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Stochastic Adaptive Control - Stochastic Control
Today’s Agenda

• Info: Project 1
• Follow-up from last lecture
• Linear Control Theory - Pole Placement
• Optimal Control Theory - LQR
• Optimal Control Theory - GPC
• LQR with incomplete state information
• observer-based control: LQG
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Stochastic Adaptive Control - Stochastic Control
Info: Project 1

1 Released: March, the 7th at 10:00

2 Deadline: April, the 4th at 23:59

3 Page limit: 20 pages

4 Format: Individual Reports

4 DTU Compute Stochastic Adaptive Control 6.3.2023



Stochastic Adaptive Control - Stochastic Control
Follow-up from last time:

How to make confidence interval for the ship trajectory

1 p l o t ( xcord , yco rd ) % t r u e path
2 p l o t ( xcord_est , y co rd_es t ) % e s t . path
3 f o r i = 1 :N
4 c = [ xco rd_es t ( i ) , y co rd_es t ( i ) ]
5 P = Pcord ( : , : , i ) % v a r i a n c e
6 Niveau ( c , i n v (P) , . . .
7 s q r t ( c h i 2 i n v ( 0 . 9 5 , 2) ) )
8 end
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Stochastic Adaptive Control - Stochastic Control
Follow-up from last time

Questions?
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Stochastic Adaptive Control - Stochastic Control
General Linear Control Theory - introduction

In deterministic state space control, we consider the system:

xt+1 = Axt + But + d (1)

Based on this system, and our desired goals of the system; a control
law/strategy is designed:

u = −Lx + w (2)

where the control gain L in general assures stability, and changes the
system properties, the input w is then used for directing the system
according to some reference.

This gives the closed-loop system:

xt+1 = (A − BL)xt + Bwt + d (3)
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Stochastic Adaptive Control - Stochastic Control
General Linear Control Theory - Pole Placement

One approach to stabilize a system, is by changing its poles. This also allow
for changing the dynamic properties of the system. As define by the
relation between poles, eigenvalues and time constants τ :

discrete-time Poles λd = eig(Ad) = e− Ts
τ (4)

continues-time Poles λc = eig(Ac) = −1
τ

(5)

If one uses external models then pole placement can be done simply by
using u = Hpole(q)w:

y = H(q)u = B(q)
A(q)u = B(q)

A(q)
A(q)

Apole(q)w = B(q)
Apole(q)w (6)
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Stochastic Adaptive Control - Stochastic Control
General Linear Control Theory - Pole Placement
In internal models, pole placement can easiest be explained by bringing the
system on Controller Canonical form:

Φc =


−a1 ... −an−1 −an

1 ... 0 0
. . . ...

...
0 ... 1 0

 Γc =


1
0
...
0

 (7)

ϕT
c = (b1 − b0a1, b2 − b0a2, ..., bn − b0an) ∆c = b0 (8)

where ai is the n coefficients in A(q). Then if αi represent the coefficients
in Apoles(q):

L = [α1 − a1, . . . , αn − an] (9)

defines the control gain, that gives the exact pole placement. Remember
the polynomials relation to the poles:

A(q) =
n∏

i=1
(q − λd,i) (10)
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Stochastic Adaptive Control - Stochastic Control
Example on pole placement
Consider the system

Xk+1 =
[
6 −8
1 0

]
xk +

[
1
0

]
uk, eig(Ax) = [2, 4] (11)

A(q) = q2 − 6q + 8 (12)
if we want a system with the poles 0.5, −0.5, the polynomial should be

Anew(q) = q2 + 0q − 0.25 (13)
designing the controller we gain the following results

L =
[
0 − −6 −0.25 − 8

]
=
[
6 −8.25

]
(14)

Anew = A − BL =
[
0 0.25
1 0

]
, eig(Ax) = [0.5, −0.5] (15)

What is the feedback gain, L, if we wanted the poles to be 0.25 and
−0.25? What is the corresponding closed-loop system matrix, A − BL?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.10 DTU Compute Stochastic Adaptive Control 6.3.2023



Stochastic Adaptive Control - Stochastic Control
Optimal Control Theory

In Optimal control theory, one consider how to operate a system (17) best
or optimal, according to some scalar cost criteria (16)

J = min
u

l(x, u) (16)

xk+1 = Axk + Buk (17)

The optimal control minimizing the cost is then found by substituting (17)
into a new cost V̄ , and finding the minimum:

dV̄ (x0, u)
du

= 0 (18)

The resulting control trajectory is then computed by isolating u
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Stochastic Adaptive Control - Stochastic Control
Optimal Control Theory - minimum of cost function
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Stochastic Adaptive Control - Stochastic Control
Optimal Control Theory - Example
Let us go through a simple example, consider the optimal control problem:

Jk = min
uk

xT
k+1Qxk+1 + uT

k Ruk + 2uT
k Hxk+1 (19)

xk+1 = Axk + Buk (20)
The optimal cost can then be written as:
V̄ (xk, u) = (Axk + Buk)T Q(Axk + Buk) + uT

k Ruk + 2uT
k H(Axk + Buk)

(21)
= xT

k AT QAxk + uT
k (BT QB + R + 2HB)uk + uT

k (2BT QA + 2HA)xk

(22)
We can the find the minimizing control law to be results from:

dV̄ (xk, u)
duk

= 2(BT QB + R + 2HB)uk + 2(BT QA + HA)xk (23)

uk = −(BT QB + R + 2HB)−1(BT QA + HA)xk (24)

How do Q, R, and H affect the solution, uk? Think about it for yourself for
one minute and then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - Linear Quadratic Regulator

We will now consider the quadratic case over a longer period, covering a
finite state trajectory {xk}N

k=0 and an input trajectory {uk}N−1
k=0 :

l = x′
N Q0xN +

N−1∑
k=0

[
x′

kQ1xk + u′
kQ2uk

]
. (25)

The matrices Q0 and Q1 are symmetric positive semi-definite and the
matrix Q2 is positive definite. In quadratic optimization one considers costs
of the form xT Sx, where S is a positive semi-definite matrix

xT Sx ≥ 0 and convex (26)

Ss =1
2(S + ST ) = ST

s , Sa = 1
2(S − ST ) = −ST

a (27)

xT Ssx = xT Sx, xT Sax = −xT ST
a x = 0 (28)

xT AT SAx ≥ 0 (29)
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - Linear Quadratic Regulator

For the rest of our discussion let us consider the system:

xk+1 = Axk + Buk + vk, vk ∼ N(0, R1) (30a)
yk = Cxk + ek, ek ∼ N(0, R2) (30b)
vk ⊥ ek, vk, ek ⊥ xk, x0 ∼ N(m0, P0) (30c)

In the stochastic case, we use expectation in our optimization:

J = min
u

E{l(x, u)|F} = min
u

E{xT Qx + uT RuT |F} (31)

= min
u

E{x|F}T QE{x|F} + uT RuT + tr{QV {x|F}} (32)

Where F is the information available
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - Quadratic cost versions

There exist multiple ways to formulate quadratic costs. Some of the most
common is given below.
The cost on deviation from references, and control usages:

J = E

{ t+N∑
i=t

(yi − ri)T Qy(yi − ri) + uT
i Quui|F

}
(33)

The cost on deviation from references, and control deviation:

J = E

{ t+N∑
i=t

(yi − ri)T Qy(yi − ri) + (ui − u0)T Qu(ui − u0)|F
}

(34)

The cost on deviation from references, and control changes:

J = E

{ t+N∑
i=t

(yi − ri)T Qy(yi − ri) + (ui − ui−1)T Qu(ui − ui−1)|F} (35)
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - Linear Quadratic Regulator
For a stochastic control problem it is very important to specify which data
(or information) that is available for determining the optimal control
trajectory {uk}N−1

k=0 . In this discussion, we will assume that we have perfect
state information yk = xk.

In the stochastic case, our cost function is also a stochastic function, and
as stated we will consider the expected value of l instead:

E
[
l
]

= E

[
x′

N Q0xN +
N−1∑
k=0

x′
kQ1xk + u′

kQ2uk

]
(36)

= E

[
t−1∑
k=0

[
x′

kQ1xk + u′
kQ2uk

]]
+ E

[
x′

N Q0xN +
N−1∑
k=t

[
x′

kQ1xk + u′
kQ2uk

]]
(37)

The goal is now, to find a control strategy for the stochastic system (30a)
such that the cost function (36) is minimal.
Notice that we can split the equation at time t, with the first term being
independent of ut, ..., uN−1
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - minimum and definition

Assume that l(x, u) has a unique minimum with respect to u for all x, and
let u0(x) denote the value of u where this minimum is attained. Then,

min
u(x)

E
[
l(x, u)

]
= E

[
l(x, u0(x))

]
= E

[
min

u
l(x, u)

]
(38)

We now apply the result (38) and find that

min
ut,...,uN−1

E

[
x′

N Q0xN +
N−1∑
k=t

[
x′

kQ1xk + u′
kQ2uk

]]
= E

[
V (xt, t)

]
, (39)

where we define

V (xt, t) = min
ut,...,uN−1

E

[
x′

N Q0xN +
N−1∑
k=t

[
x′

kQ1xk + u′
kQ2uk

] ∣∣∣ xt

]
(40)
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - Dynamic Programming

We can do this repeatedly to achieve the recursion, known as the Bellman
equation:

V (x, t) = min
ut

{
E
[
x′

tQ1xt + u′
tQ2ut + V (xt+1, t + 1)

∣∣ x
]}

(41a)

= min
ut

{
x′Q1x + u′

tQ2ut + E
[
V (xt+1, t + 1)

∣∣ x
]}

. (41b)

where we for t = N has the end-point condition that

V (x, N) = min
u

{
E
[
x′

N Q0xN

∣∣ x
]}

= x′Q0x. (42)

being the initial condition.
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - Dynamic Programming

We will now show that the solution to (41) with the initial conditions given
by (42) is a quadratic function

V (x, t) = x′Stx + st, (43)

where St is a non-negative definite matrix.
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - Dynamic Programming

It is true for t = N since we by definition have that

V (x, N) = x′Q0x, (44)

by our initial condition. We will now make a proof-by-induction. Assume
that it holds for t + 1, we will then have to show that it also holds for t.

By our assumption we have that

V (xt+1, t + 1) = x′
t+1St+1xt+1 + st+1. (45)

We also find that

E
[
V (xt+1, t + 1)

∣∣ x
]

= [Ax + But]′ St+1 [Ax + But]

+ trace [St+1R1] + st+1. (46)
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - Dynamic Programming
Using this result, we find that

V (x, t) = min
ut

{
x′Q1x + u′

tQ2ut + [Ax + But]′St+1 [Ax + But]

+ trace [St+1R1] + st+1

}
. (47)

Collecting terms and defining

Lt =
[
Q2 + B′St+1B

]−1
B′St+1A, (48)

we can formulate V (x, t) according to

V (x, t) = x′ [A′St+1A + Q1 − L′
t(Q2 + B′St+1B)Lt

]
x

+ trace [St+1R1] + st+1, (49)

where this minimum value is attained for

ut = −Ltxt, (50)

which is a linear feedback controller (or strategy).
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - Dynamic Programming
We have now shown that the function V (x, t) indeed is a quadratic
function with

St = A′St+1A + Q1 − L′
t

[
Q2 + B′St+1B

]
Lt (51a)

st = trace [St+1R1] + st+1. (51b)

However, we still need to show that St is a non-negative definite matrix.
Re-arranging terms in (51a) yields

St = [A − BLt]′ St+1 [A − BLt] + L′
tQ2Lt + Q1, (52)

from which (given the properties of Q1 and Q2) it is seen that if St+1 is a
non-negative definite matrix, then St is also a non-negative definite matrix.

What is the trick you need to get from (51a) to (52)?

Think about it for yourself for one minute and then discuss with the person
next to you for one minute.
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - Dynamic Programming

To summarize an optimal control strategy for the stochastic system (30a)
such that cost function (36) is minimal is given by

uk = −Lkxk, (53)

where

Lk =
[
Q2 + B′Sk+1B

]−1
B′Sk+1A, (54)

and Sk is given by

Sk = [A − BLk]′ Sk+1 [A − BLk] + L′
kQ2Lk + Q1, (55)

with initial condition

SN = Q0. (56)
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - General Predictive Control

Let us consider the ith prediction of a linear system:

xi = Aix0 + [Ai−1B, . . . , AB, B]


u0
...

ui−2
ui−1

+ [Ai−1G, . . . , AG, G]


v0
...

vi−2
vi−1


(57)

= Aix0 + Bi−1Ui−1 + Gi−1Vi−1 (58)
yi = Cxi + Dui + ei (59)

= CAix0 + [CBi−1, D]Ui + CGi−1Vi−1 + ei (60)
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Stochastic Adaptive Control - Stochastic Control
Optimal Control - GPC: General Predictive Control
We can then define all predictions as:

Yi = Wo,ix0 + GIUi + HiVi−1 + Ei (61)

Wo,i =


C

CA
CA2

...
CAi

 Mi(B, D) =


D

CB D
CAB CB D

...
... . . . . . .

CAi−1B CAi−2B . . . CB D

 (62)

Gi = Mi(B, D) Hi = Mi(G, 0) (63)

Using optimization the predictive control is then given as:

Ji = min
Ui

E{(Yi − Wi)T Qy(Yi − Wi) + UT
i QuUi} (64)

Ui = [GT
i QyGi + Qu]−1GT

i Qy(Wi − Wo,iE{x0} − HiE{V }i−1 − E{Ei})
(65)
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Stochastic Adaptive Control - Stochastic Control
GPC: Horizons

Predictive control, is commonly used in a iterative manner as:
ut = [I, 0, . . . , 0]Ui

where i in Ui is the length of the Horizon
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Stochastic Adaptive Control - Stochastic Control
LQR - Linear Quadratic Regulator w. complete state info

The result of the dynamic programming earlier is also known as finite
horizon LQR and defined by

Jt = E

{ t+N∑
i=t

[
xT

i uT
i

] [Q1 Q12
QT

12 Q2

] [
xi

ui

]}
, xt ∈ F (x0, Σ0) (66)

xi+1 = Axi + Bui + vi, vi ∈ F (0, R1) (67)

With an optimal control law on the form:

ut = −Ltxt = −[BT St+1B + Q2]−1[BT St+1A + QT
12]xt (68)

Where the optimal state weight at time t is St, given by

St = AT St+1A + Q1 − AT St+1B(BT St+1B + Q2)−1BT St+1A (69)
St+N+1 = 0 (70)
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Stochastic Adaptive Control - Stochastic Control
LQR - closed-loop w. complete state info
For the closed-loop analysis, let us consider the system:

xt+1 = Axt + But + vt (71)
zt = Czxt + Dzut (72)

with the control ut = −Ltxt

The closed-loop description the becomes:

xt+1 = (A − BL)xt + vt = Aclxt + vt (73)
zt = (Cz − DzLt)xt = Czclxt (74)

With the state mean/variance evolution:

E{xt} = AclE{xt−1}, E{x0} = m0 (75)
V ar{xt} = AclV ar{xt−1}AT

cl + R1, V ar{x0} = Σ0 (76)

and the output mean/variance evolution:

E{zt} = CzclE{xt} (77)
V ar{zt} = CzclV ar{xt}CT

zcl (78)
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Stochastic Adaptive Control - Stochastic Control
LQR - stationary control

If we consider the infinite horizon LQR, N = ∞, then we have a stationary
controller.
We can see that St = St+1 results in a constant control gain Lt.

The Discrete Algebraic Ricatti Equation (DARE):

S∞ = AT S∞A + Q1 − AT S∞B(BT S∞B + Q2)−1BT S∞A (79)
L∞ = −[BT S∞B + Q2]−1[BT S∞A + Q12] (80)

This applicable iif (A,B) is at least stabilizable (controllable,reachable).

If (A,Q1) is observable, then DARE have a unique positive semi-definite
solution, and (A-BL) is asymptotically stable.
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Stochastic Adaptive Control - Stochastic Control
LQR - complete/incomplete state information
From the deduction of LQR, we remember the Bellman equation, and how
it described the optimal cost to go. In the more general form it is given by:

Vt(Ft) = min
ut,...,ut+N

E

{ t+N∑
i=t

Ii(xi, ui)|Ft

}
= min

ut
E{It(xt, ut) + Vt+1(Ft+1)|Ft}

(81)
Ft = {xt, Yt, Yt−1} (82)

If we follow the same deduction, the control law of LQR becomes:

ut = −LtE{xt|Ft} (83)
Lt = [BT St+1B + Q2]−1[BT St+1A + Q12] (84)
St = AT St+1A + Q1 − LT

t (BT St+1B + Q2)Lt (85)
St+N+1 = 0 (86)

For case of the incomplete state information, the control becomes:

ut = −LtE{xt|Yt} = −Ltx̂t|t, ut = −LtE{xt|Yt−1} = −Ltx̂t|t−1 (87)
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Stochastic Adaptive Control - Stochastic Control
LQG: the optimal Linear Quadratic Gaussian observer-based
controller
For linear systems, we have discussed both controllers and observers:
1 LQ control: Optimal state control based on perfect state & system knowledge.
2 Kalman filter: Optimal state estimation based on perfect system knowledge.

When the assumption of full state knowledge is unattainable, we can
combine the controller with an observer.

The optimal observer-based controller in the linear case, is the Linear
Quadratic Gaussian controller or LQG:

Jk = min
ut,...,ut+N

E

{ t+N∑
i=t

[
xi

ui

]T [
Q1 Q12
Q12 Q2

] [
xi

ui

]
|F
}

(88)

xi+1 = Axi + Bui + vi, vi ∼ N(0, R1) (89)
yi = Cxi + ei, ei ∼ N(0, R2), cov(vi, ei) = R12 (90)

Both the controller and observe can be designed independently (separation
Principle)
32 DTU Compute Stochastic Adaptive Control 6.3.2023



Stochastic Adaptive Control - Stochastic Control
LQG - Duality and Stationarity
Controlling vs Observation - two sides of the same coin.

Consider quadratic optimal control (LQ) and quadratic optimal observers
(Kalman filter):

Optimal Gain:

LT
t = [AT St+1B + Q12][BT St+1B + Q2]−1 (91)

Kt = [APtC
T + R12][CPtC

T + R2]−1 (92)

Riccati Equations:

St = AT St+1A + Q1 − LT
t [BT St+1B + Q2]Lt, SN+1 = 0 (93)

Pt+1 = APtA
T + R1 − Kt[CPtC

T + R2]KT
t , Pt0 = P0 (94)

Algebraic Riccati Equations: (Stationary case)

S = AT SA + Q1 − [AT SB + Q12][BT SB + Q2]−1[BT SA + QT
12] (95)

P = APAT + R1 − [APCT + R12][CPCT + R2]−1[CPAT + RT
12] (96)
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Stochastic Adaptive Control - Stochastic Control
Brief Proof of Separation principle

It can be shown, that independently designed optimal controller and
observer design results in the optimal controller/observer of the combined
system, this is known as the separation principle.

Let us consider the system:

xt+1 = Axt + But + vt (97)
yt = Cxt + et (98)

and let us have designed both an LQR and a Kalman filter independently,
with the gains Lt and Kt respectively. Our state and estimation systems
can then be written as:[

x
x̂

]
t+1|t

=
[

A −BLt

KtC A − KtC − BLt

] [
x
x̂

]
t|t−1

+
[
I 0
0 Kt

] [
vt

et

]
(99)
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Stochastic Adaptive Control - Stochastic Control
Brief Proof of Separation principle

As we saw earlier, an LQR based on estimation provides the same control
equation as one based on complete state information. Meaning that we
only have to prove the individually designed Kalman filter still is optimal
besides the control.

If we consider the systems estimation error x̃t = xt − x̂t+1:[
x
x̃

]
t+1|t

=
[
A − BLt BLt

0 A − KtC

] [
x
x̃

]
t|t−1

+
[
I 0
I −Kt

] [
vt

et

]
(100)

We can observe the description for the estimation error is independent of
the control and true state. Additionally given the expanded state matrix is
triangular, its eigenvalues only dependend on (A − BLt) and A − KtC,
meaning stability is designed individually.

Conclusion: separation principle holds, given the iterative properties of xt

and x̃t is independent of the design of the other.
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Stochastic Adaptive Control - Stochastic Control
Closed loop LQG - Predictive
Using a LQG controller based on a predictive Kalman filter, gives the
closed-loop description:[

x
x̃

]
t+1|t

=
[
A − BLt BLt

0 A − KtC

] [
x
x̃

]
t|t−1

+
[
I 0
I −Kt

] [
vt

et

]
(101)

= Acl

[
x
x̃

]
t|t−1

+ G

[
vt

et

]
(102)

LQG properties:

mt+1 = Aclmt → 0 (iff asym. stable) (103)

Σt+1 = AclΣtA
T
cl + GR̄1GT →

[
Px P∞
P∞ P∞

]
(iff asym. stable) (104)

R̄1 = diag(Rv, Re) (105)

where P∞ comes from the ricatti equation for the ordinary Kalman filter:

Pt+1 = APtA
T + R1 − Kt(CPtC

T + R2)KT
t (106)
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Closed loop LQG - Predictive
The Predictive LQG closed-loop form:[

x
x̃

]
t+1|t

=
[
A − BLt BLt

0 A − KtC

] [
x
x̃

]
t|t−1

+
[
I 0
I −Kt

] [
vt

et

]
(107)

= Acl

[
x
x̃

]
t|t−1

+ G

[
vt

et

]
(108)

The control and output properties are

ut = −Ltx̂t|t−1

= −Lt(xt − x̃t|t−1) ∈ N

( [
Lt −Lt

]
mt,

[
Lt −Lt

]
Σt

[
LT

t

−LT
t

])
(109)

yt = Cxt ∈ N

([
C 0

]
mt,

[
C 0

]
Σt

[
C
0

])
= N(Cmx,t, CPx,tC

T )

(110)
Stationary: x̃ ∈ N(0, P∞)
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Closed loop LQG - Ordinary
Using a LQG controller based on an ordinary Kalman filter, gives the
closed-loop description:[

x
x̃

]
t+1|t+1

=
[
A − BLt BLt

0 A − κtCA

] [
x
x̃

]
t|t

+
[

I 0
I − κC −κt

] [
vt

et

]
(111)

= Acl

[
x
x̃

]
t|t

+ G

[
vt

et

]
(112)

LQG properties:
mt+1 = Aclmt → 0 (iff asym. stable) (113)

Σt+1 = AclΣtA
T
cl + GR̄1GT →

[
Px P̄∞
P̄∞ P̄∞

]
(iff asym. stable) (114)

R̄1 = diag(Rv, Re) (115)

where P̄∞ comes from the Riccati equation for the ordinary Kalman filter:
P̄t+1 = (I − κt+1C)(AP̄tA

T + R1)(I − κt+1C)T + κt+1R2κt+1 (116)
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Closed loop LQG - Ordinary
The ordinary LQG closed-loop form:[

x
x̃

]
t+1|t+1

=
[
A − BLt BLt

0 A − κtCA

] [
x
x̃

]
t|t

+
[

I 0
I − κC −κt

] [
vt

et

]
(117)

= Acl

[
x
x̃

]
t|t

+ G

[
vt

et

]
(118)

The control and output properties:
ut = −Ltx̂t|t

= −Lt(xt − x̃t|t) ∈ N

( [
Lt −Lt

]
mt,

[
Lt −Lt

]
Σt

[
LT

t

−LT
t

])
(119)

yt = Cxt ∈ N

([
C 0

]
mt,

[
C 0

]
Σt

[
C
0

])
= N(Cmx,t, CPx,tC

T )

(120)

Note the similarity with the predictive LQG. Stationary: x̃ ∈ N(0, P̄∞).
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Questions

Questions?
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Kalman Filter Cheat-Sheet

Given the process model

xk+1 = Axk + Buk + Gξk (121a)
yk = Cxk + Duk + Fek. (121b)

Given x̂k−1|k−1 (filtered mean) and P̂k−1|k−1 (filtered covariance), we
predict (1-step) using

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1 (122a)
P̂k|k−1 = AP̂k−1|k−1A′ + GRξG′. (122b)
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Stochastic Adaptive Control - Stochastic Control
Kalman Filter Cheat-Sheet

Given yk, we reconstruct (or update) x̂k|k and P̂k|k using

êk = yk − Cx̂k|k−1 − Duk (123a)
Rk = CP̂k|k−1C ′ + FReF ′ (123b)
Kk = P̂k|k−1C ′R−1

k (123c)
x̂k|k = x̂k|k−1 + Kkêk (123d)
P̂k|k = (I − KkC)P̂k|k−1. (123e)

REPEAT!

42 DTU Compute Stochastic Adaptive Control 6.3.2023


	Stochastic Adaptive Control - Stochastic Control

