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Stochastic Adaptive Control - Follow-up
Today’s Agenda

• Follow-up from last lecture
• Estimation - State space models: EKF estimation
• Estimation - MIMO estimation
• Estimation - Recursive estimation
• Estimation - Time-varying estimation
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Stochastic Adaptive Control - Follow-up
Follow-up from last time, Question 3.1-3.4
We are considering the system

yt = B

A
ut−1 + et, e ∈ Niid(0, 0.1888) (1)

A(q−1) = 1 − 1.5q−1 + 0.7q−2, B(q−1) = 1 + 0.5q−1 (2)
and we are asked to estimate it using and ARX, OE and IV model
estimation, and a PRBS signal.
First we need to choose the noise variance (hint: use trfvar or trfvar2):

σ2
e = σ2

yu/100, σ2
yu = V ar

(
q−1B

A

)
V ar(Prbs) ≃ V ar

(
q−1B

A

)
(3)

Using a least-squares approach for an ARX-model, arx(data,[2,2,1]):
a1 = −1.3171, CIa1 = [−1.4430, −1.1911] (4)
a2 = 0.5231, CIa2 = [0.3991, 0.6472] (5)
b0 = 0.9360, CIb0 = [0.7237, 1.1484] (6)
b1 = 0.7005, CIb1 = [0.4593, 0.9417] (7)

For a1 and a2, the confidence intervals do not include the true values.
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Stochastic Adaptive Control - Follow-up
Follow-up from last time, Question 3.1-3.4

Using the IV approach, iv4(data,[2,2,1]), we get

a1 = −1.4983, CIa1 = [−1.5247, −1.4718] (8)
a2 = 0.6999, CIa2 = [0.6767, 0.7231] (9)
b0 = 0.9905, CIb0 = [0.8692, 1.1118] (10)
b1 = 0.5297, CIb1 = [0.4383, 0.6211] (11)

Our confidence intervals now cover the actual parameters.
And using the OE approach, oe(data, [2, 2, 1])

a1 = −1.4977, CIa1 = [−1.5181, −1.4774] (12)
a2 = 0.6988, CIa2 = [0.6821, 0.7156] (13)
b0 = 0.9997, CIb0 = [0.9070, 1.0923] (14)
b1 = 0.5174, CIb1 = [0.3897, 0.6451] (15)

Again, our confidence intervals cover the actual parameters.
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Stochastic Adaptive Control - Follow-up
Follow-up from last time

Questions?
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Stochastic Adaptive Control - Internal Identification
State-Space estimation

Instead of identifying an external model, we might want to identify an
internal model. For example:

xt+1 = A(θ)xt +B(θ)ut (16)
yt = C(θ)xk +D(θ)ut + et (17)
x0 = m0(θ) (18)

Depending on the estimation approach, there are different types of
parameters that can be handled.
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Stochastic Adaptive Control - Internal Identification
State-Space estimation

The fully parametrized linear state space model is

xt+1 = A(θ)xt +B(θ)ut + vt, vt ∈ F(0, Rv(θ)) (19)
yt = C(θ)xt +D(θ)ut + et, et ∈ F(0, Re(θ)) (20)
x0 ∈ F(m0(θ), P0(θ)) (21)

If we apply LS or ML estimation, we still use the same formulation based on
the measurements:

LS: J =
N∑

t=1
ϵ2t =

N∑
t=1

(yt − ŷt)2 (22)

ML: J = −
N∑

t=1
log(f(yt|Yt−1,θ)) (23)

yt|Yt−1,θ ∈ N(ŷt|t−1, Qt|t−1) (24)

though the estimation might not be linear in the parameters.
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Stochastic Adaptive Control - Internal Identification
Extended Kalman Filter

We can also use a Kalman filter for the estimation. Consider the linear
system

xt+1 = A(θt)xt +B(θt)ut + vt, vt ∈ F(0,Σv) (25)
θt+1 = θt + ηt, ηt ∈ F(0,Ση) (26)
yt = C(θt)xt +D(θt)ut + et, et ∈ F(0,Σe), Cov(vt, et) = Σve (27)
vt,ηt, et white and ηt ⊥ vt, et (28)

We can write it as a nonlinear model with an augmented state vector:[
xt+1
θt+1

]
=
[
f(xt, θt, ut, vt)

θt + ηt

]
(29)

yt = g(xt, θt, ut, et) (30)
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Stochastic Adaptive Control - Internal Identification
Extended Kalman filter
Next, we linearize to obtain a model in the standard form:[
x
θ

]
t+1

= Al

[
x
θ

]
t

+Blut + wt, wt ∈ F(0, R1) (31)

yt = Cl

[
x
θ

]
t

+Dlut + ϵt, ϵt ∈ F(0, R2), Cov(wt, ϵt) = R12 (32)

where the matrices are given by

Al =
[

∂f
∂x

∂f
∂θ

0 I

]
, Bl =

[
∂f
∂u
0

]
, Gl =

[
∂f
∂v 0
0 I

]
(33)

Cl =
[

∂g
∂x

∂g
∂θ

]
, Dl = ∂g

∂u
, Hl = ∂g

∂e
(34)

R1 = Gl

[
Σv 0
0 Ση

]
GT

l , R2 = HlΣeH
T
l , R12 =

∂f
∂v Σve

(
∂g
∂e

)T

0

 (35)
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Stochastic Adaptive Control - Internal Identification
Extended Kalman filter

The extended Kalman filter is used to estimate both states and parameters:[
x̂t+1
θ̂t+1

]
=
[
f(x̂t, θ̂t, ut)

θ̂t

]
+Kt(yt − g(x̂t, θ̂, ut)) (36)

Kt = (AlPtC
T
l +R12)(ClPtC

T
l +R2)−1 (37)

Pt+1 = (Al −KtCl)PtA
T
l +R1 −KtR

T
12 (38)

The Jacobians used to form Al, Bl, Gl, Cl, Dl, and Hl are evaluated at x̂t

and θ̂t, i.e., the system matrices vary over time.

Can you think of any particular limitations of this approach?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - External Identification
Multiple inputs, multiple outputs (MIMO) estimation

Let us consider a system with multiple inputs and outputs

A(q−1)yt = B(q−1)ut + et (39)
A(q−1) = I +A1q

−1 + · · · +Anaq
−na (40)

B(q−1) = B0 +B1q
−1 + · · · +Bnb

q−nb (41)
Ai ∈ Rny×ny , Bi ∈ Rny×nu (42)

We can then write it on the matrix form as

yT
t = ϕT

t θ + eT
t (43)

θ =
[
A1 A2 · · · Ana B0 B1 · · · Bnb

]T
(44)

ϕT
t =

[
−yT

t−1 −yT
t−2 · · · −yT

t−na
uT

t uT
t−1 · · · uT

t−nb

]
(45)
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Stochastic Adaptive Control - External Identification
Multi-input-Multi-Output estimation

The estimate is obtained by

θ̂ = (ΦT Φ)−1ΦTY (46)
Y = Φθ + E (47)

Y =


yT

1
yT

2
...
yT

N

 Φ =


ϕT

1
ϕT

2
...
ϕT

N

 E =


eT

1
eT

2
...
eT

N

 (48)
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Stochastic Adaptive Control - Recursive Algorithms
Recursive Estimation

The previous methods are in the form

θ̂t = func(Yt) (49)

That is, we use all measurements up to and including time t. Over time,
that becomes computationally intensive.

In contrast, a recursive method only relies on the current measurement and
the past estimate:

θ̂t = func(yt, θ̂t−1) (50)

This approach assumes that θ̂t−1 is a sufficient statistic of Yt−1. One
advantage of this approach is that it can easily be adapted to account for
time-varying parameters.
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Stochastic Adaptive Control - Recursive Algorithms
RLS/RARX - Recursive Least Squares

If our system is an ARX model:

A(q−1)yt = q−kB(q−1)ut + et, et ∈ F(0, σ2) (51)
yt = ϕT

t θ + et, et ⊥ es s > t (52)
ϕt = [−yt−1, . . . ,−yt−na , ut−k, . . . , ut−nb−k]T (53)
θ = [a1, . . . , ana , b0, . . . , bnb

]T (54)

For a least squares approach based on t measurements, the estimator is

θ̂t =
( t∑

i=1
ϕiϕ

T
i

)−1 t∑
i=1

ϕiyi (55)

P−1
t =

t∑
i=1

ϕiϕ
T
i ,

t∑
i=1

ϕiϵi = 0 (56)
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Stochastic Adaptive Control - Recursive Algorithms
RLS/RARX - Recursive Least Squares
The recursive formulation is

θ̂t = θ̂t−1 + Pt ×
t∑

i=1
ϕiϵi (57)

This allows us write the recursion in a computationally suitable form:

θ̂t = θ̂t−1 + Ptϕtϵt (58)
ϵt = yt − ϕT

t θ̂t−1 (59)
P−1

t = P−1
t−1 + ϕtϕ

T
t (60)

V ar(θ̂t|Yt) = Ptσ
2 ≈ V ar(θ̂t) (61)

If no a priori knowledge about the parameter values is available, this initial
estimate is suitable

θ̂0 = 0, P0 = βI, β ≫ 0 (62)
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Stochastic Adaptive Control - Recursive Algorithms
RLS/RARX - Recursive Least Squares

The recursion can also be computed using alternative formulations.
Inspired by the Hemes’ inversion lemma and square-root/factorization
algorithms, we can write it as

ϵt = yt − ϕT
t θ̂t−1 (63)

st = 1 + ϕT
t Pt−1ϕt (64)

Kt = Pt−1ϕt

st
(65)

θ̂t = θ̂t−1 +Ktϵt (66)
Pt = Pt−1 −KtstK

T
t (67)
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Stochastic Adaptive Control - Recursive Algorithms
RELS - Recursive Extended Least Squares

If we consider the ARMAX structure

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (68)
yt = ϕT

t θ + et (69)
ϕt = [−yt−1, . . . ,−yt−na , ut−k, . . . , ut−nb−k, et−1, . . . , et−nc ]T (70)
θ = [a1, . . . , ana , b0, . . . , bnb

, c1, . . . , cnc ]T (71)

As with the LS method, we formulate a recursive version of the extended
LS method by estimating ei as ϵi in ϕ:

θ̂t = θ̂t−1 + Ptϕtϵt (72)
ϵi = yi − ϕT

i θ̂i−1 (73)
P−1

t = P−1
t−1 + ϕtϕ

T
t (74)
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Stochastic Adaptive Control - Recursive Algorithms
RML - Recursive Maximum Likelihood

If we consider the ARMAX structures

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (75)
yt = ϕT

t θ + et (76)
ϕt = [−yt−1, . . . ,−yt−na , ut−k, . . . , ut−nb−k, et−1, . . . , et−nc ]T (77)
θ = [a1, . . . , ana , b0, . . . , bnb

, c1, . . . , cnc ]T (78)

Using the same trick of replacement: estimating ei as ϵi in ϕ; we can
formulate the recursive maximum likelihood method:

θ̂t = θ̂t−1 + Ptψtϵt, ψt = 1
Ĉ(q−1)

ϕt (79)

ϵi = yi − ϕT
i θ̂i−1 (80)

P−1
t = P−1

t−1 + ψtψ
T
t (81)
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Stochastic Adaptive Control - Recursive Algorithms
Recursive methods for L-structures

Consider the L-Structure,

A(q−1)yt = B(q−1)
F (q−1)ut + C(q−1)

D(q−1)et + d (82)

yt = ϕT
t θ + et (83)

ϕt = [−yt−1, . . . , ut, . . . ,−yu
t−1, . . . , et−1, . . . ,−ye

t−1, . . . , 1]T (84)
θ = [a1, . . . , b0, . . . , f1, . . . , c1, . . . , d1, . . . , d]T (85)

We estimate the unknown regressors using our prior parameter estimate

ŷu
t = q−k B̂

F̂
ut, ŷe

t = Âyt − ŷu
t − d̂, ϵt = êt = D̂

Ĉ
ye

t (86)
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Stochastic Adaptive Control - Recursive Algorithms
RPLR - Recursive Pseudo Linear Regression

For a PLR method (like ELS),

ϕt = [−yt−1, . . . , ut, . . . ,−ŷu
t−1, . . . , ϵt−1, . . . ,−ŷe

t−1, . . . , 1]T (87)
θ = [a1, . . . , b0, . . . , f1, . . . , c1, . . . , d1, . . . , d]T (88)

Then, the recursive algorithm is

θ̂t = θ̂t−1 + Ptϕtϵt (89)
ϵt = yt − ϕT

t θ̂t−1 (90)
P−1

t = P−1
t−1 + ϕtϕ

T
t (91)
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Stochastic Adaptive Control - Recursive Algorithms
RPEM - Recursive Prediction Error Method
if we instead consider a PEM algorithm (ML), we have that

ψt = [−y̌t−1, . . . , ǔt, . . . ,−y̌u
t−1, . . . , ět−1, . . . ,−y̌e

t−1, . . . , δ]T (92)
θ = [a1, . . . , b0, . . . , f1, . . . , c1, . . . , d1, . . . , d]T (93)

Where the estimated variables are given as

y̌t = D̂

Ĉ
yt, ǔt=

D̂

ĈF̂
ut, y̌u

t = − D̂

ĈF̂
yu

t (94)

ět = 1
Ĉ
ϵt, y̌e

t = − 1
Ĉ
ye

t , δ = D̂

Ĉ
1 (95)

Then, the recursion is given by

θ̂t = θ̂t−1 + Ptψtϵt (96)
ϵt = yt − ψT

t θ̂t−1 (97)
P−1

t = P−1
t−1 + ψtϕ

T
t (98)
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Stochastic Adaptive Control - Recursive Algorithms
STA Algorithm - Stochastic Approximation Algorithm

The above recursive algorithms are based on the Newton-Raphson method.

An alternative recursive algorithm is the STA or gradient algorithm:

θ̂t = θ̂t−1 + 1
rt
ϕtϵt (99)

ϵt = yt − ϕT
t θ̂t−1 (100)

rt = rt−1 + 1 or rt = rt−1 + ϕT
t ϕt (101)
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying estimation - first example

Let us consider the case where we have a time varying ARX model

A(q−1)yt = B(t, q−1)ut + et (102)
b1(t) = b1,0 + b1,1t (103)

We then treat the time-varying coefficient as two coefficients with their own
inputs:

yt = ϕT θ + et (104)

θT =
[
a1 a2 . . . ana b1,0 b1,1 b2 . . . bnb

]
(105)

ϕT =
[
−yt−1 −yt−2 . . . −yt−na ut−1 t× ut−1 ut−2 . . . ut−nb

]
(106)

Similar approaches can be used for nonlinear time-varying coefficients.
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying estimation

For deterministic time varying systems, we can rearrange the parameters as:

yt = ϕT
t θt + et (107)

θt = α+ f(t)β =
[
I f(t)

] [α
β

]
(108)

yt =
[
ϕT

t ϕT
t f(t)

] [α
β

]
+ et (109)

while for piece-wise linear parameters, we have

yt = ϕT
t θt + et (110)

θt = θTi + (t− Ti)α, Ti ≤ t ≤ Ti+1 (111)

yt =
[
ϕT

t ϕT
t (t− Ti)

] [θTi

α

]
+ et (112)

But what do we do in the general case?
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems

Let us now consider the case of systems with general time-varying
parameters:

θt+1 = f(t, θt, vt) (113)

The methods discussed so far cannot estimate the time-varying dynamics
and were not designed to do it.

In practice, the problem is that the correction factor is diminishing as time
goes on.

Pt → 0 (114)
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Forgetting methods: Resetting

One approach is to restart the estimation after some time ti:

Pti = Pi > Pti−1, θ̂ti = θ̂ti−1 (115)

when to restart depends on the application.

An example is to restart at fixed intervals:

ti = N ∗ i (116)

This can be useful for periodic systems.
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Forgetting methods: Constant Gain

Another method is to simply keep the correction term large. One variant is
to keep the correction term κ constant:

θ̂t = θ̂t−1 + κϵt (117)
θ̃t = (I − κϕT

t )θ̃t − κet (118)

Alternatively, we can keep the variance constant:

Pt = P (119)
θ̂t = θ̂t−1 + κϵt (120)

κt = Pϕt

1 + ϕT
t Pϕt

(121)
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Forgetting methods: Exponential
Forgetfulness
A third method is to forget a little bit all the time. This is also known as
exponential forgetfulness:

Jt = 1
2

t∑
i=1

λt−iϵ2i = λJt−1 + 1
2ϵ

2
t (122)

The recursion is then similar to the previous methods:

θ̂t = θ̂t−1 + Ptϕtϵt (123)
ϵt = yt − ϕT

t θ̂t−1 (124)
P−1

t = λP−1
t−1 + ϕtϕ

T
t (125)

The forgetting factor λ can be expressed in terms of a horizon, N∞, which
is roughly the period affecting the estimate

λ = 1 − 1
N∞

(126)

This method relies on the system being sufficiently excited.
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Fortescue’s Method
We can improve the method by using a time-varying forgetting factor
depending on the prediction error ϵt:

λt = 1 − 1
N0

× ϵ2t
σ2st

(127)

where N0 is the approx. horizon for which the parameter can be assumed to
be constant.

The full recursion is then given as

ϵt = yt − ϕT
t θ̂t−1 (128)

st = 1 + ϕT
t Pt−1ϕt (129)

Kt = Pt−1ϕt

λt + st
(130)

θ̂t = θ̂t−1 +Ktϵt (131)

Pt = (I −Ktϕ
T
t )Pt−1

1
λt

(132)
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Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Fortescue’s Method

If the variance is unknown, we can introduce an estimate rt given by

λt = 1 − 1
N0

× ϵ2t
rtst

(133)

rt = rt−1 + 1
t

(
ϵ2t
st

− rt−1

)
, r0 = ϵ20 (134)

31 DTU Compute Stochastic Adaptive Control 11.4.2023



Stochastic Adaptive Control - Time-variant Estimation
Time-varying systems - Model Estimators

In these types of methods, a model of the parameters are introduced:

θt+1 = θt + vt, vt ∈ N(0, R1σ
2) (135)

yt = ϕT
t θt + et, et ∈ N(0, σ2) (136)

and we can therefore utilize a Kalman filter to do the estimation:

Data Update: (137)
θ̂t|t = θ̂t|t−1 + Pt|t−1ϕt(yt − ϕT

t θ̂t|t−1) (138)
P−1

t|t = P−1
t|t−1 + ϕtϕ

T
t (139)

Time Update: (140)
θ̂t+1|t = θ̂t|t (141)
Pt+1|t = Pt|t +R1 (142)
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Stochastic Adaptive Control - Time-variant Estimation
Estimation examples

Today’s Matlab example topics:
• Recursive least-squares Method
• Linear time-varying estimation
• Nonlinear time-varying estimation
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Stochastic Adaptive Control - Time-variant Estimation
Design Configurations

When attempting to identify a system, we should consider the following:
1 What are the outputs?

2 What are the inputs?

3 What are the disturbances?

We should further consider some practical aspects of the system:
1 What are we allowed to do?

2 What type of model are we interested in?
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Stochastic Adaptive Control - Time-variant Estimation
Design Configurations

Open Loop Closed Loop
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - Objectives

For any system S, we can construct a set of models M to describe it:

S : y = G0(q)u+H0(q)e (143)
M = {G(q, θ), H(q, θ)|θ ∈ D} (144)

Ideally we would have the system included within the possible models:

S ∈ M (145)

If we have two models within M,

M1 : y = G1(q)u+H1(q)e1 (146)
M2 : y = G2(q)u+H2(q)e2 (147)

we want to be able to determine which that approximates the system better.

Therefore, we need to perform an informative open-loop experiment.
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments
We want to determine an input signal resulting in data that is sufficiently
informative to dinstinguish between models in M.

Consequently, for two models identified using data that is sufficiently
informative, the expectation

E{∆ϵ2} = lim
N→∞

1
N

N∑
t=1

E{∆ϵ2t } =
∫ π

−π
ϕ1(w) + ϕ2(w)dw = 0 (148)

only holds if

ϕ2(w) =
∣∣∣∣H0∆H
H1H2

∣∣∣∣2 σ2 = 0 ⇒ ∆H(ejw) ≡ 0 (149)

ϕ1(w) =
∣∣∣∣ 1
H1

∣∣∣∣2 ∣∣∣∣∆G+ G0 −G2
H2

∆H
∣∣∣∣2 Φu(w) = 0 (150)

⇒ |∆G(ejw)|2Φu(w) ≡ 0 ⇒ ∆G(ejw) ≡ 0 (151)

Consequently, the input should have a spectrum Φu(w) for which the above
expectation only becomes zero for identical models in M.
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Stochastic Adaptive Control - Time-variant Estimation
Informative Experiments - Persistently excited signal

We say that such an input is persistently excited, with the following
definition.

A quasi-stationary signal with spectrum Φu(w) is said to be persistently
excited of order n (pe(n)) if, for all filters in the form

M(q) = m0 +m1q
−1 + ...+mn−1q

−(n−1) (152)

the relation

Φz(w) = |M(ejw)|2Φu(w) = 0, zt = M(q)ut (153)

implies that for all w

M(ejw) ≡ 0 (154)

M(q) has n parameters and n− 1 zeros; implying M(q)M(q−1) has at
most n− 1 different zeros.
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Informative Experiments - Persistently excited signal
In order to uniquely to determine the n coefficients in M , the spectrum,
Φu(w), has to be non-zero at at least n different points in the interval
w ∈ [−π, π].

The reason for this is that a signal which is pe(n) can not be filtered to zero
by an MA filter of order n− 1, but n or higher might do it

ut = const ̸= 0, signal is pe(1) (155)
M1(q) = 1 − q−1 : M1(q)ut = ut − ut−1 = 0 (156)
M0(q) = 1 : M0(q)ut = ut ̸= 0 (157)

or looking at the spectrum: it is always zero

Φu = d̃δ(w) (158)
ΦM1u = 2(1 − cos(w))d̃δ(w) = 0 (159)

Alternatively, it can be stated that for a signal that is pe(n), M(q) has at
most n parameters. Which means there are maximum n estimated
parameters in the model.
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Informative Experiments - Persistently excited signal

Let us consider the transfer function:

G = q−kB(q)
F (q) = q−k b0 + b1q

−1 + · · · + bnb
q−nb

1 + f1q−1 + · · · + fnf
q−nf

(160)

noticing the order of the polynomials, we can say the signal ut has to be
pe(nb + nf + 1)

∆G = B1
F1

− B2
F2

= B1F2 −B2F1
F1F2

= 0 ⇒ |B1F2 −B2F1|2Φu(w) = 0

(161)

where it can be seen that the effective part of ∆G has the order nb + nf .
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Informative Experiments - common signals
Let us now consider some signals that are persistently exciting.

A measure of the input power of a signal is beneficial, given that the
variance of the estimation is inversely proportional to the input power.
Given a practical signal is finitely bound, the measure can be expressed in
terms of the crest factor, for zero-mean signals:

C2
r = maxt u

2
t

limN→∞
1
N

∑N
t=1 u

2
t

(162)

which for a good signal is as low as possible (minimum is 1).

For binary signals, ut = ±ū, the crest factor is minimum, C2
r = 1. This

makes binary signals very useful for linear systems, but cannot in general
handle nonlinear functions:

yt = B(q)
A(q)f(ut) (163)

f(ut) = Af cos(±ū) = Af cos(ū) (164)
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Informative Experiments - common signals

Let us now consider harmonic signals:

A single harmonic signal,

ut = A sin(wt), (165)

has two non-zero frequency components in its spectrum at ±w, and is
pe(2). However, the crest factor is C2

r = 2. If we instead consider sums of
sinusoids:

ut =
n∑

k=1
Ak sin(wkt+ ϕt) (166)

Then we have 2 components for each wk, so the signal is pe(2n).
If wk = 0 or wk = π

Ts
, the order goes down by 1 to pe(2n− 1) (by 2 if both)

The crest factor is, in the worst case, C2
r = 2n, and lowest if the sinusoids

are maximally out of phase.
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Sum of 2 harmonics, with maximum phase difference (180◦)
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Informative Experiments - common signals

Among the single sine functions we have the chirp signal:

ut = A sin((w0 + αt)t), C2
2 =

√
2 (167)
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Informative Experiments - common signals

If we now consider the binary signals, we have the option of using a PRBS
signal

PRBS signals are deterministic, but has white noise-ish properties.

zt = mod(B(q)zt−1, 2) (168)

where B has the order m, and PRBS has the maximum length M = 2m − 1.
A PRBS signal is pe(M − 1), with C2

r = 1.
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Informative Experiments - common signals

We can also apply Random Gaussian signals, which are filtered/colored
white noise signals:

ut = Hu(q)ět, ět ∈ Fiid(0, σ2
u)(white) (169)

In practice, we would have to use a truncated Gaussian to keep the control
bounded, e.g., within ±3σ (≈ 99% coverage), giving C2

r = 3.

Random binary signals can be generated by taking the sign of a suitable
Random Gaussian signal.
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Finally the step and square wave signals are also quite common:

where, for a step at time M and a square (both between d0 and d1),

C2
r = d2

1

lim
N→∞

Md2
0+(N−M)d2

1
N

= d2
1

d2
1 + lim

N→∞
M
N d2

0
= 1, C2

r = d2
1

1
2d

2
1 + 1

2d
2
0

The pulse can also be represented as an infinite harmonic sum.
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Questions

Questions?
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