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Course Content

Course details

® Time: Tuesday 08:00 - 12:00

(2 hours lecture, 2 hours exercises)

® 5 ECTS points

® Evaluation: 2 individual reports

e Software: MATLAB (free choice)
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Course plan
® Stochastic process and systems

® Filter and control design

(state space and transfer function models)
® System identification

® Adaptive control

Design
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Teachers and teaching assistant

Tobias K. S. Ritschel
Assistant Professor
Course responsible
Contact: tobk@dtu.dk

Henrik Madsen
Professor

Course co-responsible
Contact: hmad@dtu.dk

Pietro Aldo Refosco

MSc student

Teaching assistant

Contact: s212976@student.dtu.dk
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You

M

® Most of you are MSc students.
e A few BSc students, guest students, and single-course students.

® Most of you are from electrical or mathematical engineering (incl. autonomous
systems).

® A few of you are from chemical engineering.

® A few from sustainable energy.
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Stochastic systems — Wind Turbine
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Lecture Plan

@ System theory

@ Stochastics

© State estimation - Kalman filter 1

O State estimation - Kalman filter 2

@ Optimal control 1 - internal models

@ External models

@ External prediction + external optimal control 1
® Optimal control 2 - external models

© System identification 1

@ System identification 2

@ System identification 3 + model validation
® Adaptive control 1

@® Adaptive control 2
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Structure of Lectures

Each lecture will contain 2 parts and a break.

Part 1:
® Qutline of the day + practical information
® Resumé of previous lecture: e.g., an example of a difficult topic

® Topics of the day

Part 2:
® Continue the topics of the day

® Questions
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Terminology
In the course, we will use the following terminology and notations.

® 1 : R — R"™= js the state vector of dimension n,.

® y : R+ R™ is the input vector of dimension n,,.

® y: R — R" is the output vector of dimension n,,.
® o € R™ is the initial state vector of dimension n,.
® p € R" is a parameter vector of dimension n,,.

1

® ¢ is the unit delay operator

Sometimes w is split into controllable and non-controllable inputs.
Common abbreviations

® LTI: Linear time-invariant

® ODE: Ordinary differential equation

® exp/e: exponential function

o iff: if and only if
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Today’s Topics

Systems Theory

® Dynamical systems

® Domains - time/frequency

® |Linearization and discretization

® System properties
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Dynamical Systems: External and Internal Models

We describe dynamical systems in two ways:

Internal Models

® States of the system

e Differential equations Y «-* U
External Models Y «« U
® Transfer functions

® Zeros and poles
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Dynamical Systems: ODE and Algebraic Equation (Internal) =

We consider dynamical systems in the form

&(t) = %(t) = fla(t), u(t);p) = Alp)z(t) + B(p)u(t) (1a)
l’(to) = T, (1b)

or

() =20+ [ Fa(r)u(r):p)dr

to

t
A(tﬂto)woJr t eA(p)(T*to)B(p)u(T) dr. (2)
J U0

=€

Furthermore, we consider output equations in the form

y(t) = g(x(t),u(t);p) = C(p)z(t) + D(p)u(t) (3)
Later, we will also consider stationary points, (z*,u*), which are defined by
f@®,u*;p) =0. (4)

11 DTU Compute Stochastic Adaptive Control 6.3.2023



=
—
=

M

Dynamical systems: ODE (External)

For external models, the general LTI N-th order inhomogeneous (1D) ODE
is given by

Zak Otk Z/Bl Otl’ (5)

where ay, 8; € R. The solution can be formulated as

y(t) = / h(syu(t — 5) ds, (6)

where h(t) is the impulse response. The Laplace transformed variables are
given by

Y(s)=H(s)U(s),  U(s)=L(u(?)), (7)
where
H(s) = L(h(1)) = /_ O:O h(s)e* ds
= C(p) (sI — A(p))"" B(p) + D(p). (8)
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Time and Frequency Domain

Continuous-time time-domain

¢

y(t) = h(t) * u(t)
dy
E(t) = sY(s)

Discrete-time time-domain

ty = kT,

e = Ha(q™
up = u(ty) = u(kTy)

-1
Ug—1=q Uk

where T is the sampling time
13 DTU Compute
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Continuous-time frequency-domain

s=a-+iw
Y(s) = H(s)U(s)
M
> st
H(s) = 20—
3 sk
k=0

Discrete-time frequency-domain

z=elss
Y (2) = H.(2)U(2)
Hy(q™') = H.(q)

Stochastic Adaptive Control 6.3.2023



Impulse response

Impulse Response

Amplitude
<
%

°©

0.2 \ I

-0.4
16 20

Figure: An impulse response
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Consider xg = 0. Then the re-
sponse from u to y is given by

{cTeAtB + D5§(0), t>0

h(t) =
() 0, t<0

Causal system:
No reaction before an impact.
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Step Response

Stop Response

yyyyy

Ampliude

Figure: Step response

i, is the rise time, r is the reaction rate, ¢4 is the setling time, ¢, is the
peak time, ¢, is the growth time, ¢; is the reaction time m,, is the overswing.
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Linearization

M

We will now briefly return to the general ODE system given by (1) with
output equation given by (3). Usually, we linearize in a stationary point (or
steady state); i.e. a point (z*,u*) that satisfies

f(a®,usp) = 0. (9)

Doing a Taylor expansion (truncated after first-order) on (1a) and (3) in
(z*,u*) yields

b= (o) + G (w up) — a%) + o ()~ ) (100)
0 0
y =gl uip) + 5 (o utip) (@ — ) + 5@ uip)(u—u”). (10b)
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Linearization =

Often, we will re-define the dynamical variables according to deviations

from the stationary point; i.e. according to
T=xz—2a" (11a)
t=u—u" (11b)
§=y—g(=",up), (11c)

and define the system matrices

of of

Al e*,u”) = 27 (@ u'p),  Blpa®u') = o-(e%,uhp)  (122)

Bg(

99 g (
ox

C(p7x*aU*) = %

x*7u*;p)7 D(p7x*7u*) =

This leads to the linear time invariant (LTI) system given by

z*,u’;p).  (12b)

= A(p,z*,u*)Z + B(p,z*,u*)a (13a)
g=C(p,x*,u")Z + D(p,x*,u")i, (13b)
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Discretization: Sampling of Continuous Systems =
A major focus in this course is on discrete-time linear systems.
Discrete sampling at fixed intervals:
x = x(to +Tsk) and  yi = y(to + Tsk) (14)
Zero-order Hold: ZOH is the assumption/choice of input being constant
between samples.
u(te) = ug, for kTs <t.< (k+1)Ts (15)

Shannon’s Sampling Theorem: if the highest frequency of the system is
wg, then a sampling frequency of at least the double is needed for
reconstruction:

2w
Ws > 2wy, W= Ts (16)

Choosing based on desired samples per rise time:
Ts =t./N,, N, € [2;4] (17)
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Discretization: Internal Model =
In state-space models, we consider discretization of the continuous-time
solutions:

(t) = AP t—to) o 4 teA(P)(t*S)B(p)u(s) ds, (18a)
y(t) = C(p)z(t) + D(p)u(t). (18b)

Using a sampling period 7%, the discrete-time system is given by
Tra1 = Aa(p, T)wx + Ba(p, To)ug - Aa(p, Ts) = P75 (19a)

Ts
yr = C(p)xr + D(p)ug By(p,Ts) = /0 eAP)3B(p)ds (19b)

These discrete-time system matrices, can be computed using the matrix
exponential:

A T) Bd(]}vTS)]:eXp([Aép) Bép)] TS>. (20)
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Discretization: External Model
For the external model, we consider the frequency domain:

bos™ + bys™ L 4 - 4 by
y(s) (S)U(S), (S) s alsn—l 4+ day

The discretization is then done with a Z-transform as:

Ho(2) = (1— zl)z(H(S)), 2eC

S

providing a new transfer function

CbpR" b Bnu

=H
y(2) 2(2)u(z) 2+ a2+ +ay,

(2)
for the time-domain we can utilize Hy(¢™') = H.(q)
_bo+big e+ bag "

L+aiqgt +- +anqg™
also given as a difference model:

yr = Ha(qg™ Hw uy

Y + a1yt + -+ Gnlin = bour + brug—1 + - + bpui—p
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Poles and Zeros

M

Consider the factor terms of transfer functions:

B(s)  bos" +bys" 44 by, IL;(s — 2)
H(s) = = =Kop—/——= 2
(S) A(S) s+ als"_l + -+ an OHZ'(S — Z) ( 6)
Hy(g™) = Ba(g™') _bo+big” "+ +bag ™ _ dOHz‘(q — 2d;i)
Aglg™)  14agt+- - +ap,qg 1L (q — payi)
Transfer functions has following properties
Zeros: H(z) =0 (27)
Poles: |H (p;)| = o0 (28)
DC-gain: H(s =0),H,(z =1) = Hy(¢ ' =1) (29)
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Poles
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The Poles of the external models are the Eigenvalues of the internal model.
C(A) = A(s) (30)
Poles are related to the stability of LTI systems. An LTI system is unstable if

Continuous: 0 < Re(p.) (31a)
Discrete: 1 < |py] (31b)

The relation between the poles of discrete (pg) and continuous (p.) systems
is

pa = e’ (32)
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1]
Zeros
The number of zeros m and poles n of a system:
Continuous: m <n (33)
=n—-1 (for D=0
Discrete: men (for ) ) (34)
m=n otherwise
with the additional zeros being from sampling with ZOH.
The m Continuous system zeros relates to a subset of the discrete zeros:
zq = e%Ts (35)
Zero-Pole Cancellation,
s— 2z 1
zi=pi: H(s)= = (36)
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Transforms - Similarity Transform and Diagonal Transform 3=

For some reasons (computation), we might want to change the states of
the internal model by

Zt = T.Z't (37)
211 = YAY 'z + Y Buy (38)
yr = CY "2 + Duy (39)

The external model is unchanged by the transformation:
H(q) =CY gl =AY ) 'YB+D=C(¢I —A)'B+D (40)

A simple transformation is the diagonal transform:

A O - 0
. 0 X -+ 0

Adiag =TAYT "= . . . (41)
0 0 - M\,

with T being constructed by the right eigenvectors of A.

24 DTU Compute Stochastic Adaptive Control 6.3.2023



=
—
=

Transforms - External = Internal

M

Consider the external system:
Yo +a1yi—1+ -+ apYrn = boug +brug_1 + -+ bpupp (42)
we then have the transfer function:

B(g™) _bo + big7 4+ 4 g

H = =
(@) Alg7h) 1+ aigt+ -4 ang™

=Y hig " (43)
i=0

Minimal representation: An internal model with minimum number of
states.

Examples of forms with minimal representation is the 4 canonical forms
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Transforms - Canonical Forms

Controller canonical form:

—ai -+ —Aap-1 —an
1 e 0 0
A, =
0 cee 1 0
Cc = [bl — boal, b2 — boag, ey bn — boan]
Observer canonical form:
—ay 1 -+ 0
Ap=|
—pq O - 1
—a, 0

CO:[1707"' 70]

26 DTU Compute
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Bc = |.
0
D, = bO
b1 — bo&l
b2 — boag
Bo = .
bn — boan
Do = bO
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Transforms - Canonical Forms

Controllability canonical form:

0 - 0 —an

1 -+ 0 —ay_
Aco: !

0 - 1 —a

CCO = (hlahQa te >hn)

Observability canonical form:

—ap -+ —0Gp-1 —an
Aob = .
0 1 0

Co = (1,0,...,0)

27 DTU Compute
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Transforms - Canonical Forms

relation between canonical forms:
T T
Ac=A,, A=A,
T T
Bc = Co 5 Bco = Cob
T T
BO - Cc ) BOb = Cco

Dc:Do:Dco:Dob:bO:hO
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Transforms - Direct realization
consider the more general external model:

Yt +aryi—1 + -+ AngYt—n, = boug +b1ug—1 + -+ by up g,

A non-minimal internal model can be constructed as:

—ai -+ —Gp,—1 —0np, _bl _bnb—l _bnb_
1 0 0 0 0 0
o 0 1 0 0 0 0
=10 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0 |
oF = (a1,...,an,,b1,...,by,)
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Controllability and Reachability

Definition:

A system is said to be controllable, if it is possible to move the system from
an arbitrary state value to the origin in finite time.

Definition:

A system is said to be reachable, if it is possible to move the system from
one arbitrary state value to another arbitrary state in finite time.

Reachable = Controllable, not the reverse

An n-state system is reachable if and only if the reachability matrix W, has
full rank (k > n).

We(k) =B AB A’B ... AF'p] (59)

with the reachability Gramian given by ¢ = W,(k)W.(k)T
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Controllability and Reachability - Control
For discrete-time LTI systems, it is possible to give explicit results on how
to construct a k-step input sequence
xp = APz + W (k) Uy (60)

T
Ueg1 = [qu Up—g - Uo}

(61)

which brings the system from any initial condition, g, to a desired state, Z.

Though no unique sequence exist, the sequence minimizing the control
usage is given by

Ur_, = Wo(k) ' (25) [;c - A%O] (62)

minimizing

k—1
. Z T
ukfrll,l-guo = Uy U (633)
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Controllability and Reachability - Continuous-Time
For a general continuous-time LTI system
& = Az + Bu, (64)
the reachability question is related to properties of the continuous-time
reachability Gramian, 3¢, This matrix function satisfies the dynamical
condition
sie = AN¢ + 2¢AT + BBT (65a)
¥¢(tg) = 0. (65b)

The LTI system (64) is said to be reachable if W (¢) is symmetric and
positive semi-definite for any t > t.

For continuous-time, reachability is equivalent to controlability
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Observability and constructability

Definition:
A system is said to be observable if, any initial state can be estimated using
only the information from the following outputs and inputs.

Definition:

A system is said to be constructable if, for any possible evolution of state
and control vectors, the current state can be estimated using only the
information from outputs.

Observable = constructable, but the reverse is not true

An n-state system is reachable if and only if the observability matrix W,
has full rank (k > n).

Wo(k)" = [CT (CA)T (cay)T ... (caFNT] (66)

with the observability Gramian given by X9 = W, (k)W, (k)"
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Observability and constructability - Continuous-Time

For a general continuous-time LTI system,

& = Az + Bu, (67a)
y = Cz + Du, (67b)

the observability question is related to properties of the continuous-time
observability Gramian, ¥°. This matrix function satisfies the dynamical
condition

Yo = A%’ 4+ 3°AT + CTC (68a)
3°(tg) = 0. (68b)

The LTI system (67) is said to be observable if £°(¢) is symmetric and
positive semi-definite for any ¢t > tq.
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Stability

For operations of systems, an important aspect is the system'’s stability near
a stationary point xs.

Several definitions of stability exist; e.g. marginally stable systems and
asymptotically stable systems.

® Marginally stable: z; is said to be (marginally) stable if any solution trajectory
{z(t), t € [to, 0]} is bounded.

e Asymptotically stable: x; is said to be asymptotically stable if any solution
trajectory converges to z; (z(t) — x) as time progresses (t — 00).

A system which is not stable (i.e. not marginally stable) is said to be
unstable.

Additionally we say a system is BIBO stable, if for any bounded input, the
output is also bounded (Asymptotic = BIBO)
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Stability of LTI Systems

M

For LTI systems, the requirements of the different definitions of stability is
given below, with a system being that type of stable if and only if all of the
requirements is fulfilled

Continuous-time Discrete-time

Marginally stable:

® Re{eig(4)} <0 ° leig(A)| <1

® VRe{eig(A);} =0, the AM=GM ® V|eig(A);| = 1, the AM=GM

Asymptotically stable:
® Re{eig(4)} <0 ® |eig(A)| <1

* AM = Algebraic multiplicity (# of identical eigenvalues)
** GM = geometric multiplicity (# of associated eigenvectors)
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Stability of General Systems: Lyapunov’s 2" Method
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For general systems, the conditions for stability is more complex, but one

method is Lyapunov's second method

A Lyapunov function V(x) for a system is defined as

Continuous-time Discrete-time

#(t) = f(z(t), f(0)=0 T4 = f(21),  f(0)=0
Scalar function V (x):

*V(0)=0 *V(©0)=0

® V(x) is C! (differential) e V(x) is C! (differential)
o V(a(t) = (25" fla(t) <0 ® V(wpr) = V(z) <0

A stationary point x4 is stable if a Lyapunov function exists in the
neighbourhood of x. If the inequalities are satisfied strictly, z; is
asymptotically stable

37 DTU Compute Stochastic Adaptive Control

6.3.2023



=
—
=

Local Stability of Nonlinear Systems

M

Alternatively, if we only consider stability of a specific section of the system
space around a stationary point g,

Tt =0= f(zs,us) or zs = f(xs,us), (69)
a linear approximation can be used if f is differentiable at the stationary

point:

(91‘(x u*). (70)

The system is locally stable (marginal or asymptotic) around the stationary
point if the LTI requirements are fulfilled.
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Example of stationary points
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Consider a ball lying on the curve. Which points are stationary, and which
are stable?
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