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Stochastic Adaptive Control - Other Self Tuners
Lecture Plan

1 Systems theory
2 Stochastics
3 State estimation - Kalman filter 1
4 State estimation - Kalman filter 2
5 Optimal control 1 - internal models
6 External models
7 Prediction + optimal control 1 -

external models

8 Optimal control 2 - external models

9 System identification 1

10 System identification 2

11 System identification 3 + model
validation

12 Adaptive control 1

13 Adaptive control 2
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Today’s Agenda

• Follow-up from last lecture
• Known systems
• CE adaptive control
• Cautious adaptive control
• Optimal dual control
• Sub-optimal dual control
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Follow-up from Last Lecture
CE Self-tuner Adaptive methods
• Explicit adaptive control: Estimate model parameters and then design controller

(explicit design)
• Implicit adaptive control: Estimate the controller parameters directly

(implicit design)

Other terms discussed
• CE: certainty equivalence principle; θ replaced by θ̂

• Jr =
tf∑

t=1
(yt − wt)2 ≃ E{(yt − wt)2}t

• Ju =
tf∑

t=1
(ut)2 ≃ E{(ut)2}t (require oscillation around 0)

• Je =
tf∑

t=1
(ϵt)2 ≃ σ2t, for correct estimation ϵt = et

• Je ≃ Jr
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Stochastic Adaptive Control - Other Self Tuners
Follow-up from Last Lecture

Questions?
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Known Systems and Control

Let us first remember the case of known system control.

We will consider the ARX systems with a 1-step delay:

A(q−1)yt = B(q−1)ut−1 + et, et ∈ Niid(0, σ2) (1)

We will consider objective/cost functions on the general form:

J = E{
N∑

i=1
(yt+i − wt+i)2} (2)

An example is the MV0 controller (N = 1):

ut−1 = 1
B

wt − S

B
yt−1 = 1

B
wt − q(1 − A)

B
yt−1 (3)

yt = wt + et (4)
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Known Systems and Control
Alternatively, we can write the system on parameter form:

yt = ϕT
t θ + et = b0ut−1 + φT

t ϑ + et (5)
ϕT

t = (−yt−1, −yt−2, . . . , ut−1, ut−2, . . .), θT = (a1, a2, . . . , b0, b1, . . .)
(6)

φT
t = (−yt−1, −yt−2, . . . , 0, ut−2, . . .), ϑT = (a1, a2, . . . , 0, b1, . . .) (7)

with the controller taking the form

ut−1 = 1
b0

wt − φT
t ϑ

b0
(8)

yt = wt + et (9)

we write the notation relation as

φ = ϕ − diag(l)ϕ, ϑ = θ − diag(l)θ (10)
lT = (0, 0, . . . , 1, 0, . . .) (11)

with the 1 corresponding to the placement of b0 and ut−1
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Adaptive control - Method Overview

Let us now consider the self-tuners
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Adaptive Control - CE Control (Explicit)
If we apply a CE self tuner, we simply use our estimate as the true
parameters:

yt = ϕT
t θ + ϵt, θ → θ̂ (12)

Meaning that after we have updated our estimate:

ϵt = yt − ϕT
t θ̂t−1 (13)

Kt = Pt−1ϕt

1 + ϕT
t Pt−1ϕt

(14)

θ̂t = θ̂t−1 + Ktϵt (15)
Pt = Pt−1 − Kt(1 + ϕT

t Pt−1ϕt)KT
t (16)

The control law is then taken directly from the known case

ut = wt+1 − Syt

R
= 1

B̂
wt+1 − q(1 − Â)

B̂
yt = 1

b̂0
wt − φT

t ϑ̂

b̂0
(17)
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Adaptive Control - Cautious Control
Within the group of adaptive control known as self tuners, there is the
cautious control approach, which takes the estimation uncertainty into
account.

The method is based on the conditional objective
J = E{(yt+1 − wt+1)2|Yt} (18)

= (E{yt+1 − wt+1|Yt})2 + V {yt+1 − wt+1|Yt} (19)
From our estimation, we also obtain an uncertainty P of the estimation:

θ̂t ∈ N(θ, Pt) (20)
b̂0,t = lT θ̂t (21)

pb,t = lT Ptl (22)
Through minimization, we find the control law to be:

ut =
b̂2

0,t

b̂2
0,t + pb,t

(
wt+1 − φT

t θ̂

b̂0,t

− φT
t Ptl

b̂2
0,t

)
(23)
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Adaptive Control - Cautious Control

From the formulation of the control law, we can see that the cautious
control becomes the CE control, if the uncertainty goes to zero

Pt → 0 (24)

ut =
b̂2

0,t

b̂2
0,t + pb,t

(
wt+1 − φT

t θ̂

b̂0,t

− φT
t Ptl

b̂2
0,t

)
→ ut = wt+1 − φT

t θ̂

b̂0,t

(25)

If our estimate converges towards the true values, we have that the CE
control equals the known control, while the Cautious only does so if both is
true.
1 Pt → 0 : Cautious = CE ̸= known

2 θ̂t → θ : Cautious ̸= CE = known

3 Pt → 0, θ̂t → θ : Cautious = CE = known
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Adaptive Control - Cautious Control - Usage

Cautious controller:

ut =
b̂2

0,t

b̂2
0,t + pb,t

(
wt+1 − φT

t θ̂

b̂0,t

− φT
t Ptl

b̂2
0,t

)
(26)

Turn-off Phenomenon: a feedback trait that in periods dampens the
control signal towards zero over time, due to increasing uncertainty of b0

This results in less information of b0 for the next estimate, thus further
increasing the uncertainty.

Turn-off usually occurs if b0 or the control signal is small.

Consequently, the cautious controller is useful for systems with constant or
almost constant parameters, but unsuitable for general time-varying
systems.
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Examples

Matlab example: Cautious self tuner

13 DTU Compute Stochastic Adaptive Control 2.5.2023



Stochastic Adaptive Control - Other Self Tuners
Adaptive Control - Method Overview
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Adaptive Control - Optimal Dual Control

In dual control, we consider the conditional expectation of the objectives:

J = min
Ut

E

{
N∑

i=1
(yt+i − wt+i)2

}
= EYt

{
min

Ut

E

{
N∑

i=1
(yt+i − wt+i)2|Yt

}}
(27)

If our parameter uncertainty is Gaussian, the conditional expectation is
Gaussian (even if yt is not). We can therefore define a hyperspace:

ξt = [φt−1, θ̂t, Pt] (28)

containing the necessary information. If not Gaussian, then it becomes
computationally difficult to compute the hyper space and storage
requirements increase.
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Adaptive Control - Optimal Dual Control
The optimization problem in dual control, can be streamlined using the
Bellman equation:

V (ξt, t) = min
ut−1

E{(yt − wt)2 + V (ξt+1, t)|Yt−1} (29)

which is solved backwards, where V() is the minimum future loss.

The last step N is identical to the cautious controller:
V (ξN , N) = min

uN−1
E{(yN − wN )2|YN−1} (30)

= (φT
N−1θN − wN )2 + σ2 + φT

N−1PN φN−1 −
b̂0,N wN − φT

N−1(b̂0,N θ̂N + PN l)
b̂2

0,N − pb,N

(31)
substituting into V (ξN−1, N − 1), the second last control can be computed,
and so on.

While this is similar to the LQR, this unfortunately does not have analytical
solutions, and can only be solved numerically.
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Adaptive Control - Optimal Dual control

When we consider adaptive control, we generally have contradictory goals:
1 Control objective: Small signals (control action).

2 Estimation: Large signals (probing action).

For the optimal N-step Dual control, the solution is a compromise between
these goals.
1 Improved long-term estimation accuracy; sacrificing short-term loss.

2 Probing adds active learning to the method.

If N = 1 we have the cautious controller, in which the probing effects
diminish. In this case and in CE any learning is an "accident" of the
method.

An issue with dual control is the curse of dimensionality; The size of the
numerical computation increases drastically with increase of the hyperspace
dimension and horizon.
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Adaptive Control - Optimal Dual control
Normalized variables (CE controller: µ = 1):

η = y/
√

R2, β = b̂/
√

P , µ = −ub̂/y, (32)
η′ = η/(1 + η), β′ = β2/(1 + β2) (33)

a) N = 1, b) N = 3, c) N = 6, d) N = 31
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Adaptive Control - Sub-Optimal Dual control

Given that the optimal dual controller might be impractical, sub-optimal
versions exist based on the cautious controller fixing the issue with turn-off.

Some ways to update the cautious controller are
1 Constraining the uncertainty.

2 Extending the loss function.

3 Serial expansion of the loss function.

4 Adding perturbation signals to the control.
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Sub-Optimal Dual Control - Constrained One-step Controller

Let us consider a constrained one-step controller, in the sense of a
minimum distance to zero control:

ut =
{

ucautious if |ucautious| ≥ |ulimit|
ulimit × sign(ucautious) if |ucautious| < |ulimit|

(34)

We then have a controller, which is performance-dependent, but which we
can compute analytically.

The constraints do not prevent turn-off, but adds extra perturbation when
it happens.
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Sub-Optimal Dual Control - Constrained Uncertainty

Alternatively, to constrain the control, we can constrain the uncertainty
used.

tr(P −1
t+1) ≥ M (35)

or if we are only interested in constraining pb, we can apply

pb,t+1 ≤
{

γb̂2
0,t+1 if pb,t ≤ b̂2

0,t

αpb,t otherwise
(36)
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Sub-Optimal Dual control - extended loss function

Another approach is to add minimization of the uncertainty to the objective:

J = E{(yt+1 − wt+1)2 + ρf(Pt+1)} (37)

the function f can be formulated in many ways:
1 f(Pt+1) = pb,t+1

2 f(Pt+1) = R2
pb,t+1

pb,t

3 f(Pt+1) = − det(Pt)
det(Pt+1)

4 f(Pt+1) = −ϵ2
t+1

This might introduce multiple local minima in the formulation; introducing
numerical searching. alternatively a second order serial expansion (e.g., a
Taylor expansion) can be used,
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Sub-Optimal Dual control - Extended Loss Function - Example
Let us consider the third extension:

J = E

{
(yt+1 − wt+1)2 − ρ

det(Pt)
det(Pt+1) |Yt

}
(38)

The determinants have the relation
det(Pt)

det(Pt+1) = 1 + ϕT
t+1Ptϕt+1 (39)

The analytical control law is

ut =
b̂0(wt+1 − φT

t+1ϑ̂t) + ρ(Ptl)T φt+1

b̂2
0 − ρpb,t

(40)

Notice that, depending on the value of ρ, we get specific controllers
1 ρ = 0: the CE controller

2 ρ = −1: the cautious controller

3 ρ > 0: an active learning controller
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Sub-Optimal Dual control - Probing

The last addition to the cautious controller is the probing approach, where
the control has an added signal to it:

ut = uc
t + ux

t (41)

Possible perturbation signals include
1 PRBS

2 dox: design of excitation signal

They can be applied both at certain points in time (low uncertainty) or
continuously.
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Questions

Questions?
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Other interesting courses

• 34746 - Robust & fault-tolerant control
• 34791 - Topics in advanced control (PhD)
• 02619 - Model predictive control
• 02417 - Time series analysis
• 02427 - Advanced time series analysis
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Control of distributed delay differential equations

• Ordinary differential equations (ODEs)

ẋ(t) = f(x(t), u(t), d(t), θ)

• Delay differential equations (DDEs)
with absolute delays

ẋ(t) = f(x(t), x(t − τ), u(t), d(t), θ)

• Distributed delay differential equations
(DDDEs)

ẋ(t) = f(x(t), z(t), u(t), d(t), θ),

z(t) =
∫ t

−∞
α(t − s)x(s) ds

In collaboration with Prof. John Wyller from NMBU, Norway.
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Dynamical systems with equilibrium conditions
(DAEs/PDAEs with complementarity conditions)

DAEs
ẋ(t) = F (y(t), u(t), d(t), θ),

0 = G(x(t), y(t), z(t), θ)

Equilibrium 1/2
min
y(t)

f(y(t)),

s.t. g(y(t)) = x(t),
h(y(t)) = 0

Equilibrium 2/2
min
y(t)

f(y(t)),

s.t. g(y(t)) = x(t),
h(y(t)) = 0,

y(t) ≥ 0

Injection well

CO2

Reservoir fluid

• CO2 storage
• Geothermal energy
• Power-to-X

Collaborations with SemperCycle and

MPI Magdeburg, Germany.
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Stochastic adaptive control, reinforcement learning,
and hybrid approaches

Stochastic adaptive control

Design

Controller System

Identification

w

v

u y

Reinforcement learning

6464 I

64 64 I/
2

256 256 256 I/
4

512 512 512 I/
8

512 512 512 K I/
16

concatenation of de-
convolved feature maps

K I/
8

K I/
4

K I/
2

K I

K I

Combined/hybrid approaches

In collaboration with Bob Pepin, DTU Wind.
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Model reduction and numerical methods for optimal control

The linear continuous-time system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

reduces to

˙̂x(t) = Arx̂(t) + Bru(t),
ŷ(t) = Crx̂(t) + Dru(t).

What about

ẋ(t) = f(x(t), u(t))

and dynamic optimization problems?

Idea: Use model reduction directly in
the numerical methods.

Original system

ẋ = A x + B u

y = C x + D u

Reduced system

˙̂x = Ar x̂ + Br u

ŷ = Cr x̂ + Dr u
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Adaptive system identification

Optimal experiment design

Physical experiment System identification

In collaboration with Emil K. Nielsen, FORCE Technology.
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Nuclear fission
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Nuclear fusion
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Geothermal energy
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Power grids
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Power-to-X
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Overview of topics for MSc projects/special courses

Mathematically oriented topics
• Distributed delay differential equations

NMBU, Norway
• Dynamical systems with equilibrium

conditions (DAEs/PDAEs)
• Stochastic adaptive control,

reinforcement learning, and hybrid
approaches

• Model reduction-based numerical
methods for large-scale systems

• Adaptive system identification
FORCE Technology

Application-oriented topics
• Nuclear fission
• Nuclear fusion
• CO2 storage
• Geothermal energy
• Power grids

Ørsted
• Power-to-X

SemperCycle
MPI Magdeburg, Germany
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