421 - Systems Theory
Observability and constructability
Definition:
A system is observable if any initial state can be estimated using only the
information from the following outputs and inputs.

Definition:
A system is constructable if, for any possible evolution of the state and
control variables, the current state can be estimated using only the
information from outputs.

Observability ⇒ constructability, but the reverse is not true

An n-state system is observable if and only if the observability matrix Wo

has full rank (k > n)

W T
o (k) =

[
CT (CA)T (CA2)T · · · (CAk−1)T

]
(69)

Observability Gramian: Σo
k = Wo(k)W T

o (k)
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02421 - Systems Theory
Observability and constructability - Continuous-Time

Continuous-time system

ẋ = Ax + Bu, (70a)
y = Cx + Du (70b)

Observability Gramian

Σ̇o = AΣo + ΣoAT + CT C (71a)
Σo(t0) = 0. (71b)

The system is observable if Σo is invertible for any t ≥ t0
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02421 - Systems Theory
Stability

Several definitions of stability exist: e.g., marginal and asymptotic stability

Consider a steady state xs of the system
• Marginally stable: xs is said to be (marginally) stable if any solution trajectory

{x(t), t ∈ [t0, ∞]} is bounded.
• Asymptotically stable: xs is said to be asymptotically stable if any solution

trajectory converges to xs (x(t) → xs) as time progresses (t → ∞).

A system which is not stable (i.e., not marginally stable) is unstable

A system is BIBO stable if the output is bounded for any bounded input

Note: Asymptotic stability ⇒ BIBO stability
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02421 - Systems Theory
Stability of LTI Systems

A state space model is stable if and only if all of the following requirements
are fulfilled

Continuous-time

Marginally stable:
• Re{eig(A)} ≤ 0
• ∀ Re{eig(A)i} = 0, the AM=GM

Asymptotically stable:
• Re{eig(A)} < 0

Discrete-time

• | eig(A)| ≤ 1
• ∀| eig(A)i| = 1, the AM=GM

• | eig(A)| < 1

* AM = Algebraic multiplicity (# of identical eigenvalues)
** GM = geometric multiplicity (# of associated eigenvectors)
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02421 - Systems Theory
Local Stability of Nonlinear Systems

Steady state of nonlinear system

ẋ = f(xs, us) = 0 xs = f(xs, us), (72)

Approximate behavior around steady state using linearization

A = ∂f

∂x
(xs, us). (73)

The system is locally stable (marginal or asymptotic) around the stationary
point if the requirements on the previous slide are fulfilled
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02421 - Systems Theory

Questions?
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Matlab example
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