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Stochastic Adaptive Control - Model Validation
Today’s Agenda

• Follow-up from last lecture
• MV: Model validation

• Model reduction
• Zeros and poles
• Residual Analysis
• Model Comparison

• Closed-loop identification
• CL-Id - properties
• Direct Approach
• Indirect Approach
• Joint Input-Output Approach
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Stochastic Adaptive Control - Model Validation
Follow-up from last time, Question 1.1 and 1.2
We want to estimate a MARX model of the two tank system.
If we remember from last time, we write the MIMO system as:

yT
t = ϕT θ + et (1)

θT =
[
A1 A2 B1

]T
(2)

ϕT =
[
−yT

t−1 −yT
t−2 uT

t−1

]
(3)

In this example the matrices takes the form:

θ =
[[
a11,1 a12,1
a21,1 a22,1

] [
a11,2 a12,2
a21,2 a22,2

] [
b1,1
b2,1

]]T

(4)

ϕT =
[
−
[
y1,t−1 y2,t−1

]
−
[
y1,t−2 y2,t−2

]
ut−1

]
(5)

Matlab: arx(DATA,
[[

2 2
2 2

] [
1
1

] [
1
1

]]
) = arx(data, [na, nb, k])
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Stochastic Adaptive Control - Model Validation
Follow-up from last time, Question 1.1 and 1.2

If we compare the estimates of the deterministic and stochastic simulations
1 z−1 z−2

A11 1.0000 -0.9693 -0.0005
A12 0.0000 0.0000 -0.0284
A21 0.0000 -0.0452 -0.0142
A22 1.0000 0.0000 -0.8644
B1 0.0000 0.0320
B2 0.0000 0.0005

1 z−1 z−2 dCI0 dCI1 dCI2
A11 1.0000 -1.1383 -0.0289 0.0000 0.1200 0.1262
A12 0.0000 0.7321 -0.2149 0.0000 0.1552 0.1625
A21 0.0000 -0.1988 -0.0252 0.0000 0.1187 0.1248
A22 1.0000 -0.1943 -0.2043 0.0000 0.1535 0.1607
B1 0.0000 0.0292 0.0000 0.0038
B2 0.0000 -0.0023 0.0000 0.0037
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Stochastic Adaptive Control - Model Validation
Follow-up from last time

Questions?
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Stochastic Adaptive Control - Model Validation
Model Validations

We now know how to estimate a model, but how do we check it is correctly
estimated, if we don’t know the true parameters.

In some sense, we are asking the following two questions.
1 Is our model too simple?

2 Is our model too complex?
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Stochastic Adaptive Control - Model Validation
Model Validations

Validate model

Estimate parameters / identify models

Choose set
of models

Choose
criteria

Data

Experiment

Design
of experiment

Prior knowledge
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Stochastic Adaptive Control - Model Validation
Model Validations

In order to validate the model we have estimated, we can utilize the three
components of an estimated model:
1 the estimated parameters

2 the uncertainty (the variance)

3 the undescribed model parts (the residuals)

where the last is the source of measurement deviations:

measurement(y) = model(θ, u) + residual(ϵ) (6)
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Stochastic Adaptive Control - Model Validation
Model Validations - too complex?

Let us consider the case were we want to check, if our model has too many
parameters. Consider the unbiased estimate,

θ̂ ∈ F(θ, P ) (7)

θi is significant if it, with reasonable certainty, is different from zero.

Conversely, if a parameter might be zero, it might be insignificant, i.e., it
might not be needed in the model. If we decide that a parameter is not
needed, we can reduce our model.
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Stochastic Adaptive Control - Model Validation
Model validations - parameter insignificant?

In order to check if a parameter might be insignificant, we can do a
marginal parameter test to check our confidence in the parameter.

If we consider the "Central Limit Theorem" from statistics, and we have a
high number of measurements, then the parameter distribution will
approach the normal distribution:

θ̂ ∈ N(θ, P ) (8)

We can then say, with 1 − α percent confidence, that θi is not insignificant
if the following holds

|θ̂i| > f1− α
2

√
Pi,i (9)

where fx is the xth quantile of the standard normal distribution. This
method requires that the variance, P, is known.
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Stochastic Adaptive Control - Model Validation
Model validations - parameter insignificant?

If the variance P was estimated during the estimation, it is more correct to
consider the t-distribution:

zi = θ̂i√
Pi,i

∈ t(M − dp) (10)

where dp is the number of parameters and M is the number of observations
in the estimate.

We can then say with 1 − α percent confidence that a given parameter is
not insignificant if the following holds

|θ̂i| > f t
1− α

2
(M − dp)

√
Pi,i (11)

where f t
x is the xth quantile of the t-distribution. Again, if M ≫ dp, this

will approach the normal distribution.
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Stochastic Adaptive Control - Model Validation
Model Validation - Multiple Insignificant Parameters?
If more than one parameter might be insignificant, then, due to parameter
correlation, we cannot say whether all or some are insignificant based on
the marginal tests.
But we can test whether all parameters in a subset θb are significant:

θ̂ =
[
θ̂a

θ̂b

]
∈ N

([
θa

θb

]
,

[
Pa Pab

P T
ab Pb

])
(12)

For a subset of the parameters, θb, we test the hypothesis of insignificant
parameters (θb = 0), by considering the squared value:

zb = θ̂T
b P

−1
b θ̂b ∈ F (db,M − dp) (13)

We can then say with 1 − α percent confidence that all the parameters in
θb are significant if

zb > fF
1−α(db,M − dp) (14)

where db is the size of the subset, and fF
x is the quantile of the

F-distribution. For large M, we can apply a χ2(db) instead of the
F-distribution.
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Stochastic Adaptive Control - Model Validation
Model Reduction
If we find that we have subset θ̂b where none of its elements can be added
to the significant subset θ̂a, then, by considering the correlations between
the subsets, [

θa

θb

]
∈ N

([
θ̂a

θ̂b

]
,

[
Pa Pab

P T
ab Pb

])
(15)

we can perform a model reduction by applying the projection theorem:

θa|θb ∈ N(ˆ̄θa, P̄a) (16)
ˆ̄θa = θ̂a − P T

abP
−1
b θ̂b (17)

P̄a = Pa − PabP
−1
b P T

ab (18)

When have we used the projection theorem before and what for?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - Model Validation
Insignificant: singular analysis of the variance matrix P
Most estimations methods are related to solving linear equations in the form

Hθ̂ = g (19)

where H is a measure of the data set connected to the variance, H−1 = P .

P =
(

N∑
i=0

ψiψ
T
i

)−1

σ2 (20)

If a model is overparameterized, then in the ideal case H will be a singular
matrix (values close to zero), or in less ideal case is invertible, but has some
eigenvalues that are significantly smaller than the rest (larger eigenvalues in
terms of P).

eig(P )i ≫ eig(P )j (21)

This requires that a system is sufficiently excited; insufficiently excited
systems will produce similar issues. Similarly one should be aware of the
effect of the size of the noise.
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Stochastic Adaptive Control - Model Validation
Condition number

Another way to evaluate if a model is overparameterized is to consider the
condition number of its variance.

Cond(P ) = |λmax|
|λmin|

, Λ = eig(P ) (22)

where λmin and λmax are the smallest and largest eigenvalues of P.

Then, if Cond(P ) is large, it is an indication of overparameterization.
Example:

model 1: Cond(P1) = 1000 (23)
model 2: Cond(P2) = 40 (24)

Model 1 appears to be too complex, while model 2 is more balanced.
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Stochastic Adaptive Control - Model Validation
Zeros and poles: cancellation?

If we have an overparameterized model, our external models might have
zeros and poles that are close to each other.

yt = Hy,u(q)ut +Hy,e(q)et (25)

Using the model structure used for the estimation, we can compute the
poles and zeros of the estimated model. Using a linearization, we can derive
the certainties of the zeros and poles:

p̂i = fi(θ̂) ≃ fi(θ) + ∂fi

∂θ
θ̃, θ̃ ∈ N(0, P ) (26)

p̂i ∈ N

(
pi,

∂fi

∂θ
P

(
∂fi

∂θ

)T
)

(27)

Therefore, we can compute the confidence intervals in the complex plane. If
the confidence intervals of a pole and a zero overlap, it is a strong
indication that they cancel out.
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Stochastic Adaptive Control - Model Validation
Zeros and poles: an example of cancellation

(1 − 1.5q−1 + 0.7q−2)yt = (1 − 0.5q−1)ut + et (28)
(1 − a1q

−1 + ...+ a4q
−4)yt = (b0 + ...+ b3q

−3)ut + et (29)
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Stochastic Adaptive Control - Model Validation
Residual Analysis
Let us now consider how to check whether a model is too simple or
describes the system sufficiently well. For this, we consider the residuals of
the model:

measurement(y) = model(θ, u) + residual(ϵ) (30)
In a perfect model, the residual would have the following properties.
1 ϵt ∈ F(0, σ2).
2 ϵt has a symmetric distribution.
3 ϵt is white.
4 ϵt is uncorrelated with current and prior inputs.

or stated with co-variance functions:

rϵ(k) = E{ϵt+kϵt} =
{
σ2 k = 0
0 otherwise

rϵt,ut(k) = E{ϵt+kut} = 0

(31)
An important part of validation is to use one data set for the estimation,
and one for the validation (cross-validation).
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Stochastic Adaptive Control - Model Validation
Residual Analysis - mean and variance test
A simple approach is to test whether the distribution of the residual has the
right mean and variance.

If the below holds, we can then say that our residual does not have zero
mean.

|ϵ̄| > f t
1− α

2
(M − 1)

√
S2

M
(32)

ϵ̄ = 1
M

M∑
i=1

ϵi, S2 = 1
M − 1

M∑
i=1

(ϵi − ϵ̄)2 (33)

For the variance, we can test whether the variance is constant, by using two
non-overlapping data sequences. The variance is time-varying if either of
these two conditions hold,

S2
1
S2

2
< fF

α/2(M1,M2) or S
2
1
S2

2
> fF

1−α/2(M1,M2) (34)

S2
i = 1

Mi

Mi∑
j=1

ϵ2j+ti
(35)
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Stochastic Adaptive Control - Model Validation
Residual Analysis - sign test

A simple way to test for whiteness is by looking at how many times the
residual changes sign. For a white data sequence of length M, the number
of sign changes z should follow

z ∈ N

(
M − 1

2 ,
M − 1

4

)
(36)

We can reject this hypothesis if either of the below holds

z <
M − 1

2 −

√
M − 1

4 fN
1− α

2
or z > M − 1

2 +

√
M − 1

4 fN
1− α

2
(37)

in other words, it is rejected if it is outside the confidence interval.

21 DTU Compute Stochastic Adaptive Control 18.4.2023



Stochastic Adaptive Control - Model Validation
Residual Analysis - test of co-variance function
Another way to test for whiteness is to consider the autocovariance
function, which must have the form:

rϵ(k) = E{ϵt+kϵt} =
{
σ2 k = 0
0 otherwise

(38)

Sample-wise we can compute it and its normalized version as

r̂ϵ(k) = 1
M

M−k∑
t=1

ϵt+kϵt, ρ̂ϵ(k) = r̂ϵ(k)
r̂ϵ(0) (39)

We can test the covariance at each time step, by evaluating the hypothesis

H0 :
√
Mρ̂ϵ(k) ∈ N(0, 1), reject if: |ρ̂ϵ(k)| >

fN
1− α

2√
M

(40)

We can test if the covariance is zero for k ̸= 0, by evaluating the hypothesis

H0 : z = M
m∑

i=1
ρ̂2

ϵ (i) ∈ χ2(m) reject if: z > fχ2

1−α(m) (41)

also called a Portmanteau test.
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Stochastic Adaptive Control - Model Validation
Residual Analysis - test of autocorrelation
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Stochastic Adaptive Control - Model Validation
Residual Analysis - cross-covariance function test
Similarly, we can test the assumption on the cross-covariance:

rϵ,u(k) = E{ϵt+kut} = 0 (42)

r̂ϵ,u(k) = 1
M

M−k∑
i=1

ϵt+kut, ρ̂ϵ,u(k) = r̂ϵ,u(k)√
r̂ϵ(0)r̂u(0)

(43)

The marginal test of the cross-covariance is done by:

H0 :
√
Mρ̂ϵ,u(k) ∈ N(0, 1) reject if: |ρ̂ϵ,u(k)| >

fN
1− α

2√
M

(44)

Conversely, we can check if the covariance is zero for k ̸= 0, by evaluating
the hypothesis

H0 : z = M
m∑

i=1
ρ̂2

ϵ,u(i) ∈ χ2(m) reject if: z > fχ2

1−α(m) (45)
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Stochastic Adaptive Control - Model Validation
Residual Analysis - spectral density test

It is also possible to check the whiteness assumption by looking to the
frequency domain. Consider the Fourier transformed residuals:

X(wk) = 1
M

M∑
t=1

ϵte
jwkt (46)

Hint: Matlab’s fft can be used to compute X(wk). The estimated
spectral density (periodogram) is then given by

ϕ̂(wk) = |X(wk)|2 (47)

Hint: Matlab’s etfe can be used to compute ϕ̂(wk). If {xt} is white noise,

E{ϕ̂(wk)} = 2σ2 (48)
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Stochastic Adaptive Control - Model Validation
Residual Analysis - model comparison tests
While it is best to use two data sets to estimate and validate a model, there
are ways to evaluate a model using a single data set.
One way is to evaluate a model’s coefficient of determination, R2:

R2 = J0 − J(θ̂)
J0

(49)

J0 = 1
2

M∑
i=1

(yi − ȳ)2, J(θ̂) = 1
2

M∑
i=1

ϵ2i (50)

where J(θ̂) is known as the models loss-function. A perfect model thus
gives an R2 = 1, and the lower R2 is the worse the model.
The loss function are occasionally formulated as:

W (θ̂) =
M∑

i=1
ϵ2i , WM (θ̂) = 1

M

M∑
i=1

ϵ2i (51)

The loss-functions are monotonically decreasing with the rise in model
complexity, when using a single data-set.
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Stochastic Adaptive Control - Model Validation
Residual Analysis - model comparison: F-test

One type of single data test is the F-test; where the loss-function of two
model classes M1 and M2 are compared statistically.

We are interested in the hypothesis that M1 ∈ M2 (assuming that
Mtrue ∈ M1), where d2 ≥ d1 are the number of model parameters.
Specifically, it means that if M1 ∈ M2, the loss-function Ji = Ji(θ̂) does
not improve significantly by increasing the model size.

We can test this by considering the hypothesis:

H0 : z = J1 − J2
J2

× M − d2
d2 − d1

∈ F (d2 − d1,M − d2) (52)

with a rejection being defined as

z > fF
1−α(d2 − d1,M − d2) (53)

So we use the test to check if we should increase the model order.
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Stochastic Adaptive Control - Model Validation
Residual Analysis - model comparison: Information Criteria
The loss functions can also be used to evaluate the model structure, both
over and under parametrization. This is done considering an information
criterion, and finding which model it reaches its minimum.

There exist several information criteria:
1 Akaike’s Information Criterion (AIC); tends towards higher complexity
2 Bayesian Information Criterion (BIC);
3 Akaike’s Final Prediction Error (FPE) Criterion; expresses the variance of the

prediction error, also FPE → AIC,M ≫ d,

The criteria is computed as follows.

AIC =
(

1 + 2d
M

)
WM (54)

BIC =
(

1 + log(M)d
M

)
WM (55)

FPE = M + d

M − d
WM =

(
1 + 2d

M − d

)
WM (56)

If two models have the same d, choose the one with the lowest loss function.
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Stochastic Adaptive Control - Model Validation
Residual Analysis - model comparison: Information Criteria

The criteria is computed as follows.

AIC =
(

1 + 2d
M

)
WM (57)

BIC =
(

1 + log(M)d
M

)
WM (58)

FPE = M + d

M − d
WM =

(
1 + 2d

M − d

)
WM (59)

If two models have the same d, choose the one with the lowest loss function.

What happens to BIC as M → ∞?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - Model Validation
Validation examples

Let us jump to some Matlab examples:
• Model reduction: Zero-pole cancellation.
• Singular analysis.
• Insignificant parameter.
• Model Comparison.
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - why?

Given the methods for open-loop identification, why would we want to
consider closed-loop identification?
1 The open-loop system is unstable.

2 The process is running (production / economics).

3 Safety reasons.

4 Adaptive control.
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - Pitfalls
Let us consider some of the potential issues of closed-loop identification.
Consider the following system and control law

yt + ayt−1 = but−1 + et, et ∈ Niid(0, σ2) (60)
ut = −fyt (61)

The closed-loop system is then given in the time-domain by

yt + (a+ bf)yt−1 = et (62)

or, in the frequency domain using spectral analysis, by

ϕyu(w) = G(ejw)ϕu(w), Ĝ(ejw) = ϕ̂yu(w)
ϕ̂u(w)

(63)

where the closed-loop transfer functions from the noise to the output and
the control are given by

Hy(z) = 1
1 + (a+ bf)z−1 , Hu(z) = −f

1 + (a+ bf)z−1 (64)
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - Pitfalls
If we start with the spectral analysis:

ϕu(w) = Φu(ejw), Φu(z) = Hu(z)Hu(z−1)σ2 (65)
ϕyu(w) = Φyu(ejw), Φyu(z) = Hy(z)Hu(z−1)σ2 (66)

the estimated closed-loop system is then given by

Ĝ(w) = ϕ̂yu(w)
ϕ̂u(w)

= Hy(w)
Hu(w) = − 1

f
(67)

only informing us of the controller. If we consider estimation of the CL:

yt + (a+ bf)yt−1 = et (68)

we find that the fitting parameters are not unique:

a = a0 + γf (69)
b = b0 − γ (70)

where γ is arbitrary, and the controller therefore is too simple.
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - Pitfalls

If we consider estimation of the CL:

yt + (a+ bf)yt−1 = et (71)

we find that the fitting parameters are not unique:

a = a0 + γf (72)
b = b0 − γ (73)

where γ is arbitrary, and the controller therefore is too simple.

What would you do to prevent this issue of non-uniqueness?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification
The question is then, how complex should a controller be? Let us consider
the general system

A(q)yt = q−kB(q)ut + C(q)et, et ∈ Niid(0, σ2) (74)

with the control given by

ut = −S(q)
R(q)yt (75)

The closed-loop system is then given by(
A(q)R(q) + q−kB(q)S(q)

)
yt = R(q)C(q)et (76)

A controller is adequately complex if the order of the closed-loop system is
higher than the number of parameters to be estimated.

max(nr − nb, ns + k − na) ≥ 1 + np (77)

where np is the number of common factors in RC and AR+ q−kBS
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - examples:
Let us consider the system from before:

yt + ayt−1 = but−1 + et, et ∈ Niid(0, σ2) (78)
ut = −fyt (79)

We can then see the orders of each polynomials is

na = 1, nb = 0, k = 1, nr = 0, ns = 0, np = 0 (80)

We can then evaluate the controller:

max(nr − nb, ns + k − na) ≥ 1 + np (81)
max(0 − 0, 0 + 1 − 1) ≥ 1 + 0 (82)

0 ≥ 1 (83)

The order is too low to identify the system.
What order should the controller have?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - examples: Minimum Variance
Let us consider the general ARMAX system:

A(q)yt = q−kB(q)ut + C(q)et, et ∈ Niid(0, σ2) (84)

and let us utilize a minimum variance controller:

J = E{y2
t+k}, yt+k = 1

C
(BGut + Syt) +Get+k (85)

The controller and closed-loop system are then given by

ut = − S

BG
yt (AG+ q−kS)yt = CGet (86)

with the orders of R,S and np being

nr = nb + k − 1, ns = na − 1, np = nc (87)

We can now evaluate the controller:

max(nr − nb, ns + k − na) = max(k − 1, k − 1) ≥ 1 + nc (88)
k ≥ nc + 2 (89)
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - informative Data

We say that the examples were not informative enough (for k < nc + 2).
As in the open-loop case, we need the system to be sufficiently informative
in order to estimate the system.
As earlier, a data set zt is sufficiently informative if

E{||(M1 − M2)zt||2} = 0 ⇒ M1(w) ≡ M2(w) (90)

such that we can distinguish two models Mi of the model set M from each
other.

Generally the closed loop experiment is informative if the reference wt (or
another probe signal) is persistently exciting.

Similarly, time-invariant, nonlinear or higher order feedback controllers
should also provide informative experiments.
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - issues

As opposed to the open-loop identification, closed-loop identification has
some potential pitfalls to be aware of:
1 The closed-loop experiment may be non-informative even if the input in itself is

persistently exciting. Reason: the controller might be too simple.

2 Spectral analysis applied in a straightforward manner will give erroneous results.
The estimate of G will converge to

G∗ = G0ϕw − Fϕv

ϕw + |F |2ϕv
, y = Gu+ v (91)

3 Correlation analysis will give a biased estimate of the impulse response because
the assumption that Ē{utvt−τ } = 0 is violated.

4 OE methods give unbiased estimates of G in open-loop experiments, even if the
additive noise (v) is not white. This is not true in closed-loop.
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - A strength

If we consider the PE methods, they will give consistent estimates of the
closed-loop system if
1 The data is informative.

2 The model set contains the true system (S ∈ M).

meaning we only need to consider the data set [y, u], and proceed as with
the open-loop case.
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - Time-varying

If we consider a time-varying control law without a reference, we will need
m different LTI Controllers:

ut = Fiyt, i = 1, ...,m (92)

In the SISO case, it is sufficient to use 2 controllers for which

F1(ejw) − F2(ejw) ̸= 0 ∀w (93)
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - Direct approach
The system is identified in exactly the same way as in open-loop
identification, using the data set [y, u] and ignoring any information about
the feedback structures.
Strengths:
1 It works regardless of the complexity of the controller and requires no knowledge

about the character of the feedback.

2 No special algorithms or software are required.

3 Consistency and optimal accuracy are obtained if model structure contains the
true system.

4 Unstable systems can be handled without problems (as long as the closed loop
and the predictor are stable).

Drawbacks:
1 We need good noise models. (Not a problem if true system (G,H) is contained in

model structure).

2 If noise model is incorrect (fixed incorrectly or not containing the true noise
model) bias in G will be introduced.
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - Indirect Approach
In the indirect approach, we estimate the closed-loop transfer functions:

yt = Gut +Het, ut = wt − Fyyt (94)

yt = Gclwt +Hclet, Gcl = GS, Hcl = HS, S = 1
1 + FyG

(95)

From these and the knowledge of the control, we can derive the identified
system:

Ĝ = Ĝcl

1 − FyĜcl

, Ĥ = Ĥcl(1 + FyĜ) (96)

Properties of the indirect approach:
1 + Any (open-loop) method such as spectral analysis, instrumental variable,

subspace and prediction error methods can be applied.

2 − Any error in Fy will transported directly to the estimate of the model (e.g.,
saturation, manual operation).
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - joint input-output

The last approach considers the full closed-loop description:

yt = GSwt +HSet +GSzt = GSwt + v1,t (97)
ut = Swt − FSHet + Szt = Swt + v2,t (98)

where zt is a partial unknown signal part of ut.

In this approach, we utilize the structure of both the input and output to
estimate the closed-loop plus the sensitivity function S.
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - joint input-output V1

The first version, takes the correlation between v1 and v2 into account:[
yt

ut

]
= S

[
G
1

]
wt + S

[
H G

−FH 1

] [
et

zt

]
= Gwt + H

[
et

zt

]
(99)

Using the variance of [et, zt]T , we can estimate the system parameters
using, e.g., a ML or PEM method:

J =
t∑

i=1
ϵTi R

−1ϵi, R = V ar

{[
ei

zi

]}
, ϵi = H−1

[[
yi

ui

]
− Gwi

]
(100)

This is essentially the direct approach extended to controller estimation.
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - joint input-output V2
In the second version, we disregard the correlation:[

yt

ut

]
=
[
Gcl

Guw

]
wt +

[
v1,t

v2,t

]
(101)

For our estimation we minimize the cost:

J = 1
σ2

1

t∑
i=1

(yi −Gclwi)2 + 1
σ2

2

t∑
i=1

(ui −Guwwi)2, (102)

The system can then be determined by

Ĝ = Ĝcl

Ĝwu

≈ ĜŜ

Ŝ
(103)

Given these polynomials are estimated the cancellation is not perfect,
making Ĝ higher order than it should be.
A trick against this, is to use independent parametrization of G and S: G(θ)
and S(η)
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Stochastic Adaptive Control - Model Validation
Closed-Loop Identification - joint input-output V2 - 2 step

For the independently parametrized estimation, we consider the cost:

J = β
1
σ2

1

t∑
i=1

(yi −G(θ)S(η)wi)2 +
t∑

i=1
(ui − S(η)wi)2, (104)

We then do the estimation in two steps
1 first for β = 0, to estimate the parameters of S(η).

2 then use ût = S(η̂)wt to estimate G(θ) from yt = G(θ)ût + v1,t

One previously suggested parametrization of S is the non-causal filter:

S(η) =
m∑

i=−m

skq
−k (105)
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