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Today’s Agenda

• Polynomials and transfer function truncation
• Diophantine equation
• External prediction
• External control: Minimum variance
• External control: Pole-zero
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Follow-up from last time: Q3

We consider the system:

xk+1 =
[
1.0000 −0.5000
0.4000 −0.7000

]
xk +

[
1.0000
0.3000

]
ek, ek ∼ N(0, 3) (1)

yk =
[
1 0

]
xk + 0.5512ek (2)

The DC-gain is then

Kdc = C(I − A)−1G + F = 8.3012 (3)

While the AC-gain is found solving the dlyap for a given input variance:

σ2
out = Cdlyap(A, Gσ2

inG′)C ′ + Dσ2
inD′ (4)

Kac = σ2
out

σ2
in

= 13.1771
3 = 4.3924 (5)
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Follow-up from last time

Questions?
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Stochastic Adaptive Control - External Description
Polynomials and Transfer functions

Let us consider the polynomials on the form

B(q−1) = b0 + b1q−1 + ... + bnq−n (6)
B(z−1) = b0 + b1z−1 + ... + bnz−n (7)

(8)

for the time and frequency domains.

The polynomial has the order n, if bn ̸= 0 and bi = 0, i > n, and if
b0 = 1 the polynomial is said to be monic.
A transfer function H(q), can be written with polynomials in an infinitely
number of ways:

H(q) = B(q−1)
A(q−1) = C(q−1)B(q−1)

C(q−1)A(q−1) (9)
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Stochastic Adaptive Control - External Description
Polynomials and Transfer functions

Our transfer function written as polynomials can be rewritten as

B(q−1)
A(q−1) = b0 + b1q−1 + ... + bnq−n

1 + a1q−1 + ... + anq−n
(10)

= b0 + q−1 (b1 − b0a1) + (b2 − b0a2)q−1 + ... + (bn − b0an)q−(n−1)

1 + a1q−1 + ... + anq−n

(11)

Using this we can define the transfer function:

H(q−1) = B(q−1)
A(q−1) = g0 + q−1 S1(q−1)

A(q−1) (12)

S1(q−1) = s0 + s1q−1 + . . . + sn1q−n1 (13)
g0 = b0 si = bi−1 − b0ai−1 (14)

where n1 = n − 1 is the order of S1
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Stochastic Adaptive Control - External Description
Polynomials and Transfer functions
If we repeat the rewriting for S1

A , S2
A , and so on:

H(q−1) = g0 + g1q−1 + . . . + gm−1q−(m−1) + q−m Sm(q−1)
A(q−1) (15)

= Gm(q−1) + q−m Sm(q−1)
A(q−1) (16)

This is known as the mth step truncation of the transfer function, where it
can be shown that gi is the ith coefficient of the impulse response
h(t) = F−1(H(z)), and the coefficients of Gm being the truncated impulse
response

From the definition of H(q−1), we get the following relation:

B(q−1) = A(q−1)Gm(q−1) + q−mSm(q−1) (17)

which is known as the simple Diophantine Equation.
The order of Sm is given by max(na − 1, nb − m), and m − 1 for Gm.
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Stochastic Adaptive Control - External Description
How to solve the Diophantine equation

The simple Diophantine equation can be solved by iterations of:

G = [ ]; S = [B, 0]; % Pad B with zeros to make S as long as A
for i = 1 : m

G = [G, S(1)];
S = [S(2 : end) − S(1) ∗ A(2 : end), 0];

end
S = S(1 : end − 1);

here given in Matlab notation
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Stochastic Adaptive Control - External Description
Example: Solving the Diophantine equation
The simple Diophantine equation, can be solved by iterations of:

A = [1, 2, 3] B = [2, 3] (18)
G = [] S = [B, 0] (19)

k = 1

G = 2 Sloop = [[3, 0] − 2 ∗ ([2, 3]), 0] = [−1, −6, 0] (20)
(21)

k = 2

G = [2, −1] Sloop = [[−6, 0] − (−1) ∗ ([2, 3]), 0] = [−4, 3, 0] (22)
S = Sloop(1 : end − 1) = [−4, 3] (23)

What would S be if B = [3, 4]?

Think about it for yourself for one minute and
then discuss with the person next to you for two minutes.
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Stochastic Adaptive Control - External Description
Diophantine Equation
The Diophantine Equations are named after Diophantus of Alexandria (200
AD - 298 AD, became 84 year)
The general Diophantine is given by

C(q−1) = A(q−1)R(q−1) + B(q−1)S(q−1) (24)

and defined by the polynomials:

C(q−1) = c0 + c1q−1 + · · · + cncq−nc (25)
B(q−1) = b1q−1 + · · · + bnb

q−nb , b0 = 0 (26)
A(q−1) = 1 + a1q−1 + · · · + anaq−na (27)

The solutions R, S exist if and only if any common factors of A and B is
shared with C.
The solutions of Diophantine is in general not unique:

R(q−1) = R0(q−1) + B(q−1)F (q−1) (28)
S(q−1) = S0(q−1) − A(q−1)F (q−1) (29)

A unique solution, exist if nr = nb − 1 and ns = max(na − 1, nc − nb).
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Stochastic Adaptive Control - External Description
Diophantine - Sylvester method

The solution to the general Diophantine can be computed by:

1 0 . . . 0 0 0 . . . 0

a1 1 . . . ... b1 0 . . . ...
a2 a1 0 b2 b1 0
...

... 1
...

... 0
ana ana−1 . . . a1 bnb

bnb−1 . . . b1

0 ana

... 0 bnb

...
... . . . ana−1

... . . . bnb−1
0 0 ana 0 0 bnb





r0
r1
...

rnr

s0
s1
...

sns


=



c0
c1
...

cnc

0
0
...
0


(30)
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Stochastic Adaptive Control - External prediction
Prediction in the ARMA Structure
Consider that we have a weakly stationary process yt:

A(q−1)yt = C(q−1)et (31)

where et is a white noise signal F(0, σ2), and that A, C are monic.

Then if we want to predict the mth step ahead, we can use truncation and
the Diophatine equation, where we get that

yt+m = C(q−1)
A(q−1)et+m = Gm(q−1)et+m + Sm(q−1)

A(q−1) et (32)

From here the we can define the prediction and prediction error:

ŷt+m|t = Sm(q−1)
A(q−1) et = Sm(q−1)

A(q−1)

(
A(q−1)
C(q−1)yt

)
= Sm(q−1)

C(q−1) yt (33)

ỹt+m|t = Gm(q−1)et+m (34)

where ŷt and ỹt are independent. This method requires an inversely stable
C(q−1).
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Stochastic Adaptive Control - External prediction
Prediction in the ARMAX structure
Let us consider the system:

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (35)

where k is the delay of the control.

Then our output prediction for time m is given by

ŷt+m|t = 1
C(q−1)(B(q−1)Gm(q−1)ut+m−k + Sm(q−1)yt) (36)

ỹt+m|t = Gm(q−1)et+m (37)

This can be derived using the Diophantine:

C(q−1) = A(q−1)Gm(q−1) + q−mSm(q−1) (38)

where the order of G and S is m − 1 and max(na − 1, nc − m), and
G(0) = 1
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Stochastic Adaptive Control - External prediction
Proving the ARMAX prediction
The future output can be rewritten in terms of the Diophantine as

yt+m = C(q−1)
C(q−1)yt+m (39)

= A(q−1)Gm(q−1) + q−mSm(q−1)
C(q−1) yt+m (40)

= Gm(q−1)
C(q−1) A(q−1)yt+m + Sm(q−1)

C(q−1) yt (41)

By substituting the system description, we get

yt+m = Gm(q−1)
C(q−1) (B(q−1)ut+m−k + C(q−1)et+m) + Sm(q−1)

C(q−1) yt (42)

= Gm(q−1)B(q−1)
C(q−1) ut+m−k + Sm(q−1)

C(q−1) yt + Gm(q−1)et+m (43)

= ŷt+m|t + ỹt+m|t (44)

Our prediction now depends on the control and noise, as well as the noise
at the kth time step.
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Stochastic Adaptive Control - External prediction
Prediction in the L structure

Let us consider the system:

A(q−1)yt = q−k B(q−1)
F (q−1)ut + C(q−1)

D(q−1)et (45)

where k is the delay of the control.

Then our output prediction for time m is given by

ŷt+m|t = 1
C(q−1)

(
D(q−1)
F (q−1) B(q−1)Gm(q−1)ut+m−k + Sm(q−1)yt

)
(46)

ỹt+m|t = Gm(q−1)et+m (47)

where the order of G and S is m − 1 and max(na + nd − 1, nc − m),
respectively, and G(0) = 1.
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Stochastic Adaptive Control - External control methods
External Control

When designing controllers for a system on external form, such as

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (48)

we are looking for a control law on the form:

R(q−1)ut = Q(q−1)wt − S(q−1)yt + d̄ (49)

The PID controller in the classical theory, would be equivalent to

ut = − S(q−1)
R(q−1)yt (50)

While in optimal controllers, we minimize a cost Jt

min
ut

Jt (51)
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Stochastic Adaptive Control - External control methods
Minimum Variance Control

Let us consider the system:

A(q−1)yt = q−kB(q−1)ut + C(q−1)et (52)

where B and C are assumed stable.
In order to achieve higher certainty of the output, we want to minimize the
variance:

Jt = E{y2
t+k} (53)

For the simplicity of notation G and S will be solution to the Diophantine:

C(q−1) = A(q−1)G(q−1) + q−kS(q−1) (54)
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Stochastic Adaptive Control - External control methods
Minimum Variance Control
Remember that the mth prediction and error is given by:

ŷt+m|t = 1
C(q−1)(B(q−1)Gm(q−1)ut+m−k + Sm(q−1)yt) (55)

ỹt+m|t = Gm(q−1)et+m (56)

Our cost can then be given by

Jt = E{y2
t+k} =E

{( 1
C(q−1)(B(q−1)Gk(q−1)ut + Sk(q−1)yt)

)2
}

(57)

+ E

{(
Gk(q−1)et+k

)2
}

(58)

The minimization is with respect to the control. Therefore, minimum
variance is achieved if the first term is zero:

B(q−1)Gk(q−1)ut = −Sk(q−1)yt (59)
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Stochastic Adaptive Control - External control methods
Minimum Variance Control

Given a controller based on (59), the closed-loop and stationary version of
the system is given by the prediction error:

yt = Gk(q−1)et, ut = − Sk(q−1)
B(q−1)Gk(q−1)yt = −Sk(q−1)

B(q−1) et (60)

where the closed loop poles are given by BC.
In the stationary case, the variance of output and control is

V ar(yt) = σ2
k−1∑
i=0

g2
i (61)

V ar(ut) =
∫ π

−π

Sk(e−jw)
B(e−jw)

Sk(ejw)
B(ejw) dwσ2 (62)
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Stochastic Adaptive Control - External control methods
Minimum Variance Control

Consider the L-structure, the control would then be given by

ut = − F (q−1)
D(q−1)

Sk(q−1)
B(q−1)Gk(q−1)yt (63)

The minimum variance controller has issues with the following:
1 set-points

2 constant disturbances

3 large control effort

4 non damped zeros (zeros outside to the unit circle)
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Stochastic Adaptive Control - External control methods
MV0 control

Let us consider, the case were we have a desired set-point

Jt = E{(yt+k − wt)2} (64)

and let us consider the ARMAX system with a constant disturbance:

A(q−1)yt = q−kB(q−1)ut + C(q−1)et + d (65)

The minimizing control is then given by

ut = C(q−1)
B(q−1)Gk(q−1)wt − Sk(q−1)

B(q−1)Gk(q−1)yt − 1
B(q−1)d (66)
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Stochastic Adaptive Control - External control methods
MV0 control

The stationary closed-loop system is then given by

yt = q−kwt + Gk(q−1)et + Gk(q−1)
C(q−1) (1 − q−k)d = q−kwt + Gk(q−1)et

(67)

ut = A(q−1)
B(q−1)wt − Sk(q−1)

B(q−1) et − 1
B(q−1)d (68)

with the poles being given by BC.
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Stochastic Adaptive Control - External control methods
MV0 control

Considering the L-structure:

A(q−1)yt = q−k B(q−1)
F (q−1)ut + C(q−1)

D(q−1)et + d (69)

then the MV0 control becomes

ut = F (q−1)
B(q−1)

C(q−1)
D(q−1)Gk(q−1)wt − Sk(q−1)

B(q−1)
F (q−1)

D(q−1)Gk(q−1)yt − F (q−1)
B(q−1)d

(70)

The closed-loop becomes

yt = q−kwt + Gk(q−1)et (71)

ut = F (q−1)A(q−1)
B(q−1) wt − Sk(q−1)

B(q−1)
F (q−1)
D(q−1)et − F (q−1)

B(q−1)d (72)
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Stochastic Adaptive Control - External control methods
MV0 control

If the disturbance d and our setpoint wt is zero, then MV0 control becomes
the minimum variance control

The MV0 controller still has some issues with the following:
1 large control effort

2 non damped zeros
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Stochastic Adaptive Control - External control methods
Example of MV0 controller

Consider the ARMAX model

yt − 1.7yt−1 + 0.7yt−2 = ut−1 + 0.5ut−2 + εt + 1.5εt−1 + 0.9εt−2. (73)

We want to design a feedback strategy such that

E
[

(yt+1 − 1)2
]
, (74)

is minimal. We have the following polynomials

A(q−1) = 1 − 1.7q−1 + 0.7q−2, B(q−1) = 1 + 0.5q−1

C(q−1) = 1 + 1.5q−1 + 0.9q−2, d = 0
(75)

We also have that the input lag is k = 1.
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Stochastic Adaptive Control - External control methods
Example of MV0 controller
From the Diophantine equation we find that

1 + 1.5q−1 + 0.9q−2 =
(
1 − 1.7q−1 + 0.7q−2

)
G(q−1) + q−1S(q−1). (76)

We also have the conditions that G(0) = 1, ord[G] = k − 1 and
ord[S] = max(na − 1, nc − k). Using the polynomials defined previously we
find

ord[G] = 0, ord[S] = 1. (77)

Consequently,

1 + 1.5q−1 + 0.9q−2 = 1 − 1.7q−1 + 0.7q−2 + s1q−1 + s2q−2 (78)
1.5 = −1.7 + s1, 0.9 = 0.7 + s2 (79)

Thus, by matching coefficients, we obtain the solution

G(q−1) = 1, (80)
S(q−1) = s1 + s2q−1 = 3.2 + 0.2q−1 (81)
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Stochastic Adaptive Control - External control methods
Example of MV0 controller
From the Diophantine equation we find that

1 + 1.5q−1 + 0.9q−2 =
(
1 − 1.7q−1 + 0.7q−2

)
G(q−1) + q−1S(q−1). (82)

Consequently,

1 + 1.5q−1 + 0.9q−2 = 1 − 1.7q−1 + 0.7q−2 + s1q−1 + s2q−2 (83)
1.5 = −1.7 + s1, 0.9 = 0.7 + s2 (84)

Thus, by matching coefficients, we obtain the solution

G(q−1) = 1, (85)
S(q−1) = s1 + s2q−1 = 3.2 + 0.2q−1 (86)

What would S be if A(q−1) = 1 − 1.5q−1 + 0.8q−2 instead of
A(q−1) = 1 − 1.7q−1 + 0.7q−2?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - External control methods
Example of MV0 controller

MV0 control law:

ut = A(q−1)
B(q−1)wt − Sk(q−1)

B(q−1) et − 1
B(q−1)d (87)

The optimal controller is therefore given by

(1 + 0.5q−1)ut = (1 − 1.7q−1 + 0.7q−2)wt − (3.2 + 0.2q−1)yt, (88)

For wt = 1, we can rearrange in order to find the control law

ut = −0.5ut−1 − 3.2yt − 0.2yt−1. (89)
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Stochastic Adaptive Control - External control methods
Example of MV0 controller

0 20 40 60 80 100
15

10

5

0

5

10

15
yt wt ut

Notice the control relative to the output
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Stochastic Adaptive Control - External control methods
MV1 control

Let us consider, the case were we don’t want too much control action:

Jt = E{(yt+k − wt)2 + ρu2
t } (90)

and let us consider the ARMAX system:

A(q−1)yt = q−kB(q−1)ut + C(q−1)et + d (91)

The minimizing control is then given by the equation:(
B(q−1)Gk(q−1) + ρ

b0
C(q−1)

)
ut = C(q−1)wt − Sk(q−1)yt − Gk(q−1)d

(92)
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Stochastic Adaptive Control - External control methods
MV1 control

Again let us consider, the stationary closed-loop case:

yt = q−k B(q−1)
B(q−1) + ρ

b0
A(q−1)wt +

B(q−1)Gk(q−1) + ρ
b0

C(q−1)
B(q−1) + ρ

b0
A(q−1) et

+
ρ
b0

B(q−1) + ρ
b0

A(q−1)d (93)

ut = A(q−1)
B(q−1) + ρ

b0
A(q−1)wt − Sk(q−1)

B(q−1) + ρ
b0

A(q−1)et

− 1
B(q−1) + ρ

b0
A(q−1)d (94)

If our system has A(1) ̸= 0 (no pure integrator), then for a non-zero
setpoint, MV1 contains a stationary error.
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Stochastic Adaptive Control - External control methods
MV1a control
A work around for the stationary error is to consider the control change:

Jt = E{(yt+k − wt)2 + ρ(ut − ut−1)2} (95)
The resulting control is then given by(

B(q−1)Gk(q−1) + ρ

b0
C(q−1)∆

)
ut = C(q−1)wt − Sk(q−1)yt − Gk(q−1)d

(96)
∆ = 1 − q−1 (97)

with the stationary case being given by

yt = q−k B(q−1)
B(q−1) + ρ

b0
∆A(q−1)wt +

B(q−1)Gk(q−1) + ρ
b0

∆C(q−1)
B(q−1) + ρ

b0
∆A(q−1) et

(98)

ut = A(q−1)
B(q−1) + ρ

b0
∆A(q−1)wt − Sk(q−1)

B(q−1) + ρ
b0

∆A(q−1)et (99)

− 1
B(q−1) + ρ

b0
∆A(q−1)d (100)
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Stochastic Adaptive Control - External control methods
PZ-control
Another approach to limiting the control effort is to reduce the
requirements of following the set-point. We do this by introducing a filter:

w̃t = q−k Bm(q−1)
Am(q−1)wt (101)

yt+k − w̃t+k or Am(q−1)yt+k − Bm(q−1)wt (102)
Our cost then becomes

Jt = E{(Am(q−1)yt+k − Bm(q−1)wt)2} (103)
If we again consider the system

A(q−1)yt = q−kB(q−1)ut + C(q−1)et + d (104)
the control is then defined as

ut = C(q−1)Bm(q−1)
B(q−1)Gk(q−1) wt − Sk(q−1)

B(q−1)Gk(q−1)yt − 1
B(q−1)d (105)

with the Diophantine given as
Am(q−1)C(q−1) = A(q−1)Gk(q−1) + q−kSk(q−1) (106)
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Stochastic Adaptive Control - External control methods
PZ-control

The stationary closed-loop then becomes:

yt = q−k Bm(q−1)
Am(q−1)wt + Gk(q−1)

Am(q−1)et (107)

ut = A(q−1)Bm(q−1)
B(q−1)Am(q−1)wt − Sk(q−1)

B(q−1)Am(q−1)et − 1
B(q−1)d (108)

Then, as with the MV-controllers, the PZ-control has an issue with
1 non-damped zeros
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Stochastic Adaptive Control - External control methods
Questions

Questions?
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