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02421 - Introduction
Course Content

Course details
• Time: Tuesday 08:00 - 12:00

(2 hours lecture, 2 hours exercises)
• 5 ECTS points
• Evaluation: 2 individual reports
• Software: MATLAB (free choice)

Course plan
• Stochastic process and systems
• Filter and control design

(state space and transfer function models)
• System identification
• Adaptive control
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Teachers and teaching assistant

Tobias K. S. Ritschel
Assistant Professor
Course responsible
Contact: tobk@dtu.dk

Henrik Madsen
Professor
Course co-responsible
Contact: hmad@dtu.dk

Pietro Aldo Refosco
MSc student
Teaching assistant
Contact: s212976@student.dtu.dk
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02421 - Introduction
You

• Most of you are MSc students.
• A few BSc students, guest students, and single-course students.
• Most of you are from electrical or mathematical engineering (incl. autonomous

systems).
• A few of you are from chemical engineering.
• A few from sustainable energy.
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Stochastic systems – Wind Turbine
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02421 - Introduction
Lecture Plan
1 System theory

2 Stochastics

3 State estimation - Kalman filter 1

4 State estimation - Kalman filter 2

5 Optimal control 1 - internal models

6 External models

7 External prediction + external optimal control 1

8 Optimal control 2 - external models

9 System identification 1

10 System identification 2

11 System identification 3 + model validation

12 Adaptive control 1

13 Adaptive control 2
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02421 - Introduction
Structure of Lectures

Each lecture will contain 2 parts and a break.

Part 1:
• Outline of the day + practical information
• Resumé of previous lecture: e.g., an example of a difficult topic
• Topics of the day

Part 2:
• Continue the topics of the day
• Questions
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02421 - Introduction
Terminology
In the course, we will use the following terminology and notations.
• x : R 7→ Rnx is the state vector of dimension nx.
• u : R 7→ Rnu is the input vector of dimension nu.
• y : R 7→ Rny is the output vector of dimension ny.
• x0 ∈ Rnx is the initial state vector of dimension nx.
• p ∈ Rnp is a parameter vector of dimension np.
• q−1 is the unit delay operator

Sometimes u is split into controllable and non-controllable inputs.

Common abbreviations
• LTI: Linear time-invariant
• ODE: Ordinary differential equation
• exp/e: exponential function
• iff: if and only if
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02421 - Systems Theory
Today’s Topics

Systems Theory
• Dynamical systems
• Domains - time/frequency
• Linearization and discretization
• System properties
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02421 - Systems Theory
Dynamical Systems: External and Internal Models

We describe dynamical systems in two ways:

Internal Models
• States of the system
• Differential equations

External Models
• Transfer functions
• Zeros and poles

?
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Y

U
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02421 - Systems Theory
Dynamical Systems: ODE and Algebraic Equation (Internal)
We consider dynamical systems in the form

ẋ(t) = ∂x

∂t
(t) = f(x(t), u(t); p) = A(p)x(t) + B(p)u(t) (1a)

x(t0) = x0, (1b)

or

x(t) = x0 +
∫ t

t0
f(x(τ), u(τ); p) dτ

= eA(t−t0)x0 +
∫ t

t0
eA(p)(τ−t0)B(p)u(τ) dτ. (2)

Furthermore, we consider output equations in the form

y(t) = g(x(t), u(t); p) = C(p)x(t) + D(p)u(t) (3)

Later, we will also consider stationary points, (x∗, u∗), which are defined by

f(x∗, u∗; p) = 0. (4)

11 DTU Compute Stochastic Adaptive Control 6.3.2023



02421 - Systems Theory
Dynamical systems: ODE (External)
For external models, the general LTI N -th order inhomogeneous (1D) ODE
is given by

N∑
k=0

αk
∂ky

∂tk
=

M∑
l=0

βl
∂lu

∂tl
, (5)

where αk, βl ∈ R. The solution can be formulated as

y(t) = h(t) ∗ u(t) =
∫ ∞

−∞
h(s)u(t − s) ds, (6)

where h(t) is the impulse response. The Laplace transformed variables are
given by

Y (s) = H(s)U(s), U(s) = L(u(t)), (7)

where

H(s) = L(h(t)) =
∫ ∞

−∞
h(s)e−st ds

= C(p) (sI − A(p))−1 B(p) + D(p). (8)
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02421 - Systems Theory
Time and Frequency Domain

Continuous-time time-domain

t

y(t) = h(t) ∗ u(t)
dy

dt
(t) = sY (s)

Discrete-time time-domain

tk = kTs

yk = Hd(q−1)uk

uk = u(tk) = u(kTs)
uk−1 = q−1uk

where Ts is the sampling time

Continuous-time frequency-domain

s = a + iw

Y (s) = H(s)U(s)

H(s) =

M∑
l=0

βls
l

N∑
k=0

αksk

Discrete-time frequency-domain

z = eTss

Y (z) = Hz(z)U(z)
Hd(q−1) = Hz(q)
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02421 - Systems Theory
Impulse response

Figure: An impulse response

Consider x0 = 0. Then the re-
sponse from u to y is given by

h(t) =
{

CT eAtB + Dδ(0), t ≥ 0
0, t < 0

Causal system:
No reaction before an impact.
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02421 - Systems Theory
Step Response
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Figure: Step response

tr is the rise time, r is the reaction rate, tset is the setling time, tp is the
peak time, to is the growth time, tl is the reaction time mp is the overswing.
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02421 - Systems Theory
Linearization

We will now briefly return to the general ODE system given by (1) with
output equation given by (3). Usually, we linearize in a stationary point (or
steady state); i.e. a point (x∗, u∗) that satisfies

f(x∗, u∗; p) = 0. (9)

Doing a Taylor expansion (truncated after first-order) on (1a) and (3) in
(x∗, u∗) yields

ẋ = f(x∗, u∗; p) + ∂f

∂x
(x∗, u∗; p)(x − x∗) + ∂f

∂u
(x∗, u∗; p)(u − u∗) (10a)

y = g(x∗, u∗; p) + ∂g

∂x
(x∗, u∗; p)(x − x∗) + ∂g

∂u
(x∗, u∗; p)(u − u∗). (10b)
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02421 - Systems Theory
Linearization
Often, we will re-define the dynamical variables according to deviations
from the stationary point; i.e. according to

x̃ = x − x∗ (11a)
ũ = u − u∗ (11b)
ỹ = y − g(x∗, u∗; p), (11c)

and define the system matrices

A(p, x∗, u∗) = ∂f

∂x
(x∗, u∗; p), B(p, x∗, u∗) = ∂f

∂u
(x∗, u∗; p) (12a)

C(p, x∗, u∗) = ∂g

∂x
(x∗, u∗; p), D(p, x∗, u∗) = ∂g

∂u
(x∗, u∗; p). (12b)

This leads to the linear time invariant (LTI) system given by

˙̃x = A(p, x∗, u∗)x̃ + B(p, x∗, u∗)ũ (13a)
ỹ = C(p, x∗, u∗)x̃ + D(p, x∗, u∗)ũ, (13b)
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02421 - Systems Theory
Discretization: Sampling of Continuous Systems
A major focus in this course is on discrete-time linear systems.
Discrete sampling at fixed intervals:

xk = x(t0 + Tsk) and yk = y(t0 + Tsk) (14)

Zero-order Hold: ZOH is the assumption/choice of input being constant
between samples.

u(tc) = uk, for kTs ≤ tc < (k + 1)Ts (15)

Shannon’s Sampling Theorem: if the highest frequency of the system is
w0, then a sampling frequency of at least the double is needed for
reconstruction:

ws ≥ 2w0, ws = 2π

Ts
(16)

Choosing based on desired samples per rise time:

Ts = tr/Nr, Nr ∈ [2; 4] (17)
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02421 - Systems Theory
Discretization: Internal Model
In state-space models, we consider discretization of the continuous-time
solutions:

x(t) = eA(p)(t−t0)x0 +
∫ t

t0
eA(p)(t−s)B(p)u(s) ds, (18a)

y(t) = C(p)x(t) + D(p)u(t). (18b)

Using a sampling period Ts, the discrete-time system is given by

xk+1 = Ad(p, Ts)xk + Bd(p, Ts)uk Ad(p, Ts) = eA(p)Ts (19a)

yk = C(p)xk + D(p)uk Bd(p, Ts) =
∫ Ts

0
eA(p)sB(p) ds (19b)

These discrete-time system matrices, can be computed using the matrix
exponential:[

Ad(p, Ts) Bd(p, Ts)
0 I

]
= exp

([
A(p) B(p)

0 0

]
Ts

)
. (20)
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02421 - Systems Theory
Discretization: External Model
For the external model, we consider the frequency domain:

y(s) = H(s)u(s), H(s) = b0sn + b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an
(21)

The discretization is then done with a Z-transform as:

Hz(z) = (1 − z−1)Z
(

H(s)
s

)
, z ∈ C (22)

providing a new transfer function

y(z) = Hz(z)u(z) = b̄0zn + b̄1zn−1 + · · · + b̄n

zn + ā1zn−1 + · · · + ān
u(z) (23)

for the time-domain we can utilize Hd(q−1) = Hz(q)

yt = Hd(q−1)ut = b̄0 + b̄1q−1 + · · · + b̄nq−n

1 + ā1q−1 + · · · + ānq−n
ut (24)

also given as a difference model:

yt + ā1yt−1 + · · · + ānyt−n = b̄0ut + b̄1ut−1 + · · · + b̄mut−n (25)
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02421 - Systems Theory
Poles and Zeros

Consider the factor terms of transfer functions:

H(s) = B(s)
A(s) = b0sn + b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an
= K0

Πi(s − zi)
Πi(s − pi)

(26)

Hd(q−1) = Bd(q−1)
Ad(q−1) = b0 + b1q−1 + · · · + bnb

q−nb

1 + a1q−1 + · · · + anaq−na
= Kd,0

Πi(q − zd,i)
Πi(q − pd,i)

Transfer functions has following properties

Zeros: H(zi) = 0 (27)
Poles: |H(pi)| = ∞ (28)

DC-gain: H(s = 0), Hz(z = 1) = Hd(q−1 = 1) (29)
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02421 - Systems Theory
Poles

The Poles of the external models are the Eigenvalues of the internal model.

C(A) = A(s) (30)

Poles are related to the stability of LTI systems. An LTI system is unstable if

Continuous: 0 < Re(pc) (31a)
Discrete: 1 < |pd| (31b)

The relation between the poles of discrete (pd) and continuous (pc) systems
is

pd = epcTs (32)
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02421 - Systems Theory
Zeros

The number of zeros m and poles n of a system:

Continuous: m ≤ n (33)

Discrete:
{

m = n − 1 (for D = 0)
m = n otherwise

(34)

with the additional zeros being from sampling with ZOH.
The m Continuous system zeros relates to a subset of the discrete zeros:

zd = ezcTs (35)

Zero-Pole Cancellation,

zi = pi : H(s) = s − zi

(s − pi)(s − p1) = 1
(s − p1) (36)
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02421 - Systems Theory
Transforms - Similarity Transform and Diagonal Transform
For some reasons (computation), we might want to change the states of
the internal model by

zt = Υxt (37)
zt+1 = ΥAΥ−1zt + ΥBut (38)

yt = CΥ−1zt + Dut (39)

The external model is unchanged by the transformation:

H(q) = CΥ−1(qI − ΥAΥ−1)−1ΥB + D = C(qI − A)−1B + D (40)

A simple transformation is the diagonal transform:

Adiag = ΥAΥ−1 =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 (41)

with Υ being constructed by the right eigenvectors of A.
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02421 - Systems Theory
Transforms - External ⇒ Internal

Consider the external system:

yt + a1yt−1 + · · · + anyt−n = b0ut + b1ut−1 + · · · + bnut−n (42)

we then have the transfer function:

H(q) = B(q−1)
A(q−1) = b0 + b1q−1 + · · · + bnq−n

1 + a1q−1 + · · · + anq−n
=

∞∑
i=0

hiq
−1 (43)

Minimal representation: An internal model with minimum number of
states.

Examples of forms with minimal representation is the 4 canonical forms
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02421 - Systems Theory
Transforms - Canonical Forms

Controller canonical form:

Ac =


−a1 · · · −an−1 −an

1 · · · 0 0
. . . ...

...
0 · · · 1 0

 Bc =


1
0
...
0

 (44)

Cc = [b1 − b0a1, b2 − b0a2, . . . , bn − b0an] Dc = b0 (45)

Observer canonical form:

Ao =


−a1 1 · · · 0

... . . .
−an−1 0 · · · 1
−an 0 · · · 0

 Bo =


b1 − b0a1
b2 − b0a2

...
bn − b0an

 (46)

Co = [1, 0, · · · , 0] Do = b0 (47)
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02421 - Systems Theory
Transforms - Canonical Forms

Controllability canonical form:

Aco =


0 · · · 0 −an

1 · · · 0 −an−1
. . . ...

0 · · · 1 −a1

 Bco =


1
0
...
0

 (48)

Cco = (h1, h2, · · · , hn) Dco = h0 (49)

Observability canonical form:

Aob =


−a1 · · · −an−1 −an

1 · · · 0 0
. . . ...

...
0 · · · 1 0

 Bob =


h1
h2
...

hn

 (50)

Cob = (1, 0, . . . , 0) Dob = h0 (51)
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02421 - Systems Theory
Transforms - Canonical Forms

relation between canonical forms:

Ac = AT
o , Aco = AT

ob (52)
Bc = CT

o , Bco = CT
ob (53)

Bo = CT
c , Bob = CT

co (54)
Dc = Do = Dco = Dob = b0 = h0 (55)
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02421 - Systems Theory
Transforms - Direct realization
consider the more general external model:

yt + a1yt−1 + · · · + anayt−na = b0ut + b1ut−1 + · · · + bnb
ut−nb

(56)

A non-minimal internal model can be constructed as:

Φd =



−a1 · · · −ana−1 −ana −b1 · · · −bnb−1 −bnb

1 0 0 0 · · · 0 0
. . . ...

...
...

...
0 1 0 0 · · · 0 0
0 · · · 0 0 0 · · · 0 0
0 · · · 0 0 1 0 0
...

...
... . . . ...

0 · · · 0 0 0 1 0


Γd =



−b0
0
...
0
1
0
...
0


(57)

ϕT
d = (a1, . . . , ana , b1, . . . , bnb

) ∆d = b0
(58)
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02421 - Systems Theory
Controllability and Reachability

Definition:
A system is said to be controllable, if it is possible to move the system from
an arbitrary state value to the origin in finite time.

Definition:
A system is said to be reachable, if it is possible to move the system from
one arbitrary state value to another arbitrary state in finite time.

Reachable ⇒ Controllable, not the reverse

An n-state system is reachable if and only if the reachability matrix Wc has
full rank (k > n).

Wc(k) =
[
B AB A2B · · · Ak−1B

]
(59)

with the reachability Gramian given by Σc
k = Wc(k)Wc(k)T
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02421 - Systems Theory
Controllability and Reachability - Control
For discrete-time LTI systems, it is possible to give explicit results on how
to construct a k-step input sequence

xk = Akx0 + Wc(k)Uk−1 (60)

UT
k−1 =

[
uk−1 uk−2 · · · u0

]
(61)

which brings the system from any initial condition, x0, to a desired state, x̂.

Though no unique sequence exist, the sequence minimizing the control
usage is given by

U∗
k−1 = Wc(k)T (Σc

k)−1
[
x̂ − Akx0

]
. (62)

minimizing

min
uk−1,...,u0

k−1∑
j=0

uT
j uj (63a)
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02421 - Systems Theory
Controllability and Reachability - Continuous-Time

For a general continuous-time LTI system

ẋ = Ax + Bu, (64)

the reachability question is related to properties of the continuous-time
reachability Gramian, Σc. This matrix function satisfies the dynamical
condition

Σ̇c = AΣc + ΣcAT + BBT (65a)
Σc(t0) = 0. (65b)

The LTI system (64) is said to be reachable if W (t) is symmetric and
positive semi-definite for any t ≥ t0.

For continuous-time, reachability is equivalent to controlability
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02421 - Systems Theory
Observability and constructability
Definition:
A system is said to be observable if, any initial state can be estimated using
only the information from the following outputs and inputs.

Definition:
A system is said to be constructable if, for any possible evolution of state
and control vectors, the current state can be estimated using only the
information from outputs.

Observable ⇒ constructable, but the reverse is not true

An n-state system is reachable if and only if the observability matrix Wo

has full rank (k > n).

Wo(k)T =
[
CT (CA)T (CA2)T · · · (CAk−1)T

]
(66)

with the observability Gramian given by Σo
k = Wo(k)Wo(k)T
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02421 - Systems Theory
Observability and constructability - Continuous-Time

For a general continuous-time LTI system,

ẋ = Ax + Bu, (67a)
y = Cx + Du, (67b)

the observability question is related to properties of the continuous-time
observability Gramian, Σo. This matrix function satisfies the dynamical
condition

Σ̇o = AΣo + ΣoAT + CT C (68a)
Σo(t0) = 0. (68b)

The LTI system (67) is said to be observable if Σo(t) is symmetric and
positive semi-definite for any t ≥ t0.
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02421 - Systems Theory
Stability

For operations of systems, an important aspect is the system’s stability near
a stationary point xs.

Several definitions of stability exist; e.g. marginally stable systems and
asymptotically stable systems.
• Marginally stable: xs is said to be (marginally) stable if any solution trajectory

{x(t), t ∈ [t0, ∞]} is bounded.
• Asymptotically stable: xs is said to be asymptotically stable if any solution

trajectory converges to xs (x(t) → xs) as time progresses (t → ∞).

A system which is not stable (i.e. not marginally stable) is said to be
unstable.

Additionally we say a system is BIBO stable, if for any bounded input, the
output is also bounded (Asymptotic ⇒ BIBO)
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02421 - Systems Theory
Stability of LTI Systems

For LTI systems, the requirements of the different definitions of stability is
given below, with a system being that type of stable if and only if all of the
requirements is fulfilled

Continuous-time
Marginally stable:
• Re{eig(A)} ≤ 0
• ∀ Re{eig(A)i} = 0, the AM=GM

Asymptotically stable:
• Re{eig(A)} < 0

Discrete-time

• |eig(A)| ≤ 1
• ∀|eig(A)i| = 1, the AM=GM

• |eig(A)| < 1

* AM = Algebraic multiplicity (# of identical eigenvalues)
** GM = geometric multiplicity (# of associated eigenvectors)
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02421 - Systems Theory
Stability of General Systems: Lyapunov’s 2nd Method
For general systems, the conditions for stability is more complex, but one
method is Lyapunov’s second method

A Lyapunov function V (x) for a system is defined as
Continuous-time
ẋ(t) = f(x(t)), f(0) = 0

Scalar function V (x):
• V (0) = 0
• V (x) is C1 (differential)

• V̇ (x(t)) =
(

∂V
∂x

)T
f(x(t)) ≤ 0

Discrete-time
xt+1 = f(xt), f(0) = 0

• V (0) = 0
• V (x) is C1 (differential)
• V (xt+1) − V (xt) ≤ 0

A stationary point xs is stable if a Lyapunov function exists in the
neighbourhood of xs. If the inequalities are satisfied strictly, xs is
asymptotically stable
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02421 - Systems Theory
Local Stability of Nonlinear Systems

Alternatively, if we only consider stability of a specific section of the system
space around a stationary point xs,

ẋ = 0 = f(xs, us) or xs = f(xs, us), (69)

a linear approximation can be used if f is differentiable at the stationary
point:

A = ∂f

∂x
(x∗, u∗). (70)

The system is locally stable (marginal or asymptotic) around the stationary
point if the LTI requirements are fulfilled.
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02421 - Systems Theory
Example of stationary points
Consider a ball lying on the curve. Which points are stationary, and which
are stable?
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02421 - Systems Theory

Questions?
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