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Stochastic Adaptive Control Diagram
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What should the labels in the four boxes be and
can you explain the figure?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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Lecture Plan

1 Systems theory
2 Stochastics
3 State estimation - Kalman filter 1
4 State estimation - Kalman filter 2
5 Optimal control 1 - internal models
6 External models
7 Prediction + optimal control 1 -

external models

8 Optimal control 2 - external models

9 System identification 1

10 System identification 2

11 System identification 3 + model
validation

12 Adaptive control 1

13 Adaptive control 2
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Today’s Topics

• Follow-up from last lecture
• Stochastics
• Moments
• Confidence intervals
• Stochastic variables and vectors
• Stochastic processes and systems
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Follow-up from Last Time: Exercises 1.1
You had to find the frequency domain correspondent of

τ ẏ + y = u. (1)

If we consider it a function f(t) and remember that L{dy(t)
dt } = sY (s)

holds, then the transformation becomes:

f(t) = τ ẏ(t) + y(t) − u(t) = 0 (2)

F (s) =
∫ ∞

−∞
f(t)e−st dt =

∫ ∞

−∞
(τ ẏ(t) + y(t) − u(t))e−st dt (3)

= τ

∫ ∞

−∞
ẏ(t)e−st dt+

∫ ∞

−∞
y(t)e−st dt−

∫ ∞

−∞
u(t)e−st dt (4)

= τsY (s) + Y (s) − U(s) = 0 (5)

The transfer function then becomes:

H(s) = Y (s)
U(s) = 1

τs+ 1 (6)
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Follow-up from Last Time: Exercises 5
You had to find eigenvalues, path to/from origin

xk+1 =

0 1 2
0 0 3
0 0 0

xk +

0
1
0

uk = Axk +Buk (7)

1) The eigenvalues indicates asymptotic stability:

eig(A) = {0, 0, 0} (8)

2-3)

A2 =

0 0 3
0 0 0
0 0 0

 , A3 =

0 0 0
0 0 0
0 0 0

 , AB =

1
0
0

 (9)

Consequently, U =
[
0 0 0

]
drives the states to the origin, whereas

U =
[
−3 0

]
does so in the minimum number of steps.

4) No, we cant affect state 3 at all.
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02421 - The World of Stochastics
Stochasticity

Real systems are usually stochastic in nature

ẋt = Axt +But + wt (10)
yt = Cxt +Dut + et (11)

stochastic: being uncertain, described by a random distribution and cannot
be predicted precisely.

sources: measurements, model inaccuracy, unknown disturbances,...
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02421 - The World of Stochastics
Stochastic scalar variables
For a stochastic variable X

X ∼ F(p) (12)

The cdf: cumulative distribution function FX(y):

FX(y) = Pr{X ≤ y} ∈ [0; 1], P r{a < X ≤ b} = FX(b) − FX(a) (13)

The pdf: probability density function
fX(y):

FX(y) =
∫ y

−∞
fX(z) dz, (14)

fX(y) ≥ 0 F (∞) = 1 (15)
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02421 - The World of Stochastics
Confidence Interval
A 1 − p% confidence interval CI(p): the minimum interval [a, b] which
contains the 1 − p% most likely scenarios is

Pr{a < X ≤ b} = 1 − p (16)

For distributions that are symmetric around 0:

Pr{X ≤ a} = p/2 or Pr{X ≤ b} = 1 − p/2 (17)
CI(p) = [F−1

X (p/2), F−1
X (1 − p/2)] (18)

Common usage is look-up tables for F−1(p/2) and the form:

X ∈ mX ± σXF
−1(p/2) (19)

Example: Let us consider X ∈ N(10, 4). Then, a 95% CI is

10 − 2 · 1.96 ≤ X ≤ 10 + 2 · 1.96 or 6.08 ≤ X ≤ 13.92 (20)
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02421 - The World of Stochastics
Moments

For a real function g(X):

Nth moment of g(X): E(g(X)n) =
∫

Ω
g(x)nf(x)dx (21)

Moments represent certain properties of stochastic variables.

Mean (1st moment): E(X) = mx = µx (22)
Variance (2nd central moment): V ar(X) = E((X −mx)2)

= E(X2) − E(X)2 = σ2
x (23)

Skewness (std.* 3rd central moment): E((X −mx)3)/σ3
x (24)

*Standardized.
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02421 - The World of Stochastics
Moments - Sample Moments

Consider having n samples of a variable X, the first two moments can be
estimated by:

E(X) =
n∑

i=1

xi

n
(25)

V ar(X) =
n∑

i=1

(xi − E(X))2

n
(26)

alternative variance:

V ar(X) =
n∑

i=1

(xi − E(X))2

n− 1 (27)

(28)

giving an unbiased estimate
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02421 - The World of Stochastics
Probabilities: Joint probability and independence
As mentioned the (marginal) probability of the statement: the variable X is
less than x is true

Pr{X ≤ x} = FX(x) (29)

The joint probability is then the chance of two (or more) statements are
simultaneously true:

Pr{X ≤ x, Y ≤ y} = FX,Y (x, y) (30)

The marginal distribution can be computed from the joint distribution:

fX(x) =
∫

Ωy

fX,Y (x, y)dy (31)

If the two variables are independent: X ⊥ Y :

FX,Y (x, y) = FX(x)FY (y), fX,Y (x, y) = fX(x)fY (y) (32)
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02421 - The World of Stochastics
Covariance

Covariance is a measure of how two stochastic variables varies relatively to
each other

CoV (X,Y ) = E((X −mx)(Y −my)) (33)

The variance is the just the self-covariance.

Correlation coefficient:

ρ = CoV (X,Y )√
V ar(X)V ar(Y )

, −1 ≤ ρ ≤ 1 (34)

In the case of independent variables:

CoV (X,Y ) = ρ = 0 (35)

Note: The reverse if not true.
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02421 - The World of Stochastics
Dependency in probabilities - Bayes theorem

We can formulate probabilities under an assumption/condition
The likelihood given a condition:

Pr{X ≤ x|Y ≤ y} = Pr{X ≤ x, Y ≤ y}
Pr{Y ≤ y}

(36)

fX,Y (x, y) = fX|Y (x|y)fY (y) = fY,X(y|x)fX(x) (37)

The same can be done for the moments if V ar(X|Y ) < ∞ exists:

E(X|Y ) = mx|y =
∫

Ωx

xfX|Y (x|y)dx (38)

V ar(X|Y ) = E((X −mx|y)2|Y ) (39)
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02421 - The World of Stochastics
Stochastic Vectors
For multiple variables we can utilize stochastic vectors:

X =
[
X1, . . . , Xn

]T
(40)

cdf: FX(x) = Pr(X1 ≤ x1, . . . , Xn ≤ xn, ) (41)
marginal cdf: FX1(x1) = Pr(X1 ≤ x1) (42)

The 1st and 2nd moments are:

mx = E(X) =
[
E(X1), . . . , E(Xn)

]T
(43)

Px = P T
x = V ar(X) = E((X − mx)(X − mx)T ) ≥ 0 (44)

Variance matrix being symmetric and positive semi-definite yTPxy ≥ 0.
Px is also diagonalizable.
for n = 2

Px =
[

V ar(X1) CoV (X1, X2)
CoV (X2, X1) V ar(X2)

]
(45)
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02421 - The World of Stochastics
Mathematical properties of Moments: 1st and 2nd

Consider the constant matrix A and vector m

E(X + m) = E(X) + m (46)
E(AX) = AE(X) (47)

E(X + Y) = E(X) + E(Y) (48)
E(XTAX) = tr(AV ar(X)) + E(X)TAE(X) (49)

V ar(X) = E(XXT ) − E(X)E(X)T (50)
V ar(X + m) = V ar(X) (51)

V ar(AX) = AV ar(X)AT (52)
V ar(X + Y) = V ar(X) + V ar(Y) + CoV (X,Y) + CoV (X,Y)T (53)

Hint: Check out the Matrix Cookbook.
Link: https://www2.imm.dtu.dk/pubdb/pubs/3274-full.html.
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02421 - The World of Stochastics
Vector Covariance and Variance

CoV (X,Y) = E((X − mx)(Y − my)T ) (54)
CoV (X,X) = V ar(X) = Px (55)
CoV (Y,X) = CoV (X,Y)T (56)

CoV (AX,Y) = ACoV (X,Y) (57)
CoV (X, AY) = CoV (X,Y)AT (58)

CoV (X + V,Y) = CoV (X,Y) + CoV (V,Y) (59)

The principal directions of the variance (PCA):

[Λ,V] = eig(Px) (60)
PxVi = λiVi (61)

where the vectors in V indicate the main directions of the variation, Λ
indicating the variance associated with these directions.
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02421 - The World of Stochastics
Different Distributions - Gaussian and χ2

Gaussian or normal distribution

X ∈ N(mx, σ
2
x) (62)

Y = X −mx

σx
∈ N(0, 1) standard Gaussian (63)

fX(x) = 1√
2πσx

exp(−(x−mx)2

2σ2
x

) (64)

FX(x) = FY (x−mx

σx
) (65)
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02421 - The World of Stochastics
Different Distributions - Gaussian and χ2

Gaussian or normal distribution

X ∈ N(mx, σ
2
x) (62)

Y = X −mx

σx
∈ N(0, 1) standard Gaussian (63)

fX(x) = 1√
2πσx

exp(−(x−mx)2

2σ2
x

) (64)

FX(x) = FY (x−mx

σx
) (65)

We use the normal distribution a lot in stochastic modeling,
but is there something about it that can be unrealistic?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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02421 - The World of Stochastics
Different Distributions - Gaussian and χ2

Gaussian or normal distribution

X ∈ N(mx, σ
2
x) (62)

Y = X −mx

σx
∈ N(0, 1) standard Gaussian (63)

fX(x) = 1√
2πσx

exp(−(x−mx)2

2σ2
x

) (64)

FX(x) = FY (x−mx

σx
) (65)

χ2-distribution

X =
n∑

i=1
ψ2

i ∈ χ2(n), ψi ∈ N(0, 1), ψi ⊥ ψj (66)

f(x) = 1
Γ(n/2)x

n/2−1exp(−x

2 ) (67)

E(X) = n V ar(X) = 2n (68)
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02421 - The World of Stochastics
Different Distributions - Gamma
A Generalization of χ2(n) = Γ(n/2, 2)

X ∈ Γ(k, θ), 0 < X < ∞ (69)

fX(x) = 1
Γ(k)θk

xk−1exp(−x

θ
) (70)

E(X) = kθ, V ar(X) = kθ2 (71)

The Gamma Function:

Γ(k) =
∫ ∞

0
tk−1e−tdt (72)

Γ(k + 1) = kΓ(k) (73)

Γ(1) = 1, Γ(1
2) =

√
π (74)

For integer values of k:

Γ(k) = (k − 1)!, Γ(k + 1
2) = (2k − 1)!

2k

√
π (75)
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02421 - The World of Stochastics
Other Related Distributions

The F-distribution:

X = Zm

Y n
∈ F (n,m) (76)

Z ∈ χ2(n), Y ∈ χ2(m), Z ⊥ Y (77)

Student’s t-distribution:

X = Z√
Y

√
n ∈ t(n) (78)

Z ∈ N(0, 1), Y ∈ χ2(n), Z ⊥ Y (79)

The Rayleigh distribution:

X =
√
Y 2

1 + Y 2
2 ∈ Ray(σ2

y) Yi ∈ Niid(0, σ2
y) (80)
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02421 - The World of Stochastics
Stochastic Tricks

Stochastic variable change:

X ∈ N(m,P ), Z ∈ N(0, I) (81)
X = SZ +m (82)
P = SST (83)

The Cholesky Factorization:

ST = chol(P ) (84)

The eigenvector approach:

Pvi = λivi → PV = V D (85)
S = V

√
D (86)
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02421 - The World of Stochastics
Stochastics in Matlab

Let us take a look how we can generate stochastic in Matlab.
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02421 - Stochastic Processes
A Stochastic System

We will now extend the discrete-time (deterministic) systems

xk+1 = Axk +Buk (87a)
yk = Cxk +Duk, (87b)

to discrete-time stochastic systems of the form

xk+1 = Axk +Buk +Gξk (88a)
yk = Cxk +Duk + Fηk. (88b)

The noise is split into two components:
• {ξk, k ∈ N} denotes the process noise.
• {ηk, k ∈ N} denotes the measurement/sampling noise.

In discrete-time stochastic systems, xk a stochastic variable, and the
evolution of the system is a stochastic process.
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02421 - Stochastic Processes
Stochastic Processes

Stochastic process:
A sequence of stochastic variables {x(t, ω), t ∈ T, ω ∈ Ω}, where Ω denotes
the sample space of the uncertainty, and T denotes the time range

For a fixed t, x(t, ·) is a random variable and for a fixed ω ∈ Ω, x(·, ω) is a
realization of the stochastic process; also called a time-series.

A stochastic process can be described using a marginal CDF or pdf

FXt(xt, t) = Pr{Xt ≤ xt} (89)
fXt(xt, t) = ∇xtFXt(xt, t) (90)

or if the different times are related, using joint probabilities

FXt,Xs(xt, xs, t, s) = Pr{Xt ≤ xt, Xs ≤ xs} (91)
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02421 - Stochastic Processes
Properties of Stochastic processes

Three important ways to describe the statistical properties of a process are

The mean:

mx(t) = E
[
x(t)

]
=

∫ ∞

−∞
zfx(t)(z) dz, (92)

The variance:

Px(t) = V
[
x(t)

]
= E

[(
x(t) − E[x(t)]

)(
x(t) − E[x(t)]

)′]
, (93)

The auto-covariance function:

rx(t1, t2) = Cov
[
x(t1), x(t2)

]
= E

[(
x(t1) − E[x(t1)]

)(
x(t2) − E[x(t2)]

)′]
,

(94)

where we have the identity that rx(t, t) = Px(t).
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02421 - Stochastic Processes
Auto-covariance and auto-correlation
Similar to the general covariance function, an auto-correlation function can
be defined as

ρx(t1, t2) = rx(t1, t2)√
Px(t1)Px(t2)

. (95)

The auto-correlation function is often used in the model design and
validation phase.

If the underlying process is stationary, then the auto-covariance function
(and the auto-correlation) is only dependent on the difference t1 − t2.
Let τ denote this time-difference, then the auto-covariance and
auto-correlation functions are considered as univariate functions defined
according to

rx(τ) = Cov
[
x(t), x(t+ τ)

]
(96a)

ρx(τ) = rx(τ)
Px(τ) . (96b)
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02421 - Stochastic Processes
Stationarity

In deterministic systems, we work with stationary points. Similarly, in
stochastic systems, we work with stationary distributions: a
time-invariant distribution.

A process x(t) is said to be strongly stationary of order n if the
distribution functions are time-invariant - i.e. when

fx(t1),...,x(tn)(z1, . . . , zn) = fx(t1+h),...,x(tn+h)(z1, . . . , zn), (97)

for any n ∈ N and h ∈ R.

A process is said to be weakly stationary if the first two moments (the
mean and covariance) are time-invariant. while the auto-covariance is

rx(s, t) = rx(s− t) (98)
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02421 - Stochastic Processes
Stationarity with ergodicity
If a process is ergodic, only a single realization of the stochastics is needed
to compute the statistic properties (moments).

A stationary process is said to be weakly ergodic, if its ensemble averages
equal appropriate time averages of samples.

E{xt} = lim
N→∞

1
N

N∑
t=1

xt (1st ord.) (99)

E{xtx
T
s } = lim

N→∞

1
N

N∑
t=1

xtx
T
s (2nd ord.) (100)

Let g be an arbitrary function for which E{g(xt)} exists. Then, a
stationary process is said to be strongly ergodic if

E{g(xt)} = lim
N→∞

1
N

N∑
t=1

g(xt) (101)

28 DTU Compute Stochastic Adaptive Control 7.2.2023



02421 - Stochastic Processes
Normal process and Markov process

A process x(t) is said to be a normal process (or Gaussian process) if any
finite dimensional distribution function fx(t1),...,x(tn)(z1, . . . , zn) is a
multivariate normal distribution for any n ∈ N.

If Y follows an n-dimensional multivariate normal distribution with mean µ
and covariance Σ, then the distribution function, f , is given by

fY (y) = 1
(2π)n/2

√
det(Σ)

exp
(

−1
2(y − µ)′Σ−1(y − µ)

)
. (102)

A process x(t) is said to be a Markov process if for any
t1 < t2 < · · · < tn, the distribution of x(tn) given (x(t1), . . . , x(tn−1)) is
the same as the distribution of x(tn) given x(tn−1). Thus

Prob
(
x(tn) ≤ x | x(tn−1), . . . , x(t1)

)
= Prob

(
x(tn) ≤ x | x(tn−1)

)
(103)
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02421 - Stochastic Processes
Stochastic State-Space Models
We now return briefly to stochastic state-space systems in the form

xk+1 = Axk +Buk +Gξk, ξk ∼ F (µξ, Pξ) (104a)
yk = Cxk +Duk + Fηk, ηk ∼ F (µη, Pη) (104b)

The mean, µk, and the covariance, Pk, of this process evolve according to

µk+1 = Aµk +Buk +Gµξ, µ0 = E
[
x0

]
(105a)

Pk+1 = APkA
T +GPξG

T , P0 = Cov
[
x0

]
(105b)

where uk is assumed to be deterministic.
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x0
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(105a)

Pk+1 = APkA
T +GPξG
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[
x0
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(105b)

where uk is assumed to be deterministic.

How do the different terms on the right-hand side of (104a) affect
the distribution of the states over time?

Think about it for yourself for one minute and
then discuss with the person next to you for one minute.
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02421 - Stochastic Processes
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µk+1 = Aµk +Buk +Gµξ, µ0 = E
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x0

]
(105a)

Pk+1 = APkA
T +GPξG

T , P0 = Cov
[
x0
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(105b)

where uk is assumed to be deterministic.

From this we can define the stationary mean, µ∞, and variance, P∞,
according to

µ∞ = Aµ∞ +Bu∞ +Gµξ (106a)
P∞ = AP∞A

T +GPξG
T . (106b)
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02421 - Stochastic Processes
Stochastic State-Space Models

If A has full-rank and the eigenvalues lie within the unit circle, then the
stationary mean is the zero-vector. Under such conditions, the
auto-covariance of the stationary process is given by

rx(τ) = AτP∞. (107)
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02421 - Stochastic Processes
Continuous-Time Stochastic Processes (SDE)
In continuous time, the inclusion of stochastics into the system is more
tricky. Consider the ODE:

∂x(t)
∂t

= f(x(t), u(t), t). (108)

The rate of change of the state is uniquely determined by the time and
current value of the state and input.

Initially, we assume that this rate of change is a random variable whose
probability distribution is uniquely determined by the time and the current
value of the state vector. Hence,

∂x(t)
∂t

= f(x(t), u(t), t) + g(x(t), u(t), t)v(t) (109)

where {v(t), t ∈ R} is a scalar stochastic process with:
• v(t) ⊥ v(s) for any t ̸= s (independence)
• v(t) is strongly stationary
• E{v(t)} = 0,∀t (zero-mean)
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02421 - Stochastic Processes
Continuous-Time Stochastic Processes (SDE)
Unfortunately, the process v(t) cannot be continuous with those properties.
In fact, v(t) is almost surely discontinuous everywhere. Consequently, it is
not integrable.

An approximation can be achieved by representing v(t) by a suitable white
noise process.
Alternatively we can represent the system on its difference form (discrete):

x(t+ ∆t) − x(t) = f(x(t), t)∆t+ g(x(t), t)v(t)∆t+ o(∆t). (110)

We can replace v(t)∆t with ∆W (t) = W (t+ ∆t) −W (t), where W (t) has
stationary independent increments with zero-mean and continuous: i.e. a
Brownian motion (Wiener Process).
Taking the limit (∆t → 0), we obtain the SDE

dx(t) = f(x(t), t) dt+ g(x(t), t) dW (t) (111)

x(t) = x(t0) +
∫ t

t0
f(x(τ), τ) dτ +

∫ t

t0
g(x(τ), τ) dW (τ) (112)
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02421 - Stochastic Processes
Continuous-Time Stochastic Processes (SDE)
A stochastic integral can be defined using many different limiting schemes
(all with different probabilistic properties). Using the Itô-interpretation
implies that the SDE will be a Markov process.

The two first (conditional) moments of this difference process is given by

E
[
x(t+ ∆t) − x(t)

∣∣ x(t)
]

= f(x(t),∆t)∆t+ o(∆t) (113a)

V
[
x(t+ ∆t) − x(t)

∣∣ x(t)
]

= σ(x(t), t)σ(x(t), t)′∆t+ o(∆t), (113b)

where we have used the identity

E
[
W (t+ ∆t) −W (t)

]2
= I∆t, (I is the identity matrix). (114)

We notice that the variance is proportional to ∆t and not ∆t2!

Brownian motion has the property that it’s difference is zero-mean and
normally distributed:

∆W (t) = W (t+ ∆t) −W (t) ∈ N(0, I∆t) (115)
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Linear Stochastic Differential Equations
We will now restrict our attention to linear stochastic differential equations.
These attain the form

dx(t) = (A(t)x(t) +B(t)u(t)) dt+G(t) dw(t), (116)

where we will assume that the initial distribution, x0, follows a normal
distribution with mean, m0, and covariance, R0, and the matrices A(t) and
B(t) are continuous functions of time.

The expectation of such linear stochastic differential equation is given by

Ex(t) = Ex0 + E
∫ t

t0
A(τ)x(τ) +B(τ)u(τ) dτ + E

∫ t

t0
G(τ) dw(τ) (117)

= Ex0 +
∫ t

t0
A(τ)Ex(τ) +B(τ)u(τ) dτ = mx(t) (118)

Thus, the mean mx(t), satisfies the ordinary differential equation
∂mx(t)
∂t

= Amx(t) +B(t)u(t), mx(t0) = m0. (119)
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Linear Stochastic Differential Equations
To compactly define the auto-covariance and covariance function of the
solution, x, we need the state-transition matrix Φ:

∂Φ(t; t0)
∂t

= A(t)Φ(t; t0), Φ(t0; t0) = I. (120)

Let R(s, t) denote the auto-covariance of x, if s ≥ t then

R(s, t) = Cov
[
x(s), x(t)

]
= Φ(s, t)P (t) (121)

where P (t) is the covariance of x(t).

The resulting variance P (t) is given by the ordinary differential equation

∂P (t)
∂t

= A(t)P (t) + P (t)A(t)T +G(t)G(t)T , P (t0) = R0, (122)

which can be derived in similar way as for the mean (though requiring a few
more calculations).
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Sampling a Linear Stochastic Differential Equation

We will now consider the process described by the equations

dx(t) = A(t)x(t) dt+B(t) dw(t) (123a)
y(t) = C(t)x(t) +D(t)u(t) + F (t)e(t), e(t) ∼ F (me, Pe) (123b)

where w(t) is a Brownian motion, and e(t) is following some distribution F .
Integrating the above system over a single period with constant input yields

x(tk+1) = Φ(tk+1; tk)x(tk) +
∫ tk+1

tk

Φ(τ ; tk)B(τ) dτu(tk) + w̃(tk) (124a)

y(tk+1) = C(tk)x(tk) +D(tk)u(tk) + F (tk)e(tk), e(tk) ∼ F (me, Pe)
(124b)

where Φ(tk+1; tk) is the state-transition matrix from tk to tk+1.
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Sampling a Linear Stochastic Differential Equation
The new discrete random input w̃(tk) satisfies

w̃(tk) =
∫ tk+1

tk

Φ(τ ; tk)G(τ) dw(τ) (125a)

with the moments:

E{w̃(tk)} = 0 (126a)

E{w̃(tk)w̃(tk)T } =
∫ tk+1

tk

Φ(tk+1; τ)G(τ)G(τ)′Φ(tk+1; τ)′ dτ (126b)

If we compare with the first approach for a stochastic description:

ẋt = Atxt +Btut +Gtwt, wt ∈ N(0, R1) (127)

The resulting discretization is almost identical, with the difference being

E{w̃(tk)w̃(tk)T } =
∫ tk+1

tk

Φ(tk+1; τ)G(τ)R1G(τ)′Φ(tk+1; τ)′ dτ (128)
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Computing the Discretization of Stochastic LTI Systems

We have now seen how to discretize an SDE, but let us now consider how
to actuallu do the discretization computationally.

Let us consider the continuous-time stochastic LTI systems given by:

ẋt = Axt +But +Gwt, wt ∈ N(0, R1) (129)
yt = Cxt +Dut + Fet, et ∈ N(0, R2) (130)

In discrete-time, it is given by

xk+1 = Adxk +Bduk + wk, wk ∈ N(0, R1d) (131)
yk = Cdxk +Dduk + ek, ek ∈ N(0, R2d) (132)

As always, the output equation is not discretized:

Cd = C, Dd = D, R2d = FR2F
T (133)
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Computing the Discretization of Stochastic LTI Systems

From the previous discussion we can derive the discrete-time system as:

xk+1 = Adxk +Bduk + wk (134)
Ad = eA(Ts) (135)

Bd =
∫ (k+1)Ts

kTs

eA((k+1)Ts−s)Bds (136)

wk =
∫ (k+1)Ts

kTs

eA((k+1)Ts−s)Gwsds (137)

with

E{wk} =
∫ (k+1)Ts

kTs

eA((k+1)Ts−s)GE{ws}ds = 0 (138)

V ar{wk} =
∫ (k+1)Ts

kTs

eA((k+1)Ts−s)GR1G
T eAT ((k+1)Ts−s)ds (139)
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Computing the Discretization of Stochastic LTI Systems

In the discussion on discretization of deterministic systems, the controlled
part was obtained by [

Ad Bd

0 I

]
= exp

( [
A B
0 0

]
Ts

)
(140)

For stochastic systems, we can use a similar trick:[
Ad R̃1
0 A−T

d

]
= exp

( [
A GR1G

T

0 −AT

]
Ts

)
R1d = R̃1A

T
d (141)[

A−1
d R̃T

1
0 AT

d

]
= exp

( [
−A GR1G

T

0 AT

]
Ts

)
R1d = AdR̃

T
1 (142)

Both approaches are equivalent.
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Proof of discretization trick
From the form of the trick, we can derive 3 differential equations:

W = exp
( [

F G
0 H

]
t

)
=

[
x y
0 z

]
, Ẇ = CW (143)

ẋ = Fx, ż = Hx (144)
ẏ = Fy +Gz (145)

We know the solution to these are

x = eF tx0, z = eHtz0 (146)

y = eF ty0 +
∫ t

0
eF (t−s)GeHsz0ds (147)

Set the initial value as x0 = I, y0 = 0, z0 = I and rearrange:

x = eF t, z = eHt (148)

y = eF t
∫ t

0
e−F sGeHsds (149)
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Proof of discretization trick

We can now show that the computed matrices gives the discrete variance,
we are after.
Let us define F = −A, H = AT , and G = R1, then the solutions at t = Ts

becomes

x = e−ATs = A−1
d (150)

z = eAT Ts = AT
d (151)

y = e−ATs

∫ Ts

0
eAsR1e

AT sds = A−1
d R1d (152)

With the resulting definition of the variance:

R1d =
∫ Ts

0
eAsR1e

AT sds = zT y (153)

For the other approach, the proof is similar, but has one more step in the
end: a variable change of the integral.
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Questions

Questions?
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