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Lecture Plan

@ Systems theory

@ Stochastics

© State estimation - Kalman filter 1
@ State estimation - Kalman filter 2
@ Optimal control 1 - internal models
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@ Prediction + optimal control 1
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@® Optimal control 2 - external models
© System identification 1
@ System identification 2

@® System identification 3 + model
validation

@® Adaptive control 1

® Adaptive control 2
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Today’s Agenda

® Polynomials and transfer function truncation
® Diophantine equation

® External prediction

® External control: Minimum variance

® External control: Pole-zero
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Follow-up from last time: Q3

We consider the system:

_ [1.0000 —0.5000] 1.0000
L= 10,4000 —0.7000] “* ™ [0.3000

Y = [1 0} 1, + 0.5512¢;, (2)

]ek, er ~ N(0,3) (1)

The DC-gain is then
Ky =C(I — A)7'G + F =8.3012 (3)

While the AC-gain is found solving the dlyap for a given input variance:

02, = Cdlyap(A, Go? G'\C' + Do, D' (4)
2
oL 13.1771
Koo = Gt=—g— = 4.3924 (5)

m
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Follow-up from last time

Questions?
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Polynomials and Transfer functions

Let us consider the polynomials on the form

B(g ") =by+big "t + . bag "
B(z_l) =by+ bzt +. bz

—~ —~
0 N O
— ~— —

for the time and frequency domains.

The polynomial has the order n, if b, = 0 and b; =0, i >n, and if

bg = 1 the polynomial is said to be monic.

A transfer function H(q), can be written with polynomials in an infinitely
number of ways:

(9)
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Polynomials and Transfer functions =
Our transfer function written as polynomials can be rewritten as
B(q~! bo+big t+ ...+ b

A(g™)  1+aigt+...+anqg™
1 (bl — bgal) + (bg — boag)q_l + ...+ (bn — boan)q_(n_l)

=by+q"
04 l+aig 4+ ...+ ang™
(11)
Using this we can define the transfer function:
—1y_ Bla™) 151
HgY)y="A=go+q¢ = 12
=X Al (2
Si(gYHY=s04+ 517 + . A sp g™ (13)
go=0bo 8;=0bi—1—boa;—1 (14)

where n; = n — 1 is the order of S}
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Polynomials and Transfer functions

If we repeat the rewriting for %, %, and so on:

Hig Y =go+9q ' + ... 4 gmo1qg” ™V +q‘mm (15)
" A(g™)
- — Sm(q_l)
=Gmg ")+ " 16
(@) +aq Al D) (16)

This is known as the mth step truncation of the transfer function, where it
can be shown that g; is the ith coefficient of the impulse response

h(t) = F~1(H(z)), and the coefficients of G, being the truncated impulse
response

From the definition of H(q™1), we get the following relation:
B(g™") = Ala)Gmla™ ") +a ™Sl (17)

which is known as the simple Diophantine Equation.
The order of Sy, is given by max(n, — 1,1, —m), and m — 1 for G,.
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How to solve the Diophantine equation

The simple Diophantine equation can be solved by iterations of:

G=] ];5=1[B,0]; % Pad B with zeros to make S as long as A
fori=1:m

G =[G SO

S =[S(2:end) — S(1) « A(2 : end),0];
end

S=5(1:end—1);

here given in Matlab notation
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Example: Solving the Diophantine equation
The simple Diophantine equation, can be solved by iterations of:

A=11,2,3] B=[2,3]
G=] S = [B,0]
k=1
G=2 Siop=1[[3,0]—2%([2,3]),0] = [~1,—6,0]
k=2

G =1[2,-1] Siop = [[-6,0] — (1) % ([2,3]),0] = [-4,3,0]
S = Sipop(1 : end — 1) = [—4, 3]

What would S be if B = [3,4]?

Think about it for yourself for one minute and
then discuss with the person next to you for two minutes.
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Diophantine Equation =
The Diophantine Equations are named after Diophantus of Alexandria (200
AD - 298 AD, became 84 year)
The general Diophantine is given by

Clg™") = Alg Y )R(a™) + B¢ )S(a™) (24)
and defined by the polynomials:

ClqgH=coterqgt +-+cpqg™ (25)
B(q_l) = blq_l + te + ban_nba bO = O (26)
Al =14 aigt + - +an,qg ™ (27)

The solutions R, S exist if and only if any common factors of A and B is
shared with C.
The solutions of Diophantine is in general not unique:
R(¢™") = Ro(q™") + B¢ " )F(q™) (28)
S(g™") =Sol¢™") = Ala™HF (g™ (29)

A unique solution, exist if n, = ny — 1 and ny = max(ng — 1,1, — np).
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The solution to the general Diophantine can be computed by:

(1 0 0 0 0 0 7r. 1 roo
To €0
ay 1 - : by 0 . : 1 cl
a9 al 0 bQ bl 0 :
: : 1 : : 0 T cn
=17 (30
Ap, Qp,—1 .. ay bnb bnb—l N bl S0 0 ( )
0 an, 0 by, SR 0
: © Qnpg—1 B bnbfl . O
L 0 0 ana O 0 bnb ] -SnS_ L J
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Prediction in the ARMA Structure
Consider that we have a weakly stationary process y;:

Al Dy =Clg e (31)

where e, is a white noise signal F(0,02), and that A, C are monic.

M

Then if we want to predict the mth step ahead, we can use truncation and
the Diophatine equation, where we get that

—1 —1
Yttm = jgg_liewm = Gm(q_1)€t+m + SZL(E]q_l))et (32)

From here the we can define the prediction and prediction error:

o Smle™) Smla ) (Al N Smleh)
e TR e R
Ytymlt = Gm(q_l)eter (34)

where ¢; and §; are independent. This method requires an inversely stable

Clg™).
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Prediction in the ARMAX structure
Let us consider the system:
Al Nye = ¢ "Blg u + Clg e

where k is the delay of the control.

Then our output prediction for time m is given by

Bosmls = C(;U<B<q—1>am<q—1>ut+m_k 4 Sl M)

Yttmlt = Gm(q_1)€t+m
This can be derived using the Diophantine:
Clg") = Alg )Gmlg ) + ¢ ™Sm(a™")

where the order of G and S is m — 1 and max(n, — 1,n. —m), and
G(0)=1

14 DTU Compute Stochastic Adaptive Control

=
—
=

M

(35)

14.3.2023



Proving the ARMAX prediction
The future output can be rewritten in terms of the Diophantine as

Ut = 70((171) Yt
+m C(q_l) +m

Al Gw(g )+ ¢ Sm(g!)

- C(qil) Yt+m
Gm(q_l) -1 SM(C]_1>
—m\H 4 R A\ T
C(qfl) (q )yt-‘r + C(qil) Yt
By substituting the system description, we get
_ Gm(qil) -1 -1 Sm(qil)
Yt+m = W(B(q Jttm—k + C(q)ettm) + Clq ) Yt
_ Gm(q_l)B(q_l) Sm(q_l)

—1
C(qil) Ut+m—k + C(qil) Yt + Gm(q )et-‘rm

= Jerm|t T Yermlt

=
=
=

M

(42)

(43)

(44)

Our prediction now depends on the control and noise, as well as the noise

at the kth time step.
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Prediction in the L structure

Let us consider the system:

B -1 C -1
A(q_l)ytzq_kFggli (")

where k is the delay of the control.

Then our output prediction for time m is given by
X 1 (D(g)
et = e\ F(a )

Yttm|t = Gm(q_l)eter

B )G ttrsmr + sm<q-1>yt)

where the order of G and S is m — 1 and max(n, + ng — 1,n. — m),
respectively, and G(0) = 1.
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External Control

When designing controllers for a system on external form, such as
Alg Ny = a7 *Blg " us + Clg e

we are looking for a control law on the form:
R(g Mur = Qg wi — S(g Dye +d

The PID controller in the classical theory, would be equivalent to

S

"= R

While in optimal controllers, we minimize a cost J;

min J;
Ut
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Minimum Variance Control

M

Let us consider the system:
Alg Ny =a "Bl u +Clg e (52)

where B and C' are assumed stable.
In order to achieve higher certainty of the output, we want to minimize the
variance:

Je = E{yii} (53)
For the simplicity of notation GG and S will be solution to the Diophantine:

Clg")=A(g )G ") +q7*S(¢) (54)
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Minimum Variance Control

Remember that the mth prediction and error is given by:

Desmlt = @<B<q1>am<ql>ut+mk FSmla ) (55)

Ytrmlt = Gm (¢ Hetsm (56)

Our cost can then be given by

Jt—E{yak}—E{(%l_l)( (¢)Grlg™ e + Sela™ >yt>)2} (57)
+B{(Gela ere)”} (59)

The minimization is with respect to the control. Therefore, minimum
variance is achieved if the first term is zero:

B(g™HYGr(g Hur = —Se(¢ m (59)
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Minimum Variance Control
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Given a controller based on (59), the closed-loop and stationary version of
the system is given by the prediction error:

w= Gula e =~ R Scla )

Ut = — — Ut = — 7 1y 6t 60
B¢ ")Gr(g™) B(g™) (60)

where the closed loop poles are given by BC.

In the stationary case, the variance of output and control is

k—1
Var(y) = o? Z g2 (61)
=0
Var(ut) : %((:j:])) % ((;]:))) dwa® (62)
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Minimum Variance Control

Consider the L-structure, the control would then be given by

F(g')  Sp(qgh)
D(¢ ") Blg HGrlg D"

Ut = —

The minimum variance controller has issues with the following:
@ set-points

@ constant disturbances

© large control effort

O non damped zeros (zeros outside to the unit circle)
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MV, control

M

Let us consider, the case were we have a desired set-point
Jo = E{(yt+r — wt)Q} (64)
and let us consider the ARMAX system with a constant disturbance:
Al Ny =q "Bl e +C(g et +d (65)

The minimizing control is then given by

22 DTU Compute Stochastic Adaptive Control 14.3.2023



=
—
=
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The stationary closed-loop system is then given by

G —1
yr = ¢ wp + Gr(q e + Ck((qq_l))(l — ¢ Md = ¢ w + Grlg e
(67)
—1 —1
U = A(q )U} Sk(q )et o 1 d (68)

B(gY) ' B(g)

with the poles being given by BC.

B(q™1)
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MV, control
Considering the L-structure:
- e Blg! (¢!
N, _ —k
Al Nyt =g¢q F(q—l)ut + D(q—l)et +d (69)
then the MVO0 control becomes
= F(g")  C™h v, — Ske™")  F(g™h) v Flg™) ,
B(q*) D(¢g~")Gr(q™) B(q™1) D(¢71)Gr(¢™!)™  B(g™)
(70)
The closed-loop becomes
ye = q "we+ Grlg e (71)
Fg A Sk(¢™") Fg™! F(¢™h)
Up = wy — er — d 72
B T B b)) Bt P
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If the disturbance d and our setpoint wy is zero, then MV} control becomes
the minimum variance control

The MVj controller still has some issues with the following:
@ large control effort

@ non damped zeros
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Example of MVO0 controller

Consider the ARMAX model
yr — LTy—1 + 0.7yp—92 = wp—1 + 0.5up—9 + &4 + 1.564-1 + 0.9g4_9.  (73)
We want to design a feedback strategy such that
E[ (g1 — 17, (74)
is minimal. We have the following polynomials

Al =1-17¢14+07¢2, BgH=1+05¢"
ClgH)=14+15¢1409¢2 d=0

We also have that the input lag is &k = 1.
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Example of MVO0 controller
From the Diophantine equation we find that

14+15¢7 1409972 = (1 —1.7¢7 + 0.7q_2> Gl@™h +q*S(gh). (76)

We also have the conditions that G(0) = 1, ord[G] = k — 1 and
ord[S] = max(n, — 1,n. — k). Using the polynomials defined previously we
find

ord[G] = 0, ord[S] = 1. (77)
Consequently,
141507 4+09¢2=1-1.7¢" 4+ 0.7¢7% + s1¢7 " + s9¢ > (78)
1.5 =—-1.7+ sq, 0.9 =0.7+ s2 (79)
Thus, by matching coefficients, we obtain the solution
Glgh) =1, (80)
Sl =51 +s¢7 1 =32402¢7" (81)
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Example of MVO0 controller
From the Diophantine equation we find that

14+15¢7 140972 = (1 —L7g7  + 0.7q_2> Glg Y +q¢S(qg™). (82)
Consequently,

1+15¢ ' 409¢2=1-17¢" " +0.7¢ 2+ s1¢ " +s2¢7%  (83)

1.5 =—-1.7+ s1, 0.9=0.7T+ s2 (84)

Thus, by matching coefficients, we obtain the solution
Gl =1, (85)
S(g71) =51+ 8¢ =3.2402¢7" (86)

What would S be if A(g7') =1 —1.5¢7! 4+ 0.8¢2 instead of
Al =1-17¢ +0.7¢2?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Example of MVO0 controller

MVO control law:

The optimal controller is therefore given by
(140.5¢g Hug = (1 —1.7¢7 1 + 0.7 Hwy — (3.2 + 0.2¢ Yy,
For w; = 1, we can rearrange in order to find the control law

Uy = —0.5Ut71 — 3.2:[/15 — O-2yt71-
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Example of MVO0 controller

Notice the control relative to the output
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MYV, control

M

Let us consider, the case were we don’t want too much control action:
Ji = E{(yerx — we)® + pu; } (90)
and let us consider the ARMAX system:
Alg Yy = ¢ Bl Huy + Clg Ve + d (91)

The minimizing control is then given by the equation:

(B(ql)Gk(ql) + b/;C(ql)) w = C(q " )wr — Sk(q )y — Grlg™')d
(92)
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Again let us consider, the stationary closed-loop case:

_ (") N Blg HGr(g™) + %C(q‘l)e
"9 B >+§A<*>t Blg D)+ 2AG Y
b
+B( )+ A( >d (93)
. A@h Sy
"TBa )+ 2A@ )T Bla )t £AG D
1
" B¢ Y+ %A(q—l)d (94)

If our system has A(1) # 0 (no pure integrator), then for a non-zero
setpoint, MV, contains a stationary error.
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MV, control

A work around for the stationary error is to consider the control change:

Jr = E{(yerx —we)® + plug —u—1)*} (95)
The resulting control is then given by

(B(q_l)Gk(q_l) + pC(q_l)A) w = C(q " Ywe — Sk(g My — Ge(a™)d

M

bo
(96)
A=1-q! (97)
with the stationary case being given by

T B¢ ot B¢ ")Gr(g™") + %AC(Q‘l)e

' B(g D)+ £AA(g ) B(g )+ £AA(gY)
(98)

Algh) Sk(g™h)

_ _ 99
“E B+ LA T Bl + £AAGD 3
: d (100)

C Blg Y+ £AA(gY)
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PZ-control
Another approach to limiting the control effort is to reduce the
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requirements of following the set-point. We do this by introducing a filter:

~ - Bm(q_l)
_ k
= Am(q_l)

Ytk — Witk or A (@ Yk — Bm(q™Hwy
Our cost then becomes
Ji = B{(Am(q~ " )Yk — Bm(q™")wr)?}
If we again consider the system
Al Yy =q "Bl )u + Clg ")er +d
the control is then defined as
vy — C(Q‘I)Bm(q‘l)wt  Skle™h P
B(g")Gr(g™) B¢~ ")Gr(g™) B(q™1)
with the Diophantine given as

An(gHC(g™ ) = A(g)Grla™) + ¢ *Sk(g™)
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PZ-control

The stationary closed-loop then becomes:

4 Buld) Grlg")
B wres K e
w= A Bl o S 1
T Bl H)AR@) T Bl@HAn(e) " BlgY)

Then, as with the MV-controllers, the PZ-control has an issue with

@ non-damped zeros
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Questions

Questions?
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