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Today’s Topics

• Follow-up from last lecture
• Filter theory
• State space estimation
• The Kalman filter
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Follow-Up from Last Lecture

Question 2.6: Sketch the 95% confidence interval for the two last signals.
Answer: The uploaded Niveau.m function provides such plots.

4 5 6 7 8 9 10
0

50

100

150

4 5 6 7 8 9 10
0

50

100

3 4 5 6 7 8 9 10

4

6

8

10

If we consider the variable

X ∼ N(m, P ), (1)

the command becomes Niveau(m, P −1, f) where f is a chi2 quantile level
with 2 degrees of freedom.
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02421 - Filter Theory & State Estimation
Filters and Estimation
The purpose of state estimation, is to obtain an estimate x̂t of the signal
xt, based on measurement data Yt0:t1 from the time period t0 to t1. based
on the noisy relation:

yt = g(xt, et) (2)

Filter: A filter is an approach to estimating signals from known data by
filtering out the noise.

We distinguish between filters based on the data period (t0, tf ) and the
time of interest t.
1 Smoothing (t < tf ): Use both past and future

data to estimate the states.

2 Filtering: (t = tf ): Estimate the current states
based on current and past data.

3 Prediction: (t > tf ): Predict future states
based on past data.
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02421 - Filter Theory & State Estimation
Filter Theory

For our discussion on filter theory, let us consider the discrete system

xt+1 = Axt + But + vt, x0 ∈ N(m0, P0), vt ∈ N(0, R1) (3)
yt = Cxt + et, et ∈ N(0, R2) (4)

We will only consider filtering and prediction in this lecture because, in
control, we will not have access to future data.
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02421 - Filter Theory & State Estimation
Filter Theory - The Good Estimate

Filter designs consist of 4 core concepts.
1 Characteristics of the signal and noise.

2 Observation model (relation between y, x, e).

3 Criterion (what is a good estimate).

4 Restrictions (what information is available).

Characteristics: The nature of the state and noises, or the dynamics of (3)

Observation: The relation of y, state x, and the noise or the outputs (4).

The criterion: We define a good estimate as one with minimum expected
squared deviation from the truth, ||x − x̂||2.

Restrictions: What set of data Y is available, i.e., do we want to filter,
predict, or smooth.
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02421 - Filter Theory & State Estimation
The Filter Problem: A Good Filter?

1 Characteristics of the signal and noise.

2 Observation model (relation between y, x, e).

3 Criterion (what is a good estimate).

4 Restrictions (what information is available).

The first two items are given by the system. Therefore, let us consider item
3 and 4

Criterium:

J = E{||x − x̂||2} (5)

Restrictions:

x̂ = func(Y ) (6)
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02421 - Filter Theory & State Estimation
The Filter Problem: A Good Estimator
The law of total expectation,

E{g(x)} = EY {E{g(x)|Y }} (7)

allows us to analyze the nature of a good estimate:

J = E{(x − x̂)T (x − x̂)} (8)
= EY {E{(x − x̂)T (x − x̂)|Y }} = EY (Jin) (9)

For a good estimate, the inner term should be constant with respect to
changes in estimate

Jin = E{xT x − x̂T x − xT x̂ + x̂T x̂|Y } (10)
= E{xT x|Y } − x̂T E{x|Y } − E{x|Y }T x̂ + x̂T x̂ (11)

dJin

dx̂
= 2x̂ − 2E{x|Y } = 0 (12)

x̂ = E(x|Y ) (13)
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02421 - Filter Theory & State Estimation
Filter Theory - Projection Theorem

With the restriction for a good estimate found, we can consider how the
information can be used.

But let us first consider the stochastic normal-distributed vector:

Z =
[
X
Y

]
∈ N

( [
mx

my

]
,

[
Px Pxy

P T
xy Py

] )
(14)

Then, according to the projection theorem, the conditional distribution
X|Y ∈ N(x̂, P1) is given by

x̂ = mx + PxyP −1
y (y − my) (15)

P1 = Px − PxyP −1
y P T

xy (16)
X − x̂ ⊥ Y (17)

As we will see, this is a useful relation in filter theory.

10 DTU Compute Stochastic Adaptive Control 13.2.2023



02421 - Filter Theory & State Estimation
Filter Theory - Projection Theorem

Z =
[
X
Y

]
∈ N

( [
mx

my

]
,

[
Px Pxy

P T
xy Py

] )
, (18)

x̂ = mx + PxyP −1
y (y − my) (19)

P1 = Px − PxyP −1
y P T

xy (20)

Assume that X and Y are scalar.

1 What happens if we measure exactly the value we expected?

2 What happens if the measurement is an outlier?

3 What if X and Y are uncorrelated?

4 Can P1 become negative?

5 What happens as Px or Py approach zero?

Think about it for yourself for one minute and
then discuss with the person next to you for two minutes.
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02421 - Filter Theory & State Estimation
Filter Theory - Proof of Projection Theorem
Recall that the joint and conditional pdf of the normal distributions are

fZ(z) = fX,Y (x, y) = 1√
Det(Pz)

√
(2π)nx+ny

e− 1
2 (z−mz)T P −1

z (z−mz)

(21)

fX|Y (x|y) = fX,Y (x, y)
fY (y) (22)

=
√

Det(Py)
Det(Pz)(2π)nx

e− 1
2 (z−mz)T P −1

z (z−mz)+ 1
2 (y−my)T P −1

y (y−my)

= κe− 1
2 α (23)

Using block inversion on the variance, Pz, we get

D = Px − PxyP −1
y P T

xy (24)

P −1
z =

[
D−1 −D−1PxyP −1

y

−P −1
y P T

xyD−1 P −1
y (I + P T

xyD−1PxyP −1
y )

]
(25)

⇒ Det(Pz) = Det(Py)Det(D) (26)
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02421 - Filter Theory & State Estimation
Filter Theory - Proof of Projection Theorem
From the inversion, we obtain

α = [x − (mx + PxyP −1
y (y − my))]T D−1[x − (mx + PxyP −1

y (y − my)]

(27)

κ = 1√
Det(D)(2π)nx

(28)

Therefore, it is proven that the conditional distribution has the desired
mean and variance:

E(X|Y ) = mx|y = mx + PxyP −1
y (y − my) (29)

V ar(X|Y ) = Px|y = D = Px − PxyP −1
y P T

xy (30)

For the claim of independence, we simply check the covariance:

CoV {X − mx|y, Y } = CoV (X, Y ) − PxyP −1
y CoV (Y, Y ) (31)

= Pxy − PxyP −1
y Py = 0 (32)

As X and Y are Gaussian, they are independent.
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02421 - Filter Theory & State Estimation
State Estimation

Now, let us see how the information can be used for the purpose of
estimation.

We consider the system:

xt+1 = Axt + But + vt vt ∈ N(0, R1) xt0 ∈ N(x̂0, P0) (33)
yt = Cxt + et et ∈ N(0, R2) et, vt white ⊥ xs ∀s ≤ t (34)

First, we focus on the relation[
xt

yt

]
|Yt−1 ∈ N

( [
×
×

]
,

[
× ×
× ×

] )
, Yt =

[
Yt−1
yt

]
(35)
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02421 - Filter Theory & State Estimation
State Estimation 2: A Recursion

Let us define the conditional state distributions as

xt|Yt−1 ∈ N(x̂t|t−1, Pt|t−1) (36)
xt|yt, Yt−1 = xt|Yt ∈ N(x̂t|t, Pt|t) (37)

Standard computation considering yt|Yt−1 provides:[
xt

yt

]
|Yt−1 ∈ N

( [
x̂t|t−1

Cx̂t|t−1

]
,

[
Pt|t−1 ×

× CPt|t−1CT + R2

] )
(38)
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02421 - Filter Theory & State Estimation
State Estimation 3: Covariance

Consider the conditional covariance

CoV (yt, xt|Yt−1) = CPt|t−1 (39)

Then, the conditional distribution becomes[
xt

yt

]
|Yt−1 ∈ N

( [
x̂t|t−1

Cx̂t|t−1

]
,

[
Pt|t−1 Pt|t−1CT

CPt|t−1 CPt|t−1CT + R2

] )
(40)
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02421 - Filter Theory & State Estimation
State Estimation 4: The Current Estimate

Now, for the estimation, remember that

xt|yt, Yt−1 = xt|Yt ∈ N(x̂t|t, Pt|t) (41)

Then, using the projection theorem and our conditional distribution, we can
obtain a state estimate:

x̂t|t = x̂t|t−1 + Pt|t−1CT (CPt|t−1CT + R2)−1(yt − Cx̂t|t−1) (42)
Pt|t = Pt|t−1 − Pt|t−1CT (CPt|t−1CT + R2)−1CPt|t−1 (43)
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02421 - Filter Theory & State Estimation
State Estimation 5: Prediction Estimate
Finally, we obtain a prediction estimates of the state* by using the system
in (33)

x̂t+1|t = Ax̂t|t + But (44)
Pt+1|t = APt|tA

T + R1 (45)

The errors of the different estimates are defined as follows.

Estimation error of the data update:

x̃t|t = xt − x̂t|t ∈ N(0, Pt|t) (46)

Estimation error of the time update:

x̃t|t−1 = xt − x̂t|t−1 ∈ N(0, Pt|t−1) (47)

Estimation error of the measurement prediction:

ϵt|t−1 = yt − Cx̂t|t−1 (48)

*The system matrices can even be time-variant (but deterministic).
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02421 - Filter Theory & State Estimation
Filter Theory - Kalman Filter
The estimator discussed so far is the Kalman filter named after Rudolph E.
Kalman.

Kalman Filter: The optimal linear estimate of the conditional state xt|Ys,
relying on data up to time ts.

Ys = [yt0 , yt1 , ..., yts ]T (49)

Data update (inference)

x̂t|t = x̂t|t−1 + κt(yt − Cx̂t|t−1) (50)
κt = Pt|t−1CT (CPt|t−1CT + R2)−1 (51)

Pt|t = Pt|t−1 − κtCPt|t−1 (52)

Time update (prediction)

x̂t+1|t = Ax̂t|t + But, x̂0|0 = x̂0 (53)
Pt+1|t = APt|tA

T + R1, P0|0 = P0 (54)
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02421 - Filter Theory & State Estimation
Filter Theory - Kalman Filter
Data update (inference)

x̂t|t = x̂t|t−1 + κt(yt − Cx̂t|t−1) (55)
κt = Pt|t−1CT (CPt|t−1CT + R2)−1 (56)

Pt|t = Pt|t−1 − κtCPt|t−1 (57)

Time update (prediction)

x̂t+1|t = Ax̂t|t + But, x̂0|0 = x̂0 (58)
Pt+1|t = APt|tA

T + R1, P0|0 = P0 (59)

How do the measurements, yt, affect the covariances and the Kalman gain?
Is it intuitive that it is that way, and can we use it to our advantage?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.

20 DTU Compute Stochastic Adaptive Control 13.2.2023



02421 - Filter Theory & State Estimation
Continuous-time Kalman Filter

The continuous-time Kalman filter is also known as Kalman-Bucy filter.

Consider the system:

d

dt
x = Ax + Bu + v (60)

y = Cx + e (61)

For this system, the Kalman filter is

d

dt
x̂ = Ax̂ + Bu + K(y − Cx̂) (62)

d

dt
P = AP + PAT + R1 − KR2KT (63)

K = PCT R−1
2 (64)
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02421 - Filter Theory & State Estimation
Example: Pseudocode - Kalman Filter/Simulation
Implementation

Initial values: x0|−1, P0|−1, x0.
—————————————————————————
for t = 0, . . . , N

Measurement from true system:
yt = Measurement(xt, et)
————————————————————————
Data update:
[x̂t|t, Pt|t, κt] = DataUpdate(yt, x̂t|t−1, Pt|t−1; C, R2)
————————————————————————
Apply Control:
ut = Actuator(x̂t|t)
xt+1 = Simulator(xt, ut, vt)
————————————————————————
Time update:
[x̂t+1|t, Pt+1|t] = TimeUpdate(x̂t|t, Pt|t, ut; A, B, R1)

end
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02421 - Filter Theory & State Estimation
The Two Kalman Filters

When designing Kalman filters, it is important to acknowledge the type of
available measurement data Ys:

x̂t|s = E{xt|Ys} (65)

The data determines the estimation type: Prediction or filtering.

This give us two different Kalman filters for systems on the form:

xt+1 = Axt + But + vt xt0 ∈ N(x̂0, P0) vt ∈ N(0, R1) (66)
yt = Cxt + et et ∈ N(0, R2) (67)
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02421 - Filter Theory & State Estimation
The Two Kalman Filters

The first type of Kalman filter is known as the ordinary Kalman filter:[
x̂t|t
Pt|t

]
→

[
x̂t+1|t
Pt+1|t

]
→

[
x̂t+1|t+1
Pt+1|t+1

]
︸ ︷︷ ︸

Ordinary Kalman Filter

(68)

The second type of Kalman filter is known as the predictive Kalman filter:[
x̂t|t−1
Pt|t−1

]
→

[
x̂t|t
Pt|t

]
→

[
x̂t+1|t
Pt+1|t

]
︸ ︷︷ ︸

Predictive Kalman Filter

(69)
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02421 - Filter Theory & State Estimation
The Ordinary Kalman Filter

The ordinary Kalman filter, provides an filter estimate x̂t|t, based on current
data.

This provides a real-time estimate of the system.

Time update (prediction):

x̂t+1|t = Ax̂t|t + But, x̂0|0 = x̂0 (70)
Pt+1|t = APt|tA

T + R1, P0|0 = P0 (71)

Data update (inference):

x̂t|t = x̂t|t−1 + κt(yt − Cx̂t|t−1) (72)
κt = Pt|t−1CT (CPt|t−1CT + R2)−1 (73)

Pt|t = Pt|t−1 − κtCPt|t−1 (74)
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02421 - Filter Theory & State Estimation
Ordinary Kalman Filter - Closed Form

An ordinary Kalman filter can also be described in a one step notation or
closed form:

x̂t|t = (I − κtC)(Ax̂t−1|t−1 + But−1) + κtyt (75)
Pt|t = APt−1|t−1AT + R1 − κtC(APt−1|t−1AT + R1) (76)

κt = (APt−1|t−1AT + R1)CT (C(APt−1|t−1AT + R1)CT + R2)−1 (77)

In this form the time-update is substituted into the data-update.

Estimation error:

x̃t|t = xt − x̂t|t ∈ N(0, Pt|t) (78)
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02421 - Filter Theory & State Estimation
The Predictive Kalman Filter
The predictive Kalman filter, provides an estimate x̂t|t−1 based on past
data.

Depending on the circumstances, this can be beneficial.

Data update (inference):

x̂t|t = x̂t|t−1 + κt(yt − Cx̂t|t−1), x̂0|−1 = x̂0 (79)
κt = Pt|t−1CT (CPt|t−1CT + R2)−1 (80)

Pt|t = Pt|t−1 − κtCPt|t−1, P0|−1 = P0 (81)

Time update (prediction):

x̂t+1|t = Ax̂t|t + But (82)
Pt+1|t = APt|tA

T + R1 (83)

Benificial circumstances includes fast systems, providing more time for
computation/measurement.
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02421 - Filter Theory & State Estimation
Predictive Kalman Filter - Closed form
For the predictive Kalman filter the closed form is given as:

x̂t+1|t = (A − KtC)x̂t|t−1 + But + Ktyt (84)
Pt+1|t = APt|t−1AT + R1 − KtCPt|t−1AT (85)

Kt = Aκt = APt|t−1CT (CPt|t−1CT + R2)−1 (86)

The new gain Kt is called the predictive (Kalman) gain, as opposed to the
Kalman gain κt

In this form, the data-update is substituted into the time-update

Estimation error:

x̃t|t−1 = xt − x̂t|t−1 ∈ N(0, Pt|t−1) (87)

The ordinary case can also be given as an output equation, using the
prediction as a process equation.
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02421 - Filter Theory & State Estimation
The Predictive Kalman Filter - Structure

B C

A

Kt

B

A

C

ut
vt et

yt

ŷt

xt

x̂t

−
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02421 - Filter Theory & State Estimation
Stationary Kalman Filter
Stationarity in Kalman filters corresponds to constant Kalman gains, κt, Kt.
A Kalman filter reaches stationarity when its variance converges to a
constant P∞. We denote by κ∞ and K∞ the corresponding stationary
Kalman gains. (κ∞, P o

∞) is the stationary ordinary Kalman filter, and
(K∞, P p

∞) is the stationary predictive Kalman filter.
From the closed-form, we obtain

Predictive:
P p

∞ = AP p
∞AT + R1 − AP p

∞CT (CP p
∞CT + R2)−1CP p

∞AT (88)
Ordinary:
P o

∞ = AP o
∞AT + R1 (89)

− (AP o
∞AT + R1)CT (C(AP o

∞AT + R1)CT + R2)−1C(AP o
∞AT + R1)

The stationary variances are related by

P p
∞ = AP o

∞AT + R1 (90)
(P o

∞)−1 = (P p
∞)−1 + CT R−1

2 C (91)
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02421 - Filter Theory & State Estimation
Stationary Kalman Filter

The stationary variances are related by

P p
∞ = AP o

∞AT + R1 (92)
(P o

∞)−1 = (P p
∞)−1 + CT R−1

2 C (93)

Assume that x and y are scalar. Which is bigger, P p
∞ or P o

∞? How is this
affected by A, C, R1, and R2?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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02421 - Filter Theory & State Estimation
Stationary Kalman Filter - The Riccati Equation
The form of the predictive variance is known as the discrete Riccati
equation – named after Jacopo Riccati:

Xt+1 = AXtA
T + R1 − AXtC

T (CXtC
T + R2)−1CXtA

T (94)

Our stationary form in (88), has the form of a discrete algebraic Riccati
equation (DARE):

X = AXAT + R1 − AXCT (CXCT + R2)−1CXAT (95)
• If (A, C) is observable, a positive semi-definite solution X exists for each X0.
• If (A, C) is observable, (A, R) is reachable (RRT = R1), R1 ⪰ 0, and R2 ≻ 0,

the solution is unique and independent of X0 and A − KC is asymptotically
stable (its eigenvalues are strictly within the unit circle).

Similarly, for the continuous Kalman filter, the equation for the variance,

Ṗ = AP + PAT + R1 − PCT R−1
2 CP, (96)

is a continuous Riccati equation, and the stationary variant (Ṗ = 0) is a
continuous algebraic Riccati equation (CARE / ARE)
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02421 - Filter Theory & State Estimation
Theory - Standard Kalman Assumptions

The Kalman filter is based on the assumption that a system has the form:

xt+1 = Axt + But + vt (97)
yt = Cxt + et (98)

and has the following noise properties
1 x0 ∼ N(x̂0, P0)

2 vt ∼ N(0, Pv), white

3 et ∼ N(0, Pe), white

4 CoV (vt, et) = 0

5 vt, et ⊥ xs, s ≤ t
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02421 - Filter Theory & State Estimation
Questions

Questions?
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