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Stochastic Adaptive Control - External control methods
Today’s Agenda

• Follow-up from last lecture
• General Stochastic Pole Placement
• General Minimum Variance
• General Predictive Control
• LQG in external models
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Stochastic Adaptive Control - External control methods
Follow-up from last time: polynomials

Let us consider the 2 polynomials

A = a0 + a1q−1 + a2q−2 + a3q−3 (1)
B = b0 + b1q−1 + b2q−2 (2)

How to add 2 polynomials:
First we pad the short polynomial:

A = a0 + a1q−1 + a2q−2 + a3q−3 (3)
B = b0 + b1q−1 + b2q−2 + 0q−3 (4)

we then simply add each term:

A + B = (a0 + b0) + (a1 + b1)q−1 + (a2 + b2)q−2 + (a3 + 0)q−3 (5)
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Stochastic Adaptive Control - External control methods
Follow-up from last time: polynomials
Consider the polynomials

A = a0 + a1q−1 + a2q−2 + a3q−3 (6)
B = b0 + b1q−1 + b2q−2 (7)

How to multiply 2 polynomials:
We multiply each term of A with all terms of B:

AB = a0(b0 + b1q−1 + b2q−2) + a1q−1(b0 + b1q−1 + b2q−2) (8)
+ a2q−2(b0 + b1q−1 + b2q−2) + a3q−3(b0 + b1q−1 + b2q−2) (9)
= a0b0 + (a1b0 + a0b1)q−1 + (a0b2 + b1a1 + b0a2)q−2 (10)
+ (b1a2 + b2a1 + a3b0)q−3 + (b2a2 + b1a3)q−4 + b2a3q−5 (11)

In Matlab, if we use the parameter notation, we can use

AB = conv(A, B) (12)
A = [a0, a1, a2, a3] B = [b0, b1, b2] (13)
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Stochastic Adaptive Control - External control methods
Follow-up from last time: Q5.2
We are given the system

A(q−1)yt = q−2B(q−1)ut + C(q−1)et, et ∈ N(0, 0.1)
A(q−1) = 1 − 1.5q−1 + 0.7q−2

B(q−1) = 1 − 0.5q−1

C(q−1) = 1 − 0.2q−1 + 0.5q−2

To get the MV0-controller, we solve the Diophantine for G and S
C = AG + q−2S, [G] = [1, 1.3] [S] = [1.75, −0.91] (14)

and we then get:
Q = C (15)
R = BG = 1 + 0.8q−1 − 0.65q−2 (16)

[R] = conv(B, G) = [1, 0.8, −0.65] (17)
and the control law:

Rut = Qwt − Syt (18)
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Stochastic Adaptive Control - External control methods
Follow-up from last time:

Questions?
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Stochastic Adaptive Control - External control methods
Optimal External Control - Resume

So far we have considered the following controllers
A MV: E{y2

t+k}

B MV0: E{(yt+k − wt)2}

C MV1: E{(yt+k − wt)2 + ρu2
t }

D MV1a: E{(yt+k − wt)2 + ρ(∆ut)2}

E PZ: E{(Am(q−1)yt+k − Bm(q−1)wt)2}

And we have discussed some of the issues of these controllers:
1 set-points: A

2 constant disturbances: A

3 large control effort : A, B

4 non damped zeros (zeros outside to the unit circle ): A, B, C, D, E

Today we will consider methods that can deal with the 4th issue.
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Stochastic Adaptive Control - External control methods
General Stochastic Pole Placement
The Pole-Zero (PZ) method can be generalized by accepting the presence
of the unstable zeros.
We will consider the stochastic system given by the ARMAX model

A(q−1)yt = q−kB(q−1)ut + C(q−1)εt + d (19)

where {εt} is a white-noise input with variance σ2
ε .

The goal is still to construct a feedback strategy such that {yt} tracks a
set-point model, {w̃t}, given by

Am(q−1)w̃t = q−kBm(q−1)wt, (20)

where {wt} is some reference sequence (e.g. a set-point). The goal is to
design the feedback strategy which minimizes the objective

E
[ (

Am(q−1)yt+k − Bm(q−1)wt

)2 ]
. (21)
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Stochastic Adaptive Control - External control methods
General Stochastic Pole Placement

We will now assume that B(q−1) can be factorized according to

B(q−1) = B+(q−1)B−(q−1), (22)

where B+(q−1) contains the zeros of the system which are well-behaved,
and can be cancelled, while B−(q−1) contains unwanted zeros. Note that
this factorization is subject to a design choice of the end-user; you need to
specify which zeros to be contained in B+(q−1) and B−(q−1), respectively.

With this in-mind, the set-point model polynomial, Bm(q−1), will be built
upon this design choice according to

Bm(q−1) = B−(q−1)B̄m(q−1) (23)

where B̄m(q−1) contains additional zeros in the resulting closed-loop
transfer function.
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Stochastic Adaptive Control - External control methods
General Stochastic Pole Placement
Using this factorization, the stochastic pole placement feedback strategy is
then given by

B+(q−1)G(q−1)ut = B̄m(q−1)Ao(q−1)wt − S(q−1)yt − G(q−1)
B−(q−1)d (24)

where the polynomials, G and S, are solutions to the Diophantine equation
given by

Ao(q−1)Am(q−1) = A(q−1)G(q−1) + q−kB−(q−1)S(q−1) (25)

where G(0) = 1, ord[G] = k + nb− − 1 and
ord[S] = max(na − 1, nao + nam − k − nb−). The polynomial Ao(q−1) is an
arbitrary stable polynomial, called the observer polynomial. Often, Ao = C.

From (24), we have the relation to the reference term

Q(q−1) = B̄m(q−1)Ao(q−1) (26)

where we introduce the desired new zeroes (B̄m(q−1)).
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Stochastic Adaptive Control - External control methods
General Stochastic Pole Placement - Closed loop

The closed-loop system takes the form

yt = q−k B̄m(q−1)B−(q−1)
Am(q−1) wt + G(q−1)

Am(q−1)
C(q−1)
Ao(q−1)εt (27)

ut = A(q−1)
B+(q−1)

B̄m(q−1)
Am(q−1)wt − S(q−1)

Am(q−1)B+(q−1)
C(q−1)
Ao(q−1)εt − 1

B(q−1)d

(28)

Here we can see that choice of Ao only affects the noise terms in the
close-loop
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Stochastic Adaptive Control - External control methods
General Stochastic Pole Placement - special

If we consider the special case B−(q−1) = 1, B+(q−1) = B(q−1) and
Ao(q−1) = C(q−1),

B(q−1)G(q−1)ut = B̄m(q−1)C(q−1)wt − S(q−1)yt − G(q−1)d (29)

The closed-loop system takes the form

yt = q−k B̄m(q−1)
Am(q−1)wt + G(q−1)

Am(q−1)εt (30)

ut = A(q−1)
B(q−1)

B̄m(q−1)
Am(q−1)wt − S(q−1)

Am(q−1)B(q−1)εt − 1
B(q−1)d (31)

Here we can see that we obtain the PZ-controller, this is even the case for
some constant p such that B−(q−1) = p.
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Stochastic Adaptive Control - External control methods
GSP algorithm
• Factorize B = B+B−

• Choose Am, B̄m and Ao, such that

DC

[
B̄mB−

Am

]
= B̄m(1)B−(1)

Am(1) = 1 (32)

• Find S and G, by solving

Ao(q−1)Am(q−1) = A(q−1)G(q−1) + q−kB−(q−1)S(q−1) (33)

• Use the controller

B+(q−1)G(q−1)ut = B̄m(q−1)Ao(q−1)wt − S(q−1)yt − G(q−1)
B−(q−1)d (34)

What type of Diophantine equation is (33)?
What method could you use to solve it?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - External control methods
GSP Derivation

Consider the system:

Ayt = q−kBut + Cet + d (35)

We seek a controller in the form

Rut = Qwt − Syt + γ (36)

which minimizes the deviation from

w̃ = q−k Bm

Am
wt = Hy,wwt (37)

where

Bm = B̄mB−, B = B+B− (38)

and B− contains the system zeroes which will not be cancelled.
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Stochastic Adaptive Control - External control methods
GSP Derivation

We start by multiplying the system by R

ARyt = q−kBRut + RCet + Rd (39)

We can the substitute (36) into the system

(AR + q−kBS)yt = q−kBQwt + RCet + q−kBγ + Rd (40)

The reference transfer function is then given by

Hy,w = q−k BQ

AR + q−kBS
= q−k Bm

Am
= q−k B̄mB−

Am
(41)

We can then see that only Q can inject the new zeroes:

Q = AoB̄m (42)
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Stochastic Adaptive Control - External control methods
GSP Derivation

Hy,w = q−k AoB̄mB+B−

AR + q−kB+B−S
= q−k B̄mB−

Am
(43)

Since we only cancel a subset of the zeroes:

R = B+G (44)

we have

Hy,w = q−k AoB̄mB−

AG + q−kB−S
= q−k B̄mB−

Am
(45)

Leaving the following general Diophantine equation as a requirement

AoAm = AG + q−kB−S (46)
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Stochastic Adaptive Control - External control methods
GSP Derivation
Applying our found R

(AG + q−kB−S)yt = q−kB−Qwt + GCet + q−kB−γ + Gd (47)

we can determine γ

γ = − G

B− d (48)

applying γ, Diophantine and Q, we get the closed-loop:

yt = q−k B−B̄m(1)
Am

wt + G

Am

C

Ao
et (49)

therefore if the reference filter is chosen as

B−(1)B̄m(1)
Am(1) = 1 (50)

we get no stationary error in our reference tracking
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Stochastic Adaptive Control - External control methods
Generalized Minimum Variance Strategy
We will now consider the generalized minimum variance strategy. We will
again consider an ARMAX model on the form

A(q−1)yt = q−kB(q−1)ut + C(q−1)εt + d, (51)

where {εt} is a white-noise input with variance σ2
ε . Our goal is to define

the feedback strategy which minimizes the objective

E
[

(ỹt − w̃t)2 + ρũ2
t

]
, (52)

where we have defined the filtered versions as

ỹt = Hyyt = By(q−1)
Ay(q−1)yt, w̃t = Hwwt = Bw(q−1)

Aw(q−1)wt, ũt = Huut = Bu(q−1)
Au(q−1)ut,

(53)

and ρ > 0 is a regularization parameter. We will assume that

Ay(0) = Aw(0) = Au(0) = Bu(0) = 1. (54)
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Stochastic Adaptive Control - External control methods
Generalized Minimum Variance Strategy

The Generalized MV control strategy is then given by[
AuBG + αCBu

]
ut = Au

[
C

Bw

Aw
wt − S

Ay
yt − Gd

]
, α = ρ

b0
(55)

for which the polynomials, G and S, are solutions to the Diophantine
equation given by

By(q−1)C(q−1) = Ay(q−1)A(q−1)G(q−1) + q−kS(q−1), (56)

where G(0) = By(0), ord[G] = k − 1 and
ord[S] = max(na + nay − 1, nby + nc − k).

Note that the Diophantine equation is independent of the control filter Bu
Au

.
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Stochastic Adaptive Control - External control methods
Generalized Minimum Variance Strategy

The closed-form of the system, then becomes[
BAuBy + αABuAy

]
yt = q−k Bw

Aw
BAuAywt + RAyet + αAyBud (57)[

BAuBy + αABuAy

]
ut = Bw

Aw
AAuAywt − SAuet + AuByd (58)

R =
[
AuBG + αCBu

]
(59)

Given the independence between the Diophantine equation and the
controller filter, we can design the control filter to affect the closed-loop
poles.
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Stochastic Adaptive Control - External control methods
GMV - special versions
PZ-control

Hy(q−1) = Am(q−1), Hw(q−1) = Bm(q−1), Hu(q−1) = 1, ρ = 0
(60)

Variant of MV0 control

Hy(q−1) = 1, Hw(q−1) = Bw(q−1)
Aw(q−1) , Hu(q−1) = 1, ρ = 0 (61)

MV1a control:

Hy(q−1) = 1, Hw(q−1) = 1, Hu(q−1) = 1 − q−1, ρ ̸= 0 (62)

MV3 control:

Hy(q−1) = Ae(q−1)
Be(q−1) , Hw(q−1) = Ae(q−1)Bm(q−1)

Be(q−1)Am(q−1) , Hu(q−1) = 1, ρ = 0

(63)
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Stochastic Adaptive Control - External control methods
MV3 control
Let us consider MV3 control method:

Jt = E

{(
Ae(q−1)
Be(q−1)yt+k − Ae(q−1)Bm(q−1)

Be(q−1)Am(q−1)wt

)2}
(64)

and let us consider the ARMAX system:

A(q−1)yt = q−kB(q−1)ut + C(q−1)et + d (65)

The minimizing control is then given by the equation:

BGut = C
AeBm

BeAm
wt − S

Be
yt − Gd (66)

Resulting in the closed-loop form:

yt = q−k Bm

Am
wt − G

Be

Ae
et (67)

ut = ABm

BAm
wt − SBe

BAe
et − 1

B
d (68)
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Stochastic Adaptive Control - External control methods
Generalized Minimum Variance Strategy
Example

Consider the ARMAX model

yt − 1.7yt−1 + 0.7yt−2 = ut−1 + 0.5ut−2 + εt + 1.5εt−1 + 0.9εt−2. (69)

We want to design a feedback strategy such that

E
[ (

Hy(q−1)yt+1 − Hw(q−1)1
)2

+ ρ
(
Hu(q−1)ut

)2 ]
, (70)

is minimal. We have the following polynomials

Ay(q−1) = 1, Aw(q−1) = 1, Au(q−1) = 1
By(q−1) = 1, Bw(q−1) = 1, Bu(q−1) = 1 − q−1.

(71)

What is this controller also called?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - External control methods
Generalized Minimum Variance Strategy
Example

Based on the orders, we have

G = 1 (72)

Using the Diophantine equation we can find the unknown coefficients, s1
and s2,

1 + 1.5q−1 + 0.9q−2 = 1 − 1.7q−1 + 0.7q−2 + s1q−1 + s2q−2. (73)

From this relation, we get the equations that

1.5 = −1.7 + s1, (74a)
0.9 = 0.7 + s2, (74b)

and thus

s1 = 3.2, (75a)
s2 = 0.2. (75b)
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Stochastic Adaptive Control - External control methods
Generalized Minimum Variance Strategy

Example

The optimal controller is therefore given by[
(1 + 0.5q−1)+ρ(1 + 1.5q−1 + 0.9q−2)(1 − q−1)

]
ut

= (1 + 1.5q−1 + 0.9q−2)wt − (3.2 + 0.2q−1)yt,
(76)

where

wt = 1, for any t. (77)

Inserting this, we find that

ut = 1
1 + ρ

[
(0.5ρ − 0.5)ut−1 + 0.6ρut−2 + 0.9ρut−3 + 3.4 − 3.2yt − 0.2yt−1

]
.

(78)
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Stochastic Adaptive Control - External control methods
Generalized Minimum Variance Strategy

Example (ρ = 0.25).
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Stochastic Adaptive Control - External control methods
Generalized Minimum Variance Strategy

Example (ρ = 0.0).

0 20 40 60 80 100
15

10

5

0

5

10

15
yt wt ut

We obtain last weeks example, the MV0 controller.
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Stochastic Adaptive Control - External control methods
GPC - Generalized Predictive Control

Let us consider the ARMAX system

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (79)

And a controller based on the cost function

Jt = E

{
N∑

i=1
(yt+i − wt+i)T qi(yt+i − wt+i) + uT

t+i−1ρiut+i−1

}
(80)

We remember the equation for external predictions, with corresponding
Diophantine

yt+m = BGm

C
ut+m−k + Sm

C
yt + Gmet+m (81)

C(q−1) = AGm + q−kSm (82)
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Stochastic Adaptive Control - External control methods
GPC - Vector definition

Let us define some vector variables:

Yt =


yt+1
yt+2

...
yt+N

 , Ut =


ut

ut+1
...

ut+N−1

 , Wt =


wt+1
wt+2

...
wt+N

 (83)

Yo = 1
C(q−1)


yt

yt−1
...

yt−(n−1)

 , Uo = 1
C(q−1)


ut−1
ut−2

...
ut−n

 , Et =


et+1
et+2

...
et+N

 (84)

n = max{na − 1, nc − 1} (85)
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Stochastic Adaptive Control - External control methods
GPC - the control formulation
We can rewrite the future output by using an extra Diophantine equation:

yt+m = Hm+1(q−1)ut+m + Fm+1(q−1)
C(q−1) ut−1 + Sm(q−1)

C(q−1) yt

+ Gm(q−1)et+m (86)
q−kB(q−1)Gm(q−1) = C(q−1)Hm+1(q−1) + q−m−1Fm+1(q−1) (87)

We can then formulate the full prediction vectors as

Ŷt = SYo + HUt + FUo = HUt + ft (88)
Ỹt = GEt (89)

where the matrices are given by

H =


h0 0 . . . 0

h1 h0
. . . ...

...
... . . . 0

hN hN−1 . . . h0

 F =

 F1
...

FN

 S =

 S1
...

SN

 G =

 G1
...

GN
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Stochastic Adaptive Control - External control methods
GPC

We can then rewrite our cost function:

Yt = SY0 + HUt + FU0 + GEt (90)
Jt = E{(Yt − Wt)T Qy(Yt − Wt) + UT

t QuUt|Yo} (91)
= (Ŷt − Wt)T Qy(Ŷt − Wt) + UT

t QuUt + V ar(∗) (92)
Qy(i, i) = qi, Qu(i, i) = ρi (93)

Where our prediction and error is given by

Ŷt = E{Yt|Yo} = SY0 + HUt + FU0 = HUt + ft (94)
Ỹt = GEt (95)
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Stochastic Adaptive Control - External control methods
GPC - the control formulation

Finding the optimum, then gives the receding horizon control law

U∗
t = −[HT QyH + Qu]−1HT Qy(ft − Wt) = −L(ft − Wt) (96)

ut = γU∗
t , γ = [1, 0, . . . , 0] (97)
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Stochastic Adaptive Control - External control methods
GPC - QRS form

The matrix form is not the only formulation of GPC, we can also use
transfer function form or QRS control form. If our reference is constant we
have Wt = 1wt

Let us define a vector of delays:

q =
[
1 q−1 . . . q1−n

]T
(98)

By rewriting Yo and Uo, the control law becomes

ut = γL1wt − γLSq
C(q−1)yt − γLFq

C(q−1)ut−1 (99)

By isolating ut we then get the QRS form

(C(q−1) + q−1γLFq)ut = C(q−1)γL1wt − γLSqyt (100)
⇒ R(q−1)ut = Q(q−1)wt − S(q−1)yt (101)
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Stochastic Adaptive Control - External control methods
LQG
We will consider the ARMAX strucutre

A(q−1)yt = B(q−1)ut + C(q−1)et (102)
with the objective function

Jt = lim
N→∞

1
N

N∑
i=t

E{y2
i + ρu2

i } (103)

The external LQG controller then takes the form
R(q−1)ut = −S(q−1)yt (104)

with the Diophantine given as
Am(q−1)C(q−1) = A(q−1)R(q−1) + B(q−1)S(q−1) (105)

Am(q−1)Am(q) = B(q−1)B(q) + ρA(q−1)A(q) (106)
Note that Am is the stable solution to the second equation.

What method can you use to solve (106)?
Think about it for yourself for one minute and

then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - External control methods
LQG - setpoints and disturbances

Consider the ARMAX structure with disturbances

A(q−1)yt = B(q−1)ut + C(q−1)et + d (107)

Then the controller with considering a reference wt, is given by

R(q−1)ut = Am(1)C(q−1)
B(1) wt − S(q−1)yt − R(1)

B(1)d (108)

This LQG for the external model, is equivalent to the stationary solution of
the LQG for the internal models.
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Stochastic Adaptive Control - External control methods
LQG
If we consider the closed-loop

yt = Am(1)
B(1)

B(q−1)
Am(q−1)wt − R(q−1)

Am(q−1)et (109)

ut = Am(1)
B(1)

A(q−1)
Am(q−1)wt − S(q−1)

Am(q−1)et − R(1)
B(1)d (110)

Special case 1:

ρ = 0, B(q−1) = q−kB1(q−1), where B1(q−1) is stable
results in Am(q−1) = B1(q−1)

Special case 2:

ρ = 0, B(q−1) = q−kB1(q−1), where B1(q−1) is unstable
results in Am(q−1) = B1+(q−1)B∗

1−(q−1)

where B1(q−1) = B1+(q−1)B1−(q−1) and B∗
1−(q−1) is B1−(q−1) with

mirrored zeros:

B∗
1−(q−1)B∗

1−(q) = B1−(q−1)B1−(q) (111)
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Stochastic Adaptive Control - External control methods
Mirrored zeros

How do we find the mirrored zeros? Let us consider a single zero:

H(q) = (q − a), H(q−1) = 1 − aq

q
(112)

H(q)H(q−1) = (q − a)(1 − aq)
q

(113)

If |a| > 1, then we can simply define the mirrored zero as

H∗(q) = (1 − aq), H∗(q−1) = q − a

q
(114)

H∗(q)H∗(q−1) = (q − a)(1 − aq)
q

(115)
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Summary

LQG

1 R(q−1)ut = Am(1)C(q−1)
B(1) wt − S(q−1)ut − R(1)

B(1) d

2 equivalent to stationary LQG for internal models

GPC
1 U∗

t = −[HT QyH + Qu]−1HT Qy(ft − Wt)

2 uses receding horizon approach
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Questions

Questions?
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Examples

Today’s Matlab example topics:
• simulation using transfer functions
• simulation of transfer function: internal method
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