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Stochastic Adaptive Control - Kalman Filters
Lecture Plan
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Stochastic Adaptive Control - Kalman Filters
Today’s Agenda

• Follow-up from last lecture
• Kalman assumptions
• Noise correlation
• Kalman errors and properties
• Examples
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Stochastic Adaptive Control - Kalman Filters
Follow-up From Last Time: Question 1
Find the stationary distribution of

xk+1 =
[

2/5 0
−3/5 1/5

]
xk + vk, vk ∈ N

([
0
0

]
,

[
1 0
0 2

])
, (1)

yk =
[
1 1

]
xk + ek, ek ∈ N(0, 2). (2)

The system is linear and the noise is Gaussian. Therefore the distributions
are Gaussian:

E{xk+1} = AE{xk} + E{vk}, (3)
V ar{xk+1} = AV ar{xk}AT + V ar{vk}, (4)

E{yk} = CE{xk} + E{ek}, (5)
V ar{yk} = CV ar{xk}CT + V ar{ek}. (6)

The stationary distributions are

x∞ ∈ N

([
0
0

]
,

[
1.1905 −0.3106

−0.3106 2.6074

])
, (7)

y∞ ∈ N (0, 5.1768) . (8)
4 DTU Compute Stochastic Adaptive Control 21.2.2023



Stochastic Adaptive Control - Kalman Filters
Follow-up from last time

Questions?
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Stochastic Adaptive Control - Kalman Filters
Kalman Filter: The Standard System

The theory behind the Kalman filter is based on the assumption of a linear
system with both white process noise and white measurement noise

xt+1 = Axt + But + vt vt ∈ N(0, R1), (9)
yt = Cxt + Dut + et et ∈ N(0, R2), (10)

CoV (vt, et) = 0, et, vt white ⊥ xs s ≤ t. (11)

Furthermore, the noises are assumed to be independent of the state history
and each other. In summary,
1 x0 ∈ N(x̂0, P0)

2 vt ∈ N(0, R1), white

3 et ∈ N(0, R2), white

4 CoV (vt, et) = 0

5 vt, et ⊥ xs, s ≤ t
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Stochastic Adaptive Control - Kalman Filters
Kalman Filter: Deviations from the Standard Assumptions

We will now consider systems where one of these assumptions do not apply:

1 Non-zero mean process disturbances

2 Non-zero mean output disturbances

3 Colored (non-white) process noise

4 Colored (non-white) output noise

5 Noise correlated with the state

6 Correlated noises
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Stochastic Adaptive Control - Kalman Filters
Uncertain Offset in the Process

Consider the system that contains a stochastic process offset,

xt+1 = Axt + But + Gdt + vt, (12)
yt = Cxt + Dut + et, (13)

where process offset is given by

dt+1 = dt + wt. (14)

We can obtain the standard system description by:[
x
d

]
t+1

=
[
A G
0 I

] [
x
d

]
t

+
[
B
0

]
ut +

[
v
w

]
t

, (15)

yt =
[
C 0

] [x
d

]
t

+ Dut + et. (16)
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Stochastic Adaptive Control - Kalman Filters
Uncertain Offset in the Output

Consider the system that contains a stochastic measurement offset,

xt+1 = Axt + But + vt, (17)
yt = Cxt + Dut + Hdt + et, (18)

where output offset is given by

dt+1 = dt + wt. (19)

We can obtain the standard system description by:[
x
d

]
t+1

=
[
A 0
0 I

] [
x
d

]
t

+
[
B
0

]
ut +

[
v
w

]
t

, (20)

yt =
[
C H

] [x
d

]
t

+ Dut + et. (21)
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Stochastic Adaptive Control - Kalman Filters
The Case of Coloured Noise

In Kalman filters, we assume that the noise is white.

White noise (discrete-time):
In discrete time, a white noise signal ϵt has zero mean, finite variance, and
it is time-wise independent: ϵt ⊥ ϵs for s ̸= t.

If the noise wt of a system is colored (non-white), it can be described as a
system of white noises (ηt, ξt):

zt+1 = Awzt + ηt, (22)
wt = Cwzt + ξt. (23)
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Stochastic Adaptive Control - Kalman Filters
The Case of Coloured Process Noise

Consider a system with colored process noise vt:

xt+1 = Axt + But + vt, (24)
yt = Cxt + Dut + et. (25)

We can obtain a standard system description by:[
x
z

]
t+1

=
[
A Cw

0 Aw

] [
x
z

]
t

+
[
B
0

]
ut +

[
ξ
η

]
t

, (26)

yt =
[
C 0

] [x
z

]
t

+ Dut + et. (27)
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Stochastic Adaptive Control - Kalman Filters
The Case of Coloured Output Noise
Let us consider a system with colored measurement noise et:

xt+1 = Axt + But + vt, (28)
yt = Cxt + Dut + et (29)

We can then obtain a standard system description by:[
x
z

]
t+1

=
[
A 0
0 Aw

] [
x
z

]
t

+
[
B
0

]
ut +

[
v
η

]
t

, (30)

yt =
[
C Cw

] [x
z

]
t

+ Dut + ξt. (31)

Can you think of a disadvantage of augmenting the states?
How can you mitigate it?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - Kalman Filters
Correlation with State History
Consider the system

xt+1 = Axt + But + Gwt, (32)
yt = Cxt + Dut + ηt, (33)

where the noises wt and ηt are correlated with the states:

wt = Hxt + vt, (34)
ηt = Fxt + et, (35)
vt ∈ N(0, R1), xt ⊥ vt, (36)
et ∈ N(0, R2), xt ⊥ et. (37)

Then we can obtain an uncorrelated description:

xt+1 = (A + GH)xt + But + Gvt, (38)
yt = (C + F )xt + Dut + et. (39)
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Stochastic Adaptive Control - Kalman Filters
Ordinary Kalman Filter with Correlated Noise
Consider a system with correlated process and measurement noise:

xt+1 = Axt + But + vt, vt ∈ N(0, R1), (40)
yt = Cxt + Dut + et, et ∈ N(0, R2), (41)

CoV (vt, et) = R12, et, vt white ⊥ xs s ≤ t. (42)

For this system, the ordinary Kalman filter is
Data Update:

x̂t|t = x̂t|t−1 + κt(yt − Cx̂t|t−1 − Dut), (43)
Pt|t = (1 − κtC)Pt|t−1, (44)

κt = Pt|t−1CT (CPt|t−1CT + R2)−1. (45)

Time Update:

x̂t+1|t = Ax̂t|t + But + M(yt − Cx̂t|t − Dut), (46)
= (A − MC)x̂t|t + (B − MD)ut + Myt, (47)

Pt+1|t = (A − MC)Pt|t(A − MC)T + R1 − MR12, M = R12R−1
2 . (48)
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Stochastic Adaptive Control - Kalman Filters
Predictive Kalman Filter with Correlated Noise

Consider a system with correlated process and measurement noise:

xt+1 = Axt + But + vt, vt ∈ N(0, R1), (49)
yt = Cxt + Dut + et, et ∈ N(0, R2), (50)

CoV (vt, et) = R12, et, vt white ⊥ xs s ≤ t. (51)

For this system, the predictive Kalman filter is

x̂t+1|t = Ax̂t|t−1 + But + Kt(yt − Cx̂t|t−1 − Dut), (52)
Pt+1|t = APt|t−1AT + R1 − Kt(APt|t−1CT + R12)T , (53)

Kt = (APt|t−1CT + R12)(CPt|t−1CT + R2)−1. (54)

Despite the difference in the two filters, the gains are still related:

Kt = (A − MC)κt + M. (55)
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Stochastic Adaptive Control - Kalman Filters
Correlated noise - Derivation (Ordinary)
Consider the system with a slight change:

xt+1 = Axt + But + vt + M(yt − yt) (56)
= Axt + But + vt + M(yt − Cxt − Dut − et) (57)
= (A − MC)xt + (B − MD)ut + Myt + ṽt, ṽt = vt − Met). (58)

Define the covariance of ṽt and et to be zero:

R̃12 = E{ṽte
T
t } = E{(vt − Met)eT

t } (59)
= R12 − MR2 = 0 ⇒ M = R12R−1

2 , (60)
R̃1 = E{ṽtṽ

T
t } = R1 − R12R−1

2 RT
12. (61)

The correlated version of the ordinary Kalman filter is then defined by the
original data update but with the new time update:

x̂t+1|t = (A − MC)x̂t|t + (B − MD)ut + Myt (62)
Pt+1|t = (A − MC)Pt|t(A − MC)T + R̃1 (63)
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Stochastic Adaptive Control - Kalman Filters
Correlated Noise - Derivation (Predicted)

Consider the conditional distribution of the future state and current
measurement based on past measurements:[
xt+1
yt

]
|Yt−1 ∈ E

{[
Ax̂t|t−1 + But

Cx̂t|t−1 + Dut

]
,

[
APt|t−1AT + R1 APt|t−1CT + R12
CPt|t−1AT + RT

12 CPt|t−1CT + R2

]}
.

(64)

Considering xt+1|Yt ∈ N(x̂t+1|t, Pt+1|t), and using the projection theorem,
we get

x̂t+1|t = Ax̂t|t−1 + But + Kt(yt − Cx̂t|t−1 − Dut), (65)
Pt+1|t = APt|t−1AT + R1 − Kt(APt|t−1CT + R12)T , (66)

Kt = (APt|t−1CT + R12)(CPt|t−1CT + R2)−1. (67)
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Stochastic Adaptive Control - Kalman Filters
Correlated Noise - A Special Case

In the case of perfect correlation between the process noise and
measurement noise,

vt = Get, (68)
R1 = GR2GT , (69)

R12 = GR2, (70)

and the stationary predictive Kalman filter is characterized by

P∞ = 0, K∞ = G. (71)
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Stochastic Adaptive Control - Kalman Filters
Proof

If Pt|t−1 = 0, the predictive variance and gain become

Pt+1|t = R1 − KtR
T
12, (72)

Kt = R12R−1
2 . (73)

We substitute the correlation:

Pt+1|t = GR2GT − Kt(GR2)T = 0, (74)
Kt = GR2R−1

2 = G, (75)

This proves that P∞ = 0 and K∞ = G is a solution.

Then, if (A − GC, R1) is reachable and R2 ≻ 0, we know that it is the only
solution (from the Riccatti equation and (63)).
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Stochastic Adaptive Control - Kalman Filters
Kalman Errors

For a given system,

xt+1 = Axt + But + vt, vt ∈ N(0, R1), (76)
yt = Cxt + Dut + et, et ∈ N(0, R2), (77)
et,vt white ⊥ xs s ≤ t, (78)

the properties of the Kalman errors are well-known provided that the model
is correct:

x̃t|t = xt − x̂t|t ∈ N(0, Pt|t), (79)
x̃t|t−1 = xt − x̂t|t−1 ∈ N(0, Pt|t−1), (80)

ϵt = yt − Cx̂t|t−1 ∈ N(0, CPt|t−1CT + R2), white. (81)
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Stochastic Adaptive Control - Kalman Filters
State Estimation and Its Errors

The estimation errors (Ee) are

x̃t|t = xt − x̂t|t, (Ordinary Ee) (82)
x̃t|t−1 = xt − x̂t|t−1, (Predictive Ee) (83)

and have the stochastic properties

x̃t|t ∈ N(0, Pt|t), (84)
x̃t|t−1 ∈ N(0, Pt|t−1). (85)

The process description of the estimation errors are

x̃t+1|t+1 = (I − κt+1C)(Ax̃t|t + vt) − κt+1et+1, (86)
x̃t+1|t = (A − KtC)x̃t|t−1 − Ktet + vt, Kt = Aκt. (87)
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Stochastic Adaptive Control - Kalman Filters
The Prediction Error (the Innovation)

The prediction error ϵt (also called the innovation) is

ϵt = yt − Cx̂t|t−1. (88)

The prediction error is white and has the following stochastic properties,
when the system has deterministic parameters (correct model):

ϵt ∈ N(0, CPt|t−1CT + R2), white, (89)
ϵs ⊥ ϵt, s ̸= t. (90)

Therefore, the prediction error can be used for
1 Model validation (i.e., validating A, B, . . .).

2 System representation.

3 Fault detection.
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Stochastic Adaptive Control - Kalman Filters
Example of Prediction Error
Consider the system

xt+1 = 0.5xt + vt, vt ∈ N(0, 0.1), (91)
yt = xt + et, et ∈ N(0, 0.5). (92)

Then, the prediction error should be

ϵt ∈ N(0, 0.625). (93)

Based on several simulations,

E{ϵt} = −0.0047, (94)
V {ϵt} = 0.6218, (95)

and the autocorrelation shows
that it is white.
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Stochastic Adaptive Control - Kalman Filters
Prediction Error: Innovation Form

The prediction error can be used to rewrite the system Consider

xt+1 = Axt + But + vt, (96)
yt = Cxt + Dut + et, (97)

in the innovation form based on predictive Kalman filter,

x̄t+1 = Ax̄t + But + Kϵt, (98)
yt = Cx̄t + Dut + ϵt, (99)

where Kt is the Kalman gain:

Kt = (APtC
T + R12)(CPtC

T + R2)−1. (100)

Notice that the innovation form is exactly the case of perfectly correlated
process and measurement noise.
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Stochastic Adaptive Control - Kalman Filters
Innovation Form: Internal to External (Stationary Case)
If we assume stationary conditions, then, by using the innovation form, we
can transform an internal model to an external model.

If we consider the system
xt+1 = Axt + But + vt, (101)

yt = Cxt + Dut + et, (102)
we can obtain the stationary innovation form

x̄t+1 = Ax̄t + But + Kϵt, (103)
yt = Cx̄t + Dut + ϵt, (104)

which allows us to define the external model as
yt = Hu(q)ut + Hϵ(q)ϵt (105)

Hu(q) = C[qI − A]−1B + D (106)
Hϵ(q) = C[qI − A]−1K + 1 (107)

(108)
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Stochastic Adaptive Control - Kalman Filters
Trick - Hemes Inversion Lemma
A trick, when computing the variance matrix, is the Hemes inversion lemma:

[A + BC−1DT ]−1 = A−1 − A−1B(C + DT A−1B)−1DT A−1. (109)

It allows us to rewrite the variance equation

Pt|t = Pt|t−1 − Pt|t−1CT (CPt|t−1CT + R2)−1CPt|t−1, (110)

into its inverse form with corresponding Kalman gain:

P −1
t|t = P −1

t|t−1 + CT R−1
2 C, (111)

κt = Pt|tC
T R−1

2 . (112)

Consider the scalar case. Which is bigger; Pt|t or Pt|t−1?
Is that what you would expect?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Stochastic Adaptive Control - Kalman Filters
Example: Estimation of Constant State
We want to determine a scalar constant. This can be described as a state
estimation problem where

xt+1 = xt, (113)
yt = xt + et, et ∈ N(0, r2). (114)

If we define qt = p−1
t , we get the inverse form as:

κt+1 = pt

pt + r2
= 1

1 + r2qt
, (115)

pt+1 = (1 − κt+1)pt, qt+1 = qt + 1
r2

= q0 + t
1
r2

, (116)

x̂t+1 = x̂t + κt+1(yt+1 − x̂t). (117)

We can the see that, if q0 = 0 (p0 = ∞), the estimate becomes

x̂t+1 = x̂t + 1
1 + t

(yt+1 − x̂t) = 1
t + 1

t+1∑
i=1

yi. (118)
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Stochastic Adaptive Control - Kalman Filters
The Prediction Problem
Consider the below system with measurement yt and the desired output zt.

xt+1 = Axt + But + vt, vt ∈ N(0, Rv), (119)
yt = Cxt + Dut + et, et ∈ N(0, Re), (120)
zt = Czxt + Dzut + wt, wt ∈ N(0, Rw). (121)

From the Kalman filter, we know that xt|Yt ∈ N(x̂t|t, Pt|t). If we assume
that the future control inputs are known, we can predict the future state
estimates by

x̂t+1|s = Ax̂t|s + But, t ≥ s, (122)
Pt+1|s = APt|sAT + R1. (123)

Considering the desired output, we can also derive the conditional
predictions of the outputs:

zt|Ys ∈ N(Czxt|s + Dzut, CzPt|sCT
z + Rw). (124)
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Stochastic Adaptive Control - Kalman Filters
The Prediction Problem
If we define Zs:t as all future desired outputs in the interval [s:t], and Us:t
to be the corresponding control inputs; then the future outputs are given by

Zs:t =

zs
...
zt

 Us:t =

us
...

ut

 Vs:t =

vs
...
vt

 Ws:t =

ws
...

wt

 , (125)

Zs:t = Wo(t − s)xs + Πu,t−sUs:t + Πv,t−sVs:t + Ws:t. (126)

The conditional output Zs:t|Ys ∈ N(Ẑs:t|s, Σs:t|s) then provides us with a
prediction estimate:

Ẑs:t|s = Wo(t − s)x̂s|s + Πu,t−sUs:t, (127)
Σs:t|s = Wo(t − s)Ps|sW T

o (t − s) + Πv,t−sR̃vΠT
v,t−s + R̃w

+ Πv,t−sR̃v,w + R̃T
v,wΠT

v,t−s, (128)
R̃x = blkdiag(Rx, ..., Rx) ∈ R(t−s)nx×(t−s)nx , (129)

R̃x,y = blkdiag(Rx,y, ..., Rx,y) ∈ R(t−s)nx×(t−s)ny . (130)

29 DTU Compute Stochastic Adaptive Control 21.2.2023



Stochastic Adaptive Control - Kalman Filters
Nonlinear Kalman Filters
In nonlinear Kalman filters, we consider the estimation of nonlinear systems:

xt+1 = f(xt, ut, vt), vt ∈ N(0, Rv), (131)
yt = g(xt, ut, et), et ∈ N(0, Re). (132)

We linearize the right-hand side functions:

f(xt, ut, vt) ≃ d + Axt + But + Gvt, (133)
g(xt, ut, vt) ≃ δ + Cxt + Dut + Het. (134)

The system matrices are the Jacobian matrices:

A = ∂f

∂x

∣∣∣∣
x∗

t ,u∗
t ,v∗

t

B = ∂f

∂u

∣∣∣∣
x∗

t ,u∗
t ,v∗

t

G = ∂f

∂e

∣∣∣∣
x∗

t ,u∗
t ,v∗

t

(135)

C = ∂g

∂x

∣∣∣∣
x∗

t ,u∗
t ,e∗

t

D = ∂g

∂u

∣∣∣∣
x∗

t ,u∗
t ,e∗

t

H = ∂g

∂e

∣∣∣∣
x∗

t ,u∗
t ,e∗

t

(136)

R1 = GRvGT , R2 = HReHT . (137)
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Stochastic Adaptive Control - Kalman Filters
Nonlinear Kalman Filters
The Kalman filter for the nonlinear case, can then be formulated based on
the approximation in (133) and (134).

Data Update:
x̂t|t = x̂t|t−1 + κt(yt − ĝ(x̂t|t−1, ut)), (138)
κt = Pt|t−1CT (CPt|t−1CT + R2)−1, (139)

Pt|t = [I − κtC]Pt|t−1A. (140)
Time Update:

x̂t+1|t = f̂(x̂t|t, ut), (141)
Pt+1|t = APt+1|tA

T + R1. (142)
Nonlinear Kalman filters are, in general, not optimal.
When is it not appropriate to use the extended Kalman filter, i.e., for which

types of systems or system properties?
Think about it for yourself for one minute and

then discuss with the person next to you for two minutes.
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Stochastic Adaptive Control - Kalman Filters
Questions

Questions?
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