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Stochastic Adaptive Control (02421)

Lecture 1

Tobias K. S. Ritschel

Assistant Professor

Section for Dynamical Systems, DTU Compute
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Course Content

Course details

® Time: Tuesday 08:00 - 12:00

(2 hours lecture, 2 hours exercises)

® 5 ECTS points

® Evaluation: 2 individual reports

e Software: MATLAB (free choice)
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Course plan

® Stochastic processes and systems

(state space and transfer function models)
® Filter and control design
® System identification

® Adaptive control

Design
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Teachers

Tobias K. S. Ritschel
Assistant Professor
Course responsible
Contact: tobk@dtu.dk
Office: 303B-052

Henrik Madsen
Professor

Course co-responsible
Contact: hmad@dtu.dk
Office: 303B-004
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You

® Most of you are MSc students.

® A few guest students and single-course students.

® Most of you are from electrical engineering (incl. autonomous systems).

® A few from mathematical engineering and sustainable energy.
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Lecture Plan

@ Systems theory

@ Stochastics

© State estimation 1

@ State estimation 2

@ Optimal control 1

@ System identification 1 + adaptive control 1
@ External models + prediction

® Optimal control 2

© Optimal control 3

@ System identification 2

@ System identification 3 + model validation
® System identification 4 + adaptive control 2
@® Adaptive control 3
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Structure of lectures

Each lecture will have 1-2 breaks.

® Follow-up from previous lecture: Solution of selected exercises
® Example with TCLab device (if relevant)

® Agenda + practical information

® | ecture content

® Matlab examples
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Advice for this year

® There are many exercises in the course. Don't worry if you can't make it through
all of them.

® |f you're comfortable with the exercises, the two mandatory assignments will be
manageable. But consider working together with your fellow students, even
though the report is individual.

® |t's normal to feel stuck in this course. Therefore, ask questions!

® You will get solutions and solution code to the exercises.

Ambitions for next year
® Exercises based on 3-4 example systems (TCLab device, four tank system, ship)
® Assignments more aligned with exercises + group assignments

® Oral exam in basic concepts
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Matlab toolboxes

Core Matlab toolboxes

® Control toolbox
® System identification toolbox
® Optimization toolbox

® Statistics and machine learning toolbox
You might need commands from these toolboxes as well

® Signal processing toolbox
® Curve fitting toolbox
® Econometrics toolbox

® Fuzzy logic toolbox
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Temperature control laboratory (TCLab) =
* USB Serial Connection
Sensor
LED £
> P
Temperature 1
Actuator - @ Digital Pin 9
Analog Pin 0 Digital Pin 5 {
Analog Pin 2 e
Heater 2

Controller . @

Temperature 2

Digital Pin 3

o Heater 1

Link: https://apmonitor.com/pdc/index.php/Main/ArduinoTemperatureControl
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TCLab model
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Figure: Four-compartment model of TCLab device.
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Today’s Agenda

Systems Theory

® Continuous- and discrete-time internal and external models
® | inearization

® Discretization

® Transforms, stability, reachability, and observability
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Dynamical Systems: External and Internal Models
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We describe dynamical systems in two ways:

Internal Models
® States of the system

e Differential equations

External Models
® Transfer functions

® Zeros and poles

Focus in this course
® Discrete-time state space models

® Discrete-time external models

14 DTU Compute

Nonlinear/continuous-time systems
® Linearize

® Discretize
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Dynamical Systems: ODE and Algebraic Equation (Internal) =

State space model

#(1) = 22(0) = f(at), u(t);6) = A@)(1) + BO)u(r)
z(to) = zo,

Analytical solution

x(t) = zo + tf(l‘(T),u(T); 0)dr

to

= AO—t0) 3 4 teA@(T—t“)B(H)u(T) dr.

Jto

Output equation
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C(0)x(t) + D(O)u(t)
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Dynamical systems: ODE (External)

Inhomogeneous N-th order linear time-invariant external model

Zak’ Zﬁkatk7 O‘kaﬁkeR
Analytical solution
y(t) = h(t) xu(t) = /Oo h(s)u(t — s)ds,

h(t) is the impulse response

Laplace transformed variables

where

H(s) = L(h(t)) = / 7 h(s)e" ds
= C(0) (sI — A(0))"' B(#) + D(#).
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Time and Frequency Domain

Continuous-time time-domain

t

y(t) = h(t) * u(?)
dy
3 (8 =sY(s)

Discrete-time time-domain

tr = kT

Yk = Ha(q)uk

up = u(ty) = u(kTy)
Up—1 = q Uk

where T is the sampling time
17 DTU Compute
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Continuous-time frequency-domain

s=a-+iw
Y(s)=H(s)U(s)
M
> Brs”
H(s) = 75—
3 sk
k=0

Discrete-time frequency-domain

z = el
Y(z) = H,(2)U(2)
Ha(q) = H-(q)

Stochastic Adaptive Control 30.1.2024
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Linearization

Linearize around steady state (x*,u*)
f(z*,u*;0) =0

Linearization (truncated Taylor expansion)

]
=

M

(9)

x_f(mauae)_{_ax( 7Ua9)(x_x)+au( 7ua‘9)(u_u)7 (103)
y=g(a" u0) + S us0)(w — a7) + 2L (", u i 0) (u — ) (10b)
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Linearization
Deviation variables

X =x—1"

U=u—u",

Y=y—vy, y* = g(z*,u";0)

System matrices
A0, z*,u*) = E;Z( *Lu;0), l3(9,x*,u*)::—ﬁi(x*,u*;eﬁ
Jg 9
* * — 7 * *, D * * - 7 * *,

Cf,x*,u") x(m ,u* ), (0, 2", u") au(x ,u*;0)

Linear time invariant (LTI) system

X = A0, z*,u*)X + B(0, 2", u")U,
Y =C0,z%,u")X + D(0,z",u*)U
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Discretization: Sampling of Continuous Systems =
Sampling
x = x(to + Tsk), Yk = y(to + Tsk) (14)
Zero-order hold (ZOH) parametrization: Piecewise constant input, u
u(t) = ug, ETs <t < (k+1)T (15)

Shannon’s Sampling Theorem: If the highest frequency of the system is
wp, then a sampling frequency of at least the double is needed for
reconstruction

_271'

wg > 2wy, Ws = T (16)
Choosing based on desired samples per rise time:
Ts = tr/Nra N, € [2;4} (17)
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Discretization of state space models
Analytical solution for continuous-time state space models

th+1

2 (tpyr) = e Ot (4) 4 eAOE1=7) B(9)u(7) dr,

tk

y(tr) = C(0)x(tr) + D(O)ultr).

Discrete-time state space models

vpp1 = A0, Ts)xy + Ba(0, Ts)ug,
yr = C(0)zy, + D(0)uy,

Discrete-time matrices
Ts
Ag(0,Ty) = AOT BYO.T,), = / AOTB(9) dr
0
Matrix exponential

Ad<%, Ty) Bd@ zrg)] . QA(@) B<9>] n)
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Discretization of transfer function models
Continuous-time transfer function model (frequency domain)

o bos" 4 bys" 4 4 by

M

=H H 23
) = Hishuls), H(s) = " T E I gy
Discretization with Z-transform (use look-up tables)
H
Ha(z) = (1— z—l)z(is)), zeC (24)

Discrete-time transfer function model (frequency domain)

I_)()Zn + 512’"—1 + -+ Bn
— H, - 2
) = Ho(u(e) = WM

Discrete-time transfer function model (time domain) - recall that
Ha(q) = H-(q)

_botbig b
L+agt+--+aqg™
Discrete-time transfer function model (time domain) - difference equations

yr = Ha(q)ut uy (26)

Y +a1yi—1 + - -+ aQpYi—n = (_)()ut + l_)lut_l + -+ l_)mut_n (27)
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Poles and Zeros =
Consider the factor terms of transfer functions:
B bos™ + bis" L4 ... 1 b IL(s — z:
H(s) = (s) _ 208 i 18_1 + T On — KOM (28)
A(s)  s"+as" 4 H4ap IL;(s — pi)
By(q7t bo+big 4+ +b,qg ™ 11, ;
Halq) = d(Q_l) _bo+ 1Q_1 +--+ an—n ~ Kug i(q — 24,)
Aglg7t)  14aigt 4+ +ap,q " IL;(q — pa,)
Transfer function properties
Zeros: H(z;) =0, (29)
Poles: |H(p;)| = oo, (30)
DC-gain: H(s =0),H.(z =1)=Hy(g=1) (31)
26 DTU Compute Stochastic Adaptive Control 30.1.2024
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Poles
Poles of external models = eigenvalues of internal models
C(A) = A(s) (32)
Instability criteria
Continuous: 0 < Re(p,) (33a)
Discrete: 1 < |py| (33b)
Poles of discrete- (pg) and continuous-time (p.) systems are related
pa = el (34)
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Zeros

Number of zeros m and poles n

Continuous: m < n
m=n—1 (for D=0)

m=n otherwise

Discrete: {

Zeros of discrete- (pg) and continuous-time (p.) systems are related

zq = %75

Zero-pole cancellation

S — 2z _ 1
zi=p; = H(s)= (s —pi)(s —p1) N (s —p1)
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Transforms - Similarity Transform and Diagonal Transform 3=
Change internal state variables

Zt = T.Z't (39)
Zt4+1 = TAT_lzt + TBut (40)
Yt = CT_IZt + Duy (4]_)

The external model is unaffected by the transformation
H(q)=CY Yql —=YAY Y™ ' YB4+D=C(qI —A)'B+D (42)

Example: Diagonal transform

M O - 0
B 0 Xy - 0

Adiag =TAY " = . : . : (43)
0 0 - X\,

The columns of T are the right eigenvectors of A
29 DTU Compute Stochastic Adaptive Control 30.1.2024
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Transform external to internal models

M

External system
Ui + a1Yi—1 + - F anYi—n = bty + brug—1 + - - + bpus_y (44)
Transfer function

B(g™Y)  bo+bigt+ +byg "
Al 1+aigt 4+ +ang™

H(q) = ~S b (45)
=0

Minimal representation: An internal model with minimum number of
states, e.g., the 4 canonical forms

30 DTU Compute Stochastic Adaptive Control 30.1.2024



Transforms - Canonical forms

Controller canonical form

—ai -+ —Aap-1 —an
1 - 0 0
A, =
o - 1 0
Ce = [b1 — boai, by — boas, . .., by — boay)
Observer canonical form
—a; 1 - 0
Ag=|
—apq1 0 - 1
—a, 0

CO:[1707"' 70]

31 DTU Compute

1
0
Bc = |.
0
D, = bO
b1 — bo&l
b2 — boag
Bo = .
bn — boan
Do = bO
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Transforms - Canonical forms

Controllability canonical form

0 - 0 —an

1 -+ 0 —ay_
Aco: !

0 - 1 —a

CCO = (hlahQa te >hn)

Observability canonical form

—ap -+ —0Gp-1 —an
Aob = .
0 1 0

Co = (1,0,...,0)

32 DTU Compute

1
0
Bco = .
0
Dco = hO
hy
ho
Bob = .
hn
Dob = hO
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Transforms - Canonical forms

Relations between canonical forms
T
Ac = Ao ; Aco - Aob’
T
Bc = Co ) co - C
T T
B,=C,, CCO,

Dc:Do:Dco:Dob:bO:hO
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Transforms - Direct realization

General external model
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Y +a1yi—1 + -+ AngYt—n, = botg +b1ug—1 + -+ by Uy, (58)

State

Ty = [—ytfl ~Yt—ng U1 - ytfnb} (59)
Non-minimal internal model
[—a1 -+ —apn,-1 —an, —b1 —bny—1  —bn,] [—boT]
1 0 0 0 0 0 0
0 1 0 0 0 0 0
A= 17 0 0 0 0 o [° Ba=17171 (60
0 0 0 1 0 0 0
Lo - 0 0 0 1 0 | L 0 |
Cd:(‘111---7anayb17---7bnb)» Dg=bo (61)

34 DTU Compute
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Controllability and reachability
Definition

A system is said to be controllable, if it is possible to move the system from
an arbitrary state value to the origin in finite time.

Definition

A system is said to be reachable, if it is possible to move the system from
one arbitrary state value to another arbitrary state in finite time.

Reachability = controllability, not the reverse

An n-state system is reachable if and only if the reachability matrix W, has
full rank (k > n)

We(k) =B AB A’B ... AF'p] (62)

The reachability Gramian is given by X¢ = W, (k)WZ (k)
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Controllability and reachability - Control

k-step input sequence (not unique)

T = Akxo + Wc(k?)Uk_l

T
Upy = [Uk—l Ug—2 - Uo}

brings the system from any x( to a desired state, &

Sequence with minimal control usage

Solution

36 DTU Compute

k—1
min Z u;‘ruj
Uk —1,---,U0 3

Jj=0

Uiy = W (k)(25) ™ |2 — AFa]

Stochastic Adaptive Control
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Controllability and reachability in continuous-time =
Continuous-time system
& = Az + Bu, (67)
Reachability Gramian
Ye = A% 4 %°AT + BBT (68a)
3¢ (to) = 0. (68b)

The system is reachable if 3¢ is invertible for any ¢t > #g

Note: For continuous-time systems, reachability < controllability
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Observability and constructability
Definition:
A system is observable if any initial state can be estimated using only the
information from the following outputs and inputs.
Definition:
A system is constructable if, for any possible evolution of the state and
control variables, the current state can be estimated using only the
information from outputs.
Observability = constructability, but the reverse is not true
An n-state system is observable if and only if the observability matrix W,
has full rank (k > n)

Wik =0T (AT (AT AT (69)

Observability Gramian: 2 = W, (k)W (k)

38 DTU Compute Stochastic Adaptive Control 30.1.2024
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Observability and constructability - Continuous-Time

Continuous-time system

& = Ax + Bu,
y=Cx+ Du

Observability Gramian

Yo — Ax° + x0T L cTC
9 (tg) = 0.

The system is observable if 3¢ is invertible for any ¢ > tg

39 DTU Compute Stochastic Adaptive Control
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Stability

Several definitions of stability exist: e.g., marginal and asymptotic stability

Consider a steady state x; of the system

® Marginally stable: z; is said to be (marginally) stable if any solution trajectory
{z(t), t € [to, 0]} is bounded.

® Asymptotically stable: x; is said to be asymptotically stable if any solution
trajectory converges to x5 (x(t) — x,) as time progresses (¢t — 00).

A system which is not stable (i.e., not marginally stable) is unstable
A system is BIBO stable if the output is bounded for any bounded input

Note: Asymptotic stability = BIBO stability
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Stability of LTI Systems

A state space model is stable if and only if all of the following requirements
are fulfilled

Continuous-time

Discrete-time
Marginally stable:

® Re{eig(4)} <0

® VRe{eig(A);} = 0, the AM=GM

® [eig(4)] <1
® V|eig(A);| = 1, the AM=GM

Asymptotically stable:

® Re{eig(A)} <0 ® [eig(A)] <1

* AM = Algebraic multiplicity (# of identical eigenvalues)
** GM = geometric multiplicity (# of associated eigenvectors)
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Local Stability of Nonlinear Systems =
Steady state of nonlinear system
&= f(zs,us) =0 zs = f(xs,us), (72)
Approximate behavior around steady state using linearization
0
A= é(ms,us). (73)

The system is locally stable (marginal or asymptotic) around the stationary
point if the requirements on the previous slide are fulfilled
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Matlab example
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