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Stochastic Adaptive Control - External and Internal Models
Today’s Agenda

• Follow-up from last lecture
• Model structures
• Spectral signals
• Properties of external systems
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Stochastic Adaptive Control - External and Internal Models
Follow-up from last time: General Pole placement

Last time, we saw how we could change the poles of a system on controller
canonical form, by a control law:

u = −Lx L =
[
α1 − a1 . . . αn − an

]
(1)

where α and a are the coefficients of the A polynomial of the desired and
current system respectively.

We will now consider the general linear system:

xk+1 = Axk + Buk (2)

and remember the controllability matrix:

Wc =
[
B AB A2B . . . AnB

]
(3)
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Stochastic Adaptive Control - External and Internal Models
Follow-up from last time: General Pole placement
We use a similarity transformation to transform the original system to
controller canonical form. The transformed state variables are x̄ = Tx and

x̄k+1 = Txk+1 (4)
= TAxk + TBuk (5)
= TAT −1x̄k + TBuk (6)
= Āx̄k + B̄uk. (7)

Next, we compute the feedback matrix such that

uk = −Lccx̄k. (8)

Finally, the feedback law for the original system is

uk = −LccTxk (9)
= −Lxk, (10)

where

L = LccT. (11)
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Stochastic Adaptive Control - External and Internal Models
Follow-up from last time: General Pole placement
1 Choose the desired poles (eigenvalues of the system matrix), {λd,i}n

i=1, and
compute the actual poles, {λi}n

i=1.
2 Compute the polynomial coefficients of the desired, {αi}n

i=1, and actual,
{ai}n

i=1, polynomial:

Ad(q) =
n∏

i=1
(q − λd,i), A(q) =

n∏
i=1

(q − λi). (12)

In our case, Ad(q) = q2 − (λd,1 + λd,2)q + λd,1λd,2 and similarly for A(q).
3 Compute the feedback matrix, Lcc, for the system transformed to controller

canonical form:
Lcc =

[
α1 − a1 . . . αn − an.

]
(13)

4 Compute the similarity transformation matrix by
T = Wc,ccW −1

c , (14)
where Wc,cc is the controllability matrix of the controller canonical form.

5 Compute the feedback matrix for the original system:
L = LccT. (15)6 DTU Compute Stochastic Adaptive Control 7.3.2023



Stochastic Adaptive Control - External and Internal Models
Follow-up from last time

Questions?
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Stochastic Adaptive Control - External and Internal Models
Follow-up from last time

The pole placement approach is relatively simple. Which control aspects do
we not address with this approach?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - External Models
The Moving-Average (MA) Process

The MA(q) process is defined according to:

The process {yt} given by

yt = εt +
n∑

k=1
ckεt−k, c0 = 1 (16)

where {εk} represents a white-noise process (i.e. independent and Gaussian
with variance σ2

ε), is called a moving average process of order n.
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Stochastic Adaptive Control - External Models
The Moving-Average (MA) Process

Let q denote the shift-operator defined according to

q−1yt = yt−1, (17)

then the MA(q) process can defined using the compact notation

yt = θ(q)εt, (18)

where the shift-polynomial θ is defined according to

θ(q) = 1 +
n∑

k=1
θkq−k (19)

The corresponding transfer function is given as θ(z).

θ(z) = zn +
∑n

k=1 θkzn−k

zn
(20)
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Stochastic Adaptive Control - External Models
The Moving-Average (MA) Process

Finite-order MA processes have the following properties:
• They are always stationary.
• Invertible if the zeros θ(z) = 0 lie within the unit circle.

Remember that a process is invertible if the innovations can be represented
as a function of past observations.
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Stochastic Adaptive Control - External Models
The Moving-Average (MA) Process

The auto-covariance function of an MA(q) process is given by

γ(k) =
{

σ2
ε

(
ck + c1ck+1 + · · · + cq−kcq

)
, |k| = 0...q

0, |k| > 0...q,
(21)

and in particular, the (always stationary!) variance is given by

σ2
y = γ(0) = σ2

ε

(
1 +

q∑
k=1

c2
k

)
. (22)

The spectral density of the MA(q) process is given by

f(ω) = σ2
ε

2π
θ
(
eiω
)

θ
(
e−iω

)
= σ2

ε

2π

∣∣∣∣∣1 +
q∑

k=1
cke−ikω

∣∣∣∣∣
2

, ω ∈ [−π, π]. (23)
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Stochastic Adaptive Control - External Models
The Auto-Regressive (AR) Process

The AR(m) process is defined according to:

The process {yt} given by

yt +
m∑

k=1
akyt−k = εt, a0 = 1 (24)

where {εk} represents a white-noise process, is called an auto-regressive
process of order m.
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Stochastic Adaptive Control - External Models
The Auto-Regressive (AR) Process

The AR(m) process can defined using the compact notation

A(q)yt = εt, (25)

where the shift-polynomial A(q) is defined according to

A(q) = 1 +
m∑

k=1
akq−k. (26)

The corresponding transfer function is given as 1
A(z) .

The term auto-regressive is framed based on the fact that yt can be viewed
as a regression on past values

yt = εt −
m∑

k=1
akyt−k. (27)
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Stochastic Adaptive Control - External Models
The Auto-Regressive (AR) Process

Finite-order AR processes have the following properties:
• They are always invertible.
• Stationary if the roots A(z) = 0 lie within the unit circle.

The equation

A(z) = 0 (28)

is also called the characteristic equation.
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Stochastic Adaptive Control - External Models
The Auto-Regressive (AR) Process

The auto-covariance function of an AR(m) process satisfies the linear
difference equations given by

γ(k) +
m∑

j=1
ajγ(k − j) = 0, k > 0, (29)

with initial conditions given by

γ(0) +
m∑

j=1
ajγ(j) = σ2

ε , (30)

where we remember the symmetry of auto-covariance functions
γ(k) = γ(−k). The spectrum of the process is given by

f(ω) = σ2
ε

2π

1
|1 +

∑m
k=1 ake−ikω|2

(31)
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Stochastic Adaptive Control - External Models
The ARMA Process

The ARMA(m,n) process is defined according to:

The process {yt} given by

yt +
m∑

k=1
akyt−k = εt +

n∑
k=1

ckεt−k, (32)

where {εk} represents a white-noise process, is called an auto-regressive,
moving-average process of order (m,n).
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Stochastic Adaptive Control - External Models
The ARMA Process

The ARMA(m,n) process can defined using the compact notation

A(q)yt = C(q)εt, (33)

where the shift-polynomials A(q) and C(q) are defined according to

A(q) = 1 +
m∑

k=1
akq−k and C(q) = 1 +

n∑
k=1

ckq−k (34)

The corresponding transfer function is given as C(q)
A(q) .
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Stochastic Adaptive Control - External Models
Advanced External Model structures

The ARMAX structure:

A(q−1)yt = B(q−1)ut + C(q−1)et (35)

The Box-Jenkins Structure:

yt = B(q−1)
F (q−1)ut + C(q−1)

D(q−1)et (36)

The L-Structure:

A(q−1)yt = B(q−1)
F (q−1)ut + C(q−1)

D(q−1)et (37)
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Stochastic Adaptive Control - External Models
Covariance functions - reminder

Auto covariance function:

rx(s, t) = cov(xs, xt) = E(xsxT
t ) − E(xs)E(xT

t ) (38)

cross covariance function:

rxy(s, t) = cov(xs, yt) = E(xsyT
t ) − E(xs)E(yT

t ) (39)

Rules and Notation:

rx(k) = rx(t + k, t) rxy(k) = rxy(t + k, t) (40)
rx(k) = rT

x (−k) rxy(k) = rT
yx(−k) (41)

zt = xt + yt : rz(k) = rx(k) + ry(k) + rxy(k) + rT
xy(−k) (42)

rzx(k) = rx(k) + rT
xy(−k) (43)

zt = Axt : rz(k) = Arx(k)AT rzx(k) = Arx(k) (44)
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Stochastic Adaptive Control - External Models
Variance and Spectral properties

Let us now continue with the ARMA model:

A(q−1)yt = C(q−1)et ⇔ yt =
∞∑

i=0
hiq

−iet, et ∼ N(0, σ2
e) (45)

The cross covariance of the ARMA model is given by:

A(q−1)rye(k) = C(q−1)δkσ2
e , δk =

{
1 k = 0
0 else

(46)

rye(k) = hkσ2
e (47)

The auto covariance, can be obtained from the Yule-Walker equation:

A(q−1)ry(k) = C(q−1)rey(k) (48)
ry(k) = σ2

ehk ⋆ h−k (49)
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Stochastic Adaptive Control - External Models
Spectrum and Spectral density

While covariance is a time-domain characteristic, a corresponding
characteristic in the frequency-domain is the spectrum

Ψx(z) = Zb{rx(k)} =
∞∑

k=−∞
rx(k)z−k (50)

Ψxy(z) = Zb{rxy(k)} =
∞∑

k=−∞
rxy(k)z−k (51)

A subset of the spectrum is the spectral density z = ejw of the unit circle:

ϕx(ω) = Ψx(ejω) = F(rx(k)), ω ∈ [−π, π] (52)

rx(k) = 1
2π

∫ π

−π
ϕx(ω)ejωkdω (53)

F and Zb indicating Fourier transform and bilateral Z-transform,
respectively.
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Stochastic Adaptive Control - External Models
Spectrum and Spectral density
Considering an ARMA model with the transfer function:

H(z) = b0 + b1z−1 + . . . + bnb
z−nb

1 + a1z−1 + . . . + anaz−na
(54)

Then its spectrum is given by:

Ψ(z) = H(z)H(z−1) =
b̄0 +

nb∑
i=1

b̄i(zi + z−i)

ā0 +
na∑
i=1

āi(zi + z−i)
(55)

āi =
na∑
j=i

ajaj−i, b̄i =
nb∑
j=i

bjbj−i (56)

The spectrum density is then given by

ϕ(w) = Ψ(ejw) =
b̄0 +

nb∑
i=1

2b̄i cos(iw)

ā0 +
na∑
i=1

2āi cos(iw)
(57)
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Stochastic Adaptive Control - External Models
Spectrum and Spectral density

Continuing with the ARMA model:

yt = H(z)et (58)

Then its spectrums is given by:

Ψy(z) = H(z)H(z−1)σ2
e Ψye(z) = H(z)σ2

e (59)

With the spectrum density given by

ϕy(z) = H(ejw)H(e−jw)σ2
e ϕye(z) = H(e−jw)σ2

e (60)
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Stochastic Adaptive Control - External Models
Spectral Factorization

Let us consider the opposite situation, Spectral factorization.
Consider a stationary process given by its spectral density ϕ(ω) ≥ 0 and
rational, then there exists a H(z) with only zeroes/poles inside the stability
area, such that:

ϕ(ω) = H(ejω)H(e−jω)σ2 (61)

The representation theorem: Given a weak stationary stochastic process
with rational spectral density ϕ(ω) ≥ 0, this can be represented by:

yt = H(q)et, et (white) (62)

where H(q) and its inverse is asymptotically stable, and the spectral density
of yt is ϕ(ω)
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Stochastic Adaptive Control - External Models
Spectral Factorization

If we have a polynomial Ψ(z) with Ψ(e−jw) ≥ 0 ∈ R:

Ψ(z) = rnz−n + rn−1z−(n−1) + . . . + rn−1zn−1 + rnzn (63)

then there exist a polynomial P (z), such that:

Ψ(z) = P (z−1)P (z) (64)
P (z−1) = p0 + p1z−1 + . . . + pnz−n (65)

with all zeros lying within the unit circle.
The spectrum of H(z) can be considered a ratio of spectra:

ΨH(z) = H(z)H(z−1) = C(z)
A(z)

C(z−1)
A(z−1) = C(z)C(z−1)

A(z)A(z−1) = ΨC(z)
ΨA(z) (66)
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Stochastic Adaptive Control - External Models
Spectral Factorization

Using a correction polynomial, X(z), we can compute the factorized
polynomial in iterative approach:
1 Pi(z−1)Xi(z) + Pi(z)Xi(z−1) = 2Ψ(z)

2 Pi+1(z−1) = 1
2 (Pi(z−1) + Xi(z−1))

with each correction been computed from:
pn 0 . . . 0

pn−1 pn . . . 0
...

...
...

p0 p1 . . . pn




x0
x1
...

xn

+


0 . . . 0 p0
0 . . . p0 p1
... . . . . . .

p0 . . . pn−1 pn




x0
x1
...

xn

 = 2


rn

rn−1
...

r0


(67)
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Stochastic Adaptive Control - External Models
Stochastic systems on external form

Consider the system

yt = Hu(q)ut + Hd(q)vt, vt ∼ N(0, σ2) (white) (68)

The stochastic description then becomes

E{yt} = mt = Hu(q)ut (69)
A(q−1)ryv(k) = C(q−1)rv(k) (70)
A(q−1)ry(k) = C(q−1)rvy(k) (71)

rvy(k) = rT
yv(−k) (72)

In the case of non-white disturbance, a rational assumption, makes the
substitution of vt = Hnet sufficient. where Hn and its inverse are asymp.
stable.
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Stochastic Adaptive Control - External Models
Stochastic systems on external form
Consider the asymp. stable system

yt = Hu(q)ut + Hd(q)vt, vt ∼ F (µv, σ2
v) (73)

If vt is weakly stationary process, then yt is also a weakly stationary process
given by

E{yt} = µy,t = Hu(1)u0 + Hd(1)µv (74)
A(q−1)ryv(k) = C(q−1)rv(k) (75)
A(q−1)ry(k) = C(q−1)rvy(k) (76)

rvy(k) = rT
yv(−k) (77)

If vt is Gaussian, yt is strongly stationary process.
In the frequency-domain we have:

Ψy(z) = Hd(z)Ψv(z)HT
d (z−1) (78)

Ψyv(z) = Hd(z)Ψv(z) (79)
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Stochastic Adaptive Control - Gains
System gains
Consider the system on both internal and external form:

xt+1 = Axt + Bet (80)
yt = Cxt + Det = (C(qI − A)−1B + D)et = H(q)et (81)

Any system then have a DC-Gain:

Kdc = y∞
e∞

= H(1) = C(I − A)−1B + D (82)

Similarly for a stochastic process, systems also have an AC-Gain or
Variance-Gain:

Kac =
σ2

y

σ2
e

(83)

if ei ∼ N(0, σ2
e). The relations can also be expressed as:

Px = APxAT + Bσ2
eBT σ2

y =
∫ π

−π
H(ejw)H(e−jw)dw σ2

e (84)

σ2
y = CPxCT + Dσ2

eDT (85)
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Stochastic Adaptive Control - Gains
System gains - Variance

If we consider the external description of the variance

σ2
y =

∫ π

−π
H(ejw)H(e−jw)dw σ2

e , H(z) = B(z)
A(z) (86)

The variance of a nth order system can be computed by

σ2
y = 1

a0

n∑
i=0

bi
iβi (87)

where the parameters are given by

ak−1
i = ak

i − αkak
k−i, αk = ak

k/ak
0, an

i = ai, (88)
bk−1

i = bk
i − βkbk

k−i, βk = bk
k/ak

0, bn
i = bi (89)
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Stochastic Adaptive Control - Gains
System gains - Variance
If we consider the system

yt = 1 + 0.25q−1

1 + 0.5q−1 et, et ∼ N(0, 1), (90)

then we have n = 1:

σ2
y = 1

a0
(b0

0β0 + b1β1) (91)

where the parameters are given by

α1 = a1/a0 = 0.5, β1 = b1/a0 = 0.25 (92)
a0

0 = a0 − α1a1 = 0.75, b0
0 = b0 − β1b1 = 0.875 (93)

β0 = b0
0/a0

0 = 1.1667 (94)

with the variance being:

σ2
y = 1.0833 (95)
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Stochastic Adaptive Control - Gains
System Gains - multiple inputs and multiple outputs

Let us consider the MIMO system:[
y1
y2

]
=
[
H11(w) H12(w)
H21(w) H22(w)

] [
e1
e2

]
(96)

The DC-gains are then given by

Kdc =
[
H11(1) H12(1)
H21(1) H22(1)

]
=
[
y1
y2

]
∞

[
e1 e2

]
∞

( [
e1 e2

]
∞

[
e1
e2

]
∞

)−1

(97)
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Stochastic Adaptive Control - Gains
System Gains - multiple inputs and multiple outputs
Let us consider the MIMO system:[

y1
y2

]
=
[
H11(w) H12(w)
H21(w) H22(w)

] [
e1
e2

]
(98)

For the variance or AC-Gain, we will consider independent noises ei. Under
this assumption, the AC-gain is given from:

Py =
2∑

i=1
Kac,iσ

2
in,i (99)

Where Kac,i is defined as:

Kac,i =
[∫ π

−π H1i(ejw)H1i(e−jw)dw
∫ π

−π H1i(ejw)H2i(e−jw)dw∫ π
−π H2i(ejw)H1i(e−jw)dw

∫ π
−π H2i(ejw)H2i(e−jw)dw

]
(100)

Px,i = AiPx,iA
T
i + Biσ

2
ei

BT
i (101)

P 2
y =

2∑
i=1

CiPx,iC
T
i + Diσ

2
ei

DT
i (102)
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Stochastic Adaptive Control - Gains
Questions

Questions?
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Stochastic Adaptive Control - Gains
Examples

Today’s Matlab example topics:
• Spectrum/Spectral density: back and forth
• Spectral factorization
• Addition of Spectra
• Plotting Spectra
• Matlab functions
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