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Stochastic Adaptive Control - Adaptive Control
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Stochastic Adaptive Control - Adaptive Control
Today’s Agenda

• Follow-up from last lecture
• Adaptive control methods
• Self-tuners

1 Explicit self-tuner
2 Implicit self-tuner
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Stochastic Adaptive Control - Adaptive Control
Follow-up from last time

Questions?
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Stochastic Adaptive Control - Adaptive Control
Adaptive Control

Stochastic control relies on a detailed
model which might not be available.
1 Parameter values cannot be measured.

2 The underlying physics is not known
sufficiently well

Approach 1:
A model can be created using
identification methods and a
stochastic controller can be designed.

If the system varies in time, e.g., due
to aging or wear, the identification
will have to be repeated occasionally.

Approach 2:
Alternatively, we can combine online
identification and control.
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Stochastic Adaptive Control - Adaptive Control
Alternative to adaptive control: Robust control

If the model of a system is uncertain, there also exist other methods than
the adaptive control. One such method is the robust control:
1 Robust control: Low sensitivity to the effect of uncertain system parts, a control

that, in some sense, operates after worst-case scenario.

2 Adaptive control: Monitors/estimates the uncertain parts, a control law that
changes with the identified system.

In some sense, robust control can be seen as the opposite method to
adaptive control: Adapting the control usage (sensitivity) vs. adapting the
control design.

That is the subject of the course 34746 Robust and fault-tolerant control.
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Stochastic Adaptive Control - Adaptive Control
Adaptive control - Method Overview

Several schools exist within adaptive control
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Stochastic Adaptive Control - Adaptive Control
Adaptive control - Gain Scheduling Control

A simple approach is to manually
change the model based on the
operating point.
1 Linear control of non-linear system:

Airplanes/robots.

2 Piecewise systems: Laws for behaviour
at night vs day.

Adaptation is manual, so no
performance feedback to the
adaptations.

8 DTU Compute Stochastic Adaptive Control 17.5.2023



Stochastic Adaptive Control - Adaptive Control
Adaptive control - Model Reference Adaptive Control (MRAC)

Another approach is to adapt the
control until the output follows a
desired transfer function with the
least possible deviation.

The focus is on the control problem
and the adaptation is feedback on
the model deviations.

The concept is similarly to that of
an observer/Kalman filter.
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Stochastic Adaptive Control - Adaptive Control
Adaptive control - Self-tuning Control

The self-tuning methods are based
on the combination of an
identification algorithm, a design
method, and a controller.

It is further assumed that the
certainty equivalence principle holds.
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Stochastic Adaptive Control - Adaptive Control
Adaptive control - Certainty Equivalence Principle
The certainty equivalence principle, is the idea that the true value can be
replaced by an estimate

θ → θ̂ (1)

For linear systems with additive noise, the principle holds, allowing for the
state space control:

ut = −Lxt → ut = −Lx̂t (2)

This is the basis for the separation theorem between the design of Kalman
filters and LQR.

In adaptive control, the principle is an assumption that allows us to
formulate the minimum variance control as

C = AG+ q−kS → Ĉ = ÂG+ q−kS (3)
BGut = −Syt → B̂Gut = −Syt (4)

In this case, the principle does not guarantee optimality, but it is assumed
for convenience.
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Stochastic Adaptive Control - Adaptive Control
Basic Self-tuning
Let us now discuss the self-tuning methods in terms of the minimum
variance controller, the so-called basic self-tuning controller.

We combine a recursive estimation approach for

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (5)
B(q−1) = b0 + b1q

−1 + · · · + bnb
q−nb , b0 ̸= 0 (6)

et ∈ F(0, σ2) and white (7)

with the design of the minimum variance controller for the objective

J = E{y2
t+k} (8)

u = func(Yt) (9)

Self-tuning methods come in two variants: Explicit and implicit.
1 Explicit: Estimation of model, used to design the control.

2 Implicit: Estimation of the control model (control parameters + C(q−1)).
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Stochastic Adaptive Control - Adaptive Control
The Basic Self tuner - Explicit
In the explicit method, we are interested in identifying the model

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt (10)

to use in the control. We do this using a chosen estimation method:

yt = ϕT
t θt−1 + et (11)

θ̂t = arg min
t∑

i=1
ϵ2i (12)

Using the estimate, we compute the control as

ut = arg minE{y2
t+k} (13)

and we repeat at the next sampling time.

For a correct estimation (ϵt = et), we have that the sum of control errors:

Je(t) =
t∑

i=1
ϵ2i ≃ tσ2 (14)
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Stochastic Adaptive Control - Adaptive Control
The Basic Self tuner - Explicit: example
First, we apply RML estimation:

ϕt = (−yt−1, ..., ut−k, ..., ϵt−1, ...)T , ψt = 1
Ĉ(q−1)

ϕt (15)

θ = (a1, ..., b0, ..., c1, ...)T (16)
P−1

t = P−1
t−1 + ψtψ

T
t (17)

ϵt = yt − ϕT
t θt−1 (18)

θ̂t = θ̂t−1 + Ptψtϵt (19)

Then, we obtain the control by solving the simple Diophantine equation,

Ĉ(q−1) = Â(q−1)G(q−1) + q−kS(q−1) (20)
R(q−1) = B̂(q−1)G(q−1) (21)

with the control law given by

ut = −S

R
yt = − 1

r0
(s0yt + s1yt−1 + · · · − r1ut−1 − r2ut−2 − · · · ) (22)
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Stochastic Adaptive Control - Adaptive Control
The Basic Self tuner - Explicit: ARX example

Let us consider the simple ARX system with a single delay:

Â(q−1)yt = q−1B̂(q−1)ut + ϵt (23)

Our controller is then given by the Diophantine:

1 = Â(q−1) + q−1S(q−1) (24)
G(q−1) = 1; (25)

With the controller polynomials and law given as

S(q−1) = q(1 − Â(q−1)) (26)
R(q−1) = B(q−1) (27)

ut = −S

R
yt (28)
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Stochastic Adaptive Control - Adaptive Control
The Basic Self tuner - Explicit: properties

The control loss function of the explicit self tuner:

Jr(t) =
t∑

i=1
y2

t ≃ E{y2
t }t (29)

Ju(t) =
t∑

i=1
u2

t ≃ E{u2
t }t (30)

For a correct estimate of the parameters, we have that ϵt = et, therefore
the residuals loss function follows

Je(t) =
t∑

i=1
ϵ2t ≃ σ2t (31)
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Stochastic Adaptive Control - Adaptive Control
Implicit Self tuning

In each step of the explicit version, we have to
1 estimate model parameters,

2 solve the Diophantine equation for the controller polynomials, R and S, and

3 compute the control, ut.

To simplify the computation, we combine the Diophantine equation and the
system equation:

Cyt+k = [Rut + Syt] + CGet+k (32)

to derive the implicit version. In each step of the implicit version, we
1 estimate the controller parameters and

2 compute the control, ut.
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Stochastic Adaptive Control - Adaptive Control
Implicit Self tuning: ARX-model
For the ARX model, our control model is given by

yt+k = [R(q−1)ut + S(q−1)yt] +G(q−1)et+k (33)

The minimum-variance control drives the kth prediction to zero.
Consequently,

R(q−1)ut + S(q−1)yt = 0 = ϕT
t+kθ (34)

θ = (s0, s1, ..., r0, r1, ...)T (35)
ϕt+k = (yt, yt−1, ..., ut, ut−1, ...)T (36)
ϕt = (yt−k, yt−k−1, ..., ut−k, ut−k−1, ...)T (37)

We can then apply an estimation method such as RLS:

θ̂t : yt = ϕT
t θ̂ + ϵt (38)

ut : ϕT
t+kθ̂t = 0 (39)

with the control being computed afterwards
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Stochastic Adaptive Control - Adaptive Control
Implicit Self tuning: ARMAX-model
For the ARMAX model, our control model is given by

yt+k = 1
C(q−1) [R(q−1)ut + S(q−1)yt] +G(q−1)et+k (40)

The minimum-variance control drives the kth prediction to zero.
Consequently,

R(q−1)ut + S(q−1)yt = ϕT
t θ = 0 (41)

Furthermore, if the estimate θ̂ converges, it will reach parameters for which
the regressors and residuals are uncorrelated. Therefore, we can formulate
the model as

yt+k = [R(q−1)ut + S(q−1)yt] + ϵt+k = ϕT
t θ + ϵt+k (42)

ϵt = G(q−1)et, ϵt ⊥ ϕt (43)

As it now has the shape of an ARX model, we can do the estimation and
computation in the same manner which means that RLS can be used for
the ARMAX-model as well.
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Stochastic Adaptive Control - Adaptive Control
Implicit Self tuning: ARMAX-model - simple proof
Consider control, system and model given by

R(q−1)ut−k + S(q−1)yt−k = ϕT
t θ = 0 (44)

S : yt = 1
C(q−1)ϕ

T
t θ +G(q−1)et (45)

M : yt = ϕT
t θ̂ + ϵt (46)

If θ̂ converges to θ, we can formulate the model residual as

ϵt = yt − ϕT
t θ = 1

C(q−1)ϕ
T
t θ +G(q−1)et − ϕT

t θ (47)

= 1 − C(q−1)
C(q−1) ϕT

t θ +G(q−1)et (48)

Given the control design, the residuals become

ϵt = G(q−1)et (49)
E{ϕtϵt} = 0 (50)

where it can be seen that it is independent of the regressor.
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Stochastic Adaptive Control - Adaptive Control
Implicit self tuning: properties

Advantages:
1 Design is simple.

2 Can use RLS (even if C ̸= 1).

Disadvantages:
1 More parameters to estimate (k ≫ 1).

2 Not all strategies can be transformed into an implicit strategy (model + design
has to be combined).

3 Estimation must be restarted if the design choice changes.
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Stochastic Adaptive Control - Adaptive Control
QRS Controller Implementation

Consider a controller in the form

R(q−1)ut = Q(q−1)wt − S(q−1)yt − ξ0 (51)

We can implement the controller using state-space representation, e.g. a
canonical form:

Xr
t+1 = ArXr

t +Br

[
yt

wt

]
(52)

ut = CrXr
t +Dr

[
yt

wt

]
+ u0, (53)

u0 = (Cξ(1 −Ar)−1Bξ +Dξ)ξ0 (54)

where the matrices Ar, Br, Cr, Dr can be computed using Q,R and S.
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Stochastic Adaptive Control - Adaptive Control
QRS Controller Implementation - direct approach

Alternatively, we can reformulate the controller in the form:

S(q−1)yt +R(q−1)ut −Q(q−1)wt + ξ0 = 0 (55)

and rewriting it as

(ut, . . . , yt, . . . ,−wt, . . . , 1) × (r0, . . . , s0, . . . , q0, . . . , ξ0)T = 0 (56)

the control is then found by isolating ut:

ut = −(0, ut−1, . . . , yt, . . . ,−wt, . . . , 1) × (r0, . . . , s0, . . . , q0, . . . , ξ0)T /r0
(57)

= −ϕT
r θr/r0 (58)
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Stochastic Adaptive Control - Adaptive Control
QRS Controller Implementation - direct approach
Recursively, the direct approach becomes

1 % Load system
2 [ A, B, k , C , d , s2 ] = system ( ) ;
3
4 % Des ign c o n t r o l l e r
5 [Q, R , S , G] = dsnmv0 (A, B, k , C) ;
6
7 nr = l e n g t h ( [ R , Q, S ] ) + 1 ;
8 p h i r = z e r o s ( nr , 1) ;
9 t h r = [ R , Q, S , G(1 ) ∗d ] ’ ;

10 p i l = 1 + [ 0 , l e n g t h (R) , l e n g t h ( [ R , Q] ) ] ;
11
12 f o r i t = 1 : nstp ,
13 % S e t p o i n t
14 w = wt ( i t ) ;
15
16 % Measure output o f sytem
17 [ y , t ] = measure ( ) ;
18
19 % Ru = Q∗w − S∗y − G∗d
20 p h i r ( 2 : end ) = p h i r ( 1 : end −1) ;
21 p h i r ( p i l ) = [ 0 , −w, y ]
22 u = −ph i r ’ ∗ t h r / t h r (1 )
23 p h i r (1 ) = u ;
24
25 % Actuate c o n t r o l to the sytem
26 a c t u a t e ( u ) ;
27 end

where the functions system, dsnmv0, measure, and actuate are pseudocode
“placeholders”.
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Stochastic Adaptive Control - Explicit and Implicit
Explicit methods

We can now utilize the controllers we have discussed previously in the
course to obtain more advanced adaptive controllers.
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Stochastic Adaptive Control - Explicit and Implicit
Explicit MV0 Control

Identified system (general method):

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt + d̂ (59)

Controller optimality criteria:

J = E{(yt+k − wt)2} (60)

Controller design:

B̂(q−1)G(q−1)ut = Ĉ(q−1)wt − S(q−1)yt −G(1)d̂ (61)
Ĉ(q−1) = Â(q−1)G(q−1) + q−kS(q−1) (62)

QRS form:

Q = Ĉ(q−1), R = B̂(q−1)G(q−1), ξ0 = G(1)d̂ (63)
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Stochastic Adaptive Control - Explicit and Implicit
Matlab

Let us look at some Matlab examples of the explicit MV0 controller.
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Stochastic Adaptive Control - Explicit and Implicit
Explicit Pole Placement Control
Identified system (general method):

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt + d̂ (64)

Controller optimality criteria:

J = E{(Am(q−1)yt+k −Bm1(q−1)B̂−(q−1)wt)2} (65)
B̂(q−1) = B̂+(q−1)B̂−(q−1) (66)

Controller and Design:

B̂+(q−1)G(q−1)ut = Bm1(q−1)Ĉ(q−1)wt − S(q−1)yt − G(1)
B−(1) d̂ (67)

Am(q−1)Ĉ(q−1) = Â(q−1)G(q−1) + q−kB̂−(q−1)S(q−1) (68)

QRS form:

Q = Bm1(q−1)Ĉ(q−1), R = B̂+(q−1)G(q−1), ξ0 = G(1)
B−(1) d̂ (69)
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Stochastic Adaptive Control - Explicit and Implicit
Explicit PZ Control - B− = 1 & B+ = B

Identified system (general method):

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt + d̂ (70)

Controller optimality criteria:

J = E{(Am(q−1)yt+k −Bm(q−1)wt)2} (71)

Controller and Design:

B̂(q−1)G(q−1)ut = Bm(q−1)Ĉ(q−1)wt − S(q−1)yt −G(1)d̂ (72)
Am(q−1)Ĉ(q−1) = Â(q−1)G(q−1) + q−kS(q−1) (73)

QRS form:

Q = Bm(q−1)Ĉ(q−1), R = B̂(q−1)G(q−1), ξ0 = G(1)d̂ (74)
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Stochastic Adaptive Control - Explicit and Implicit
Explicit GMV Control
Identified system (general method):

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt + d̂ (75)

Controller optimality criteria (monic denominators):

J = E

{(
By(q−1)
Ay(q−1)yt+k − Bw(q−1)

Aw(q−1)wt

)2
+ ρ

(
Bu(q−1)
Au(q−1)ut

)2}
(76)

Controller and Design:

R(q−1)ǔt = Q(q−1)w̌t − S(q−1)y̌t − ξ0 (77)
By(q−1)Ĉ(q−1) = Ay(q−1)ÂG(q−1) + q−kS(q−1) (78)

QRS form:

Q = Ĉ, R = AuB̂G+ ρ

b̂0
BuĈ, ξ0 = G(1)d̂ (79)

ǔt = 1
Au

ut, y̌t = 1
Ay

yt, w̌t = Bw

Aw
wt (80)

30 DTU Compute Stochastic Adaptive Control 17.5.2023



Stochastic Adaptive Control - Explicit and Implicit
Explicit LQG Control
Identified system (general method):

Â(q−1)yt = q−kB̂(q−1)ut + Ĉ(q−1)ϵt + d̂, B̄ = q−kB̂ (81)

Controller optimality criteria (monic denominators):

J = lim
N→∞

E

{ 1
N

N∑
i=t

(yi − wi)2 + ρu2
t

}
(82)

Controller and Design:

R(q−1)ut = Q(q−1)wt − S(q−1)yt − ξ0 (83)
P (q−1)P (q) = B̄(q−1)B̄(q) + ρÂ(q−1)Â(q) (spectral factorization)

(84)
P (q−1)Ĉ(q−1) = ÂR(q−1) + q−kB̂(q−1)S(q−1) (Diophantine) (85)

QRS form:

Q = P (1)
B̂(1)

Ĉ, R = AuB̂G+ ρ

b̂0
BuĈ, ξ0 = G(1)d̂ (86)
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Stochastic Adaptive Control - Explicit and Implicit
Implicit methods

Similarly we can apply our controllers in an implicit manner.

32 DTU Compute Stochastic Adaptive Control 17.5.2023



Stochastic Adaptive Control - Explicit and Implicit
Implicit MV0 Control
System:

A(q−1)yt = q−kB(q−1)ut + C(q−1)et + d (87)
Controller optimality criteria:

J = E{(yt+k − wt)2} (88)
Estimation and control:

ζt = yt − wt−k = ϕT
t θ̂t−1 + ϵt (89)

ϕT
t+kθ̂t = 0 (90)
θ̂T

t = (s0, ..., r0, ..., q0, ..., ξ) (91)
ϕT

t = (yt−k, ..., ut−k, ...,−wt−k, ..., 1) (92)
ϕT

t+k = (yt, ..., ut, ...,−wt, ..., 1) (93)
The theoretical control law:

R(q−1)ut = Q(q−1)wt − S(q−1)yt − ξ (94)
R = BG, Q = C, S = qk(C −AG), ξ = G(1)d (95)
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Stochastic Adaptive Control - Explicit and Implicit
Implicit PZ Control
System:

A(q−1)yt = q−kB(q−1)ut + C(q−1)et + d (96)

Controller optimality criteria:

J = E{(Am(q−1)yt+k −Bm(q−1)wt)2} (97)

Estimation and control:

ζt = Am(q−1)yt −Bm(q−1)wt−k = ϕT
t θ̂t−1 + ϵt (98)

ϕT
t+kθ̂t = 0 (99)
θ̂T

t = (s0, ..., r0, ..., q0, ..., ξ) (100)
ϕT

t = (yt−k, ..., ut−k, ...,−wt−k, ..., 1) (101)

The theoretical control law:

R(q−1)ut = Q(q−1)wt − S(q−1)yt − ξ (102)
R = BG, Q = BmC, S = qk(AmC −AG), ξ = G(1)d (103)
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Stochastic Adaptive Control - Explicit and Implicit
Implicit GMV Control

System:

A(q−1)yt = q−kB(q−1)ut + C(q−1)et + d (104)

Controller optimality criteria (monic denominators):

J = E

{(
By(q−1)
Ay(q−1)yt+k − Bw(q−1)

Aw(q−1)wt

)2
+ ρ

(
Bu(q−1)
Au(q−1)ut

)2}
(105)

where we can define the variables:

ỹt = By(q−1)
Ay(q−1)yt+k, w̃t = Bw(q−1)

Aw(q−1)wt, ũt = ρ

b0

Bu(q−1)
Au(q−1)ut (106)
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Stochastic Adaptive Control - Explicit and Implicit
Implicit GMV Control
Estimation and control:

ζt = ỹt+k − w̃t + ρ

b̂0
ũt = ϕT

t θ̂t−1 + ϵt (107)

ϕT
t+kθ̂t = 0 (108)
ut = Au(q−1)ǔt (109)
θ̂T

t = (s0, ..., r0, ..., q0, ..., ξ) (110)
ϕT

t = (y̌t−k, ..., ǔt−k, ...,−w̌t−k, ..., 1) (111)

The theoretical control law:

R(q−1)ǔt = Q(q−1)w̌t − S(q−1)y̌t − ξ (112)

R = AuBG+ ρ

b0
BuC, Q = C, S = qk(ByC −AyAG), (113)

ξ = G(1)d (114)

ǔt = 1
Au

ut, y̌t = 1
Ay

yt, w̌t = Bw

Aw
wt (115)
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Stochastic Adaptive Control - Explicit and Implicit
Examples

Let us return to Matlab and look at the implicit implementation of a PZ
controller.
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Stochastic Adaptive Control - Explicit and Implicit
Questions

Questions?
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