
02224 Modelling and Analysis of Real-Time Systems Spring 2024

Mandatory Assignment 1

Baggage Sorting Facility

1 Overview

This assignment deals with a baggage sorting facility such as the ones found in airports.
It must transport bags from different check-in counters to different destinations depend-
ing on which flight the bags should go. In this assignment we work with (a LEGO model
of) a simple such baggage sorting facility. An overview of this system is shown in figure 1.

fwd

fw
d

fw
d

Sensor 2Sensor 1

Distribution Belt

D
e
st

in
a
ti

o
n

D
e
st

in
a
ti

o
n

F
e
e
d
 B

e
lt

 1

F
e
e
d
 B

e
lt

 2

BA

Check-In 1 Check-In 2

Figure 1: Overview of the baggage sorting facility

Bags are loaded into the baggage sorting facility at the Check-Ins either on Feed Belt 1
or on Feed Belt 2. The baggage sorting facility must transport bags to either Destination
A or Destination B using the Distribution Belt.

The feed belts and the distribution belt may move bags either forward or backwards
or they may be stopped. The forward direction is indicated on figure 1. On both feed
belts a light sensor is mounted. It can be used to detect when a bag passes the sensor.
Furthermore, it can detect the colour of the bag. In this system we assume that all bags
are either yellow or black.

The overall task of the baggage sorting facility is simple: All yellow bags must go to
Destination A and all black bags must go to Destination B.

1

1.1 Sensors

On each feed belt a sensor is mounted. This sensor is used to detect that bags pass the
sensor. The sensor reads the light intensity, which are represented by integer values,
which are roughly in the interval from 30 to 80.

Whenever the sensor is clear, i.e. when no bag is placed in front of the sensor, the sensor
value is at its largest (approximately 75). When a yellow bag is placed in front of the
sensor the sensor value drops to a lower value given in table 1. When a black bag is
placed in front of the sensor the sensor value drops to an even lower value.

Status Sensor value

Sensor is clear >70
Yellow brick 50-60
Black brick 30-45

Table 1: Sensor values

There is a chance that the sensor cannot correctly distinguish between a black and a
yellow bag. The problem arises when a bag does not completely block the sensor, as
illustrated on figure 2. The sensor value may then drop below the yellow threshold, but
some light may still reach the sensor. At this moment, the sensor value may still be
above the black threshold even when the bag is black.

Sensor Sensor

4 mm

a) b)

4 mm

24 mm

b
la

c
k

b
la

c
k

Figure 2: The sensor cannot distinguish between black and yellow bags when a bag is
not fully in front of the sensor.

There is a small section of 4 mm of the feed belt in front of the sensor on which the sensor
can detect that a bag is present but cannot correctly detect its colour. This phenomenon
will occur when the bag moves in front of the sensor as illustrated on figure 2a. From
that point on the bag will be able to move down the feed belt for 24 mm before the
phenomenon occurs again when the bag moves out of the sensor’s range as illustrated in
figure 2b.

2

1.2 Timings of the System

There are only the two sensors in the system which can be used to detect where bags are
located. When bags are anywhere else in the system we must calculate their positions
based on timings of the system. Figure 3 shows different sections of the system for which
timings are given. Note that Feed Belt 1 and Feed Belt 2 are symmetric.

There is no timing for the section from the point where the bags are placed on a feed
belt and to the point where it reaches the sensor. For a bag to move through this section
of the feed belt you must simply keep the belt running and use the sensor to detect when
the bag passes the sensor. Section a) starts at the earliest point where a bag can be
detected.

The timings are given for the system under the assumption that the belts are running,
so the bags will actually move. The speed of the belts be must set to the predefined
constants for the timing values to apply. The details of these constant will be given later,
when it is explained how to write programs that work with the LEGO system.

Sensor 2Sensor 1

Distribution Belt

F
e
e
d
 B

e
lt

 1

F
e
e
d
 B

e
lt

 2

e

D
e
st

in
a
ti

o
n

B
ef

D
e
st

in
a
ti

o
n

A

b b

aa

c c

d

c

d

c

Figure 3: The system is divided into section for which timings are given. The location
of the bag at the end of a section is indicated by the rectangles on the figure.

Section a This section starts at the point where it is possible to detect that a bag is
present. The section ends when the bag is clear of the sensor.

Section b The section begins where the bag is clear of the sensor and ends just before
the bag starts turning on to the distribution belt.

Section c In this section the bag turns on to the distribution belt. The section ends
when the bag is clear of the feed belt. Note that both the feed belt and the
distribution belt must be running for the bag to be turn properly.

3

Section d When the bag is already on the distribution belt it may pass one of the feed
belts. The timing of this section includes all the time when the bag blocks the feed
belt.

Section e The section goes from the point where the bag is clear of the feed belt till
it has reached Destination A or Destination B (where it drops down from the
distribution belt).

Section f The section between the two feed belts. At the end points of this section the
bag is still clear of the feed belts.

For section a) and section b) we give the timings based on the length of the section and
the speed of feed belt. The feed belt may be assumed to move at a constant speed of 20
mm/s. Section a) is 32 mm long. It is the entire section, where the sensor can detect
that a bag is moving in front of the sensor i.e. the section shown in figure 2. Remember
that the sensor value in the first and the last 4 mm of the section cannot be used to
decide the colour of the bag. Section b) is 48 mm long.

The timing for the remaining sections are given as explicit timing values. Table 2 gives
the time taken for a bag to move from one end of a section to the other in terms of upper
and lower bounds.

Section Lower bound Upper bound

c 2.4 2.7
d 2.2 2.3
e 1.0 1.2
f 2.5 3.1

Table 2: Timings in the system. Timing values are given in seconds.

The variation of section c) is due to the turning process. The variation of section f)
is primarily due to the fact that the distribution belt is composed of two sections and
passing between them takes varying time.

Collisions and bumping

A collision may occur if a bag is fed to the distribution belt while another bag is passing.
To be on the safe side, bags must not be be simultaneously present in sections c) and d)
belonging to the same feed belt. Several bags on a c)-section or a d)-section are allowed,
subject to the bumping constraint described in the following.

Also to be avoided is the phenomenon of a bag bumping into its predecessor. This may
occur in sections c), d), e), and f) where a fast bag may arrive at the end of the section
before the previous has completely left it. With the actual distribution belt speed, bags
should be at least 1.4 seconds apart on the distribution belt — especially when arriving
at the destination. To avoid bumping, a minimum separation of bags should be observed
at the Check-Ins.

4

2 The LEGO RCX Box

The Lego RCX-box launched in 1998 is large LEGO brick with a (for that period)
standard 8-bit microprocessor (Hitachi H8/3292) equipped with:

• 32 K RAM

• 3 input ports: 1, 2, 3

• 3 output ports: A, B, C

• 1 bidirectional serial infra-red port

• 1 LCD-display

• 1 “loud-speaker”

• Some control buttons

• A simple “BIOS” in ROM (for loading firmware).

A number of sensors can be connected to the input ports such as buttons, rotation sensors
and light sensors. Their value is read by an A/D converter and mapped into memory
locations.

The output ports may be connected to actuators. The only actuators available from
LEGO are motors and lamps. Motors are controlled by assignment to special memory
locations. The speed of the motors can be controlled by pulse-width modulation.

The RCX-box may be programmed in RCX-code similar to Java byte-code. The inter-
preter for the virtual RCX machine (the so-called firmware) can be downloaded by the
“BIOS”.

A number of programming environments have been developed for the RCX virtual ma-
chine. LEGO has provided the graphical environments RCX and Robolab. Others have
developed textual languages for generating RCX-code, such as NQC (Not Quite C)
which is available for many platforms.

The RCX-code has rather limited means of expression. Therefore people around the
world have developed other environments for programming the RCX-box. One approach
is to program in C compiling to native Hitachi code running on a multi-tasking real-time
kernel called LegOS/BrickOS.

Another approach is to replace the RCX-code interpreter with a Java Virtual Machine
executing standard Java byte code such that the RCX-box can be programmed in Java.
This approach is further described below.

The RCX-brick was superseded by the ARM7-based NXT-model launched by LEGO in
2006 followed by the ARM9-based EV3 model launched in 2013 and the ARM-Cortex
M4 based Spike Prime Hub in 2019.

5

3 Introduction to LeJOS

LeJOS is an implementation of a Java Virtual Machine on the RCX-processor enabling
Java programming of the LEGO RCX brick. Due to the limited amount of memory, not
all language features are available, but for many small embedded systems, this will pose
no major problem. Amongst the features provided are:

• All language constructs except switch-statements.

• Java threads with synchronization and preemptive scheduling.

• Floating point types.

• A package josx.platform.rcx that provides high-level access to the RCX devices.

On the other hand, the virtual machine lacks garbage collection and almost all standard
Java packages.

LeJOS was started by Jose Solorzano in 1999, and has been developed as an open source
project located at:

http://lejos.org/

The home page is the place to look for information on LeJOS. There is a detailed
documentation of the API and an online tutorial. Development for RCX seems to have
ceased in 2006 though.

In the following we give a small introduction to some of the key facilities of LeJOS,
which should be enough to get you started. In section 4.2 we show a small example of
a program which uses some of the features described.

The facilities for real-time programming in LeJOS are partly to be found in the Java
language itself and partly in the packages provided by LeJOS.

The reader is assumed to be familiar with Java in general and multi-threaded Java
programming in particular.

Information on how to install LeJOS and compile Java programs for LeJOS can be found
via the course home page.

3.1 Threads and synchronization

Threads are created as instances of classes that extend Thread as usual. Threads may
share data via monitors in the usual way. Also conditional synchronization may be
accomplished by the usual wait/notify mechanism. [Avoid static monitors which do
not work.]

3.2 Motors

Motors are controlled through the class Motor found in the josx.platform.rcx package.
The Motor class provides a number of instance operations of which the most useful ones

6

are:

setPower(int n) Set the speed of the motor to a value n between 0 and 7. In the
Sorting Facility, the speed of all motors should be set to 5 for the
timings to be correct.

forward() Let the motor run forward at the speed set.

backward() Let the motor run backward at the speed set.

stop() Stop the motor abruptly (brake).

flt() Float. Stop the motor, but let it spin.

reverseDirection() Reverse the direction of the motor (if running).

The current state of the motor can be interrogated with the boolean functions isForward(),
isBackward(), isStopped(), and isFloating().

The Motor class cannot be instantiated, but provides three static instances (A, B, and C)
of itself representing the outputs of the RCX-box. E.g. to start the A-motor, you should
issue:

Motor.A.forward();

3.3 Light Sensor

The light sensors are accessed through the Sensor class of the josx.platform.rcx

package. There are many different types of sensors. However, by default a sensor is
assumed to be a light sensor giving percentage values. This complies with the sensors of
the current Baggage Sorting Facility. Among the many Sensor object operations, the
following suffice for this assignment:

activate() Activates the sensor. For a light sensor, this lits the red LED built
into the sensor making it less sensitive to the lighting conditions of
the surroundings.

passivate() Deactivates the sensor turning off the LED.

int readValue() Reads the current sensor value. Only valid, if the sensor is activated.

As for the motors, the Sensor class provides three static instances (S1, S2, and S3) of
itself corresponding the the three inputs of the RCX-box.

The sensor value may be polled at regular intervals by the program or a specific value
may be waited for using the Poll class described in Section 3.5.

3.4 Buttons

The buttons of the RCX-box are accessible through a Button class. Operations are
provided to test whether a button is pressed and to wait for a press-and-release. For
details, see the LeJOS API-documentation.

7

3.5 Awaiting Events

Very often, a thread should wait for a certain external event to happen before it can
proceed. This should not be accomplished by busy waiting since it may use up all CPU-
power. Rather LeJOS provides a simple mechanism in which the virtual machine polls
the sensors and buttons at regular intervals (currently every 3 ms) and wakes up any
thread that waits for certain input values to change. The mechanism is provided through
the class Poll. An instance of Poll has the operation:

int poll(int m, int t) Waits for change of the inputs given by the bitmaskm. t is a
timeout value in milliseconds with t = 0 disabling timeout.
The return value indicates which inputs have changed.

The class provides constants defining the various bit masks, e.g. SENSOR2_MASK.

Reading sensors only when they change may drastically reduce processor usage. For
example, waiting for Sensor 2 to drop below the value 72, may be implemented by:

Poll e = new Poll();

while (Sensor.S2.readValue() >= 72) { e.poll(Poll.SENSOR2_MASK,0);}

As an alternative to the polling mechanism, events may be awaited by providing event
listeners as known from full Java. For the current assignment, however, this mechanism
is not recommended. Details may be found in the LeJOS API-documentation.

3.6 LCD Display

The LCD display of the RCX-box can be used to write numbers and simple strings. To
access the display, an LCD class is given. It may come in handy for debugging purposes.
For details see the LeJOS API-documentation.

3.7 Timing

The current time in terms of milliseconds elapsed since start of the virtual machine is
read by the standard operation long System.currentTimeMillis(). The resolution of
this clock is currently 3 ms. Note that LeJOS does not support operations on long.
Hence these have to be casted to int to be operated upon.

A thread may delay itself for n milliseconds by calling Thread.sleep(n). Again the
granularity of the timing is 3ms.

8

4 The LEGO System

4.1 Controlling the LEGO System

You will be asked to write a program which controls a version of the baggage sorting
facility built in LEGO. This program must be written in Java and work under LeJOS.

The Feed Belts and the Distribution Belt are controlled by motors. All the devices in
the LEGO system are connected to a single LEGO RCX brick in the following manner:

Device RCX port

Feed Belt 1 Motor A
Feed Belt 2 Motor B
Distribution Belt Motor C
Sensor 1 Sensor 1
Sensor 2 Sensor 2

The sensors must be activated (which turns on their built-in light) before being read.
This is e.g. done for Sensor 1 by the call Sensor.S1.activate(). The sensor value can
then be read by Sensor.S1.readValue()

For the timings of the system to apply, the feed belts and the distribution belt must be
set to run at a constant speed of 5 and stopped by stop().

4.2 An Example Program

In this section we show a program, SingleSort.java, which is a small example of how
to write Java programs for the LEGO RCX brick under LeJOS. The program works for
the given LEGO system but can only sort bags for one check-in at a time.

The main program sets the motor speed and starts up a thread for each feed belt passing
its motor and sensor objects as parameters. Each Feeder thread starts is feed belt and
awaits that a bag passes its sensor. When this happens it waits for 0.8 seconds and then
reads the colour of the bag. It then advances the bag further to the middle of section b)
where it decides whether to stop or not. If the current direction of the distribution belt
fits the destination of the bag, it just lets the bag continue. Otherwise the thread stops
the feed belt, waits sufficently long time for the last bag to have left the distribution
belt, changes the direction of that and starts the feed belt again. Concurrently, the main
thread waits for a press on the RUN-button to stop the system.

import java .lang .System;
import josx .platform .rcx .*;

class Feeder extends Thread {

static final int BLOCKED = 70, YELLOW = 60, BLACK = 48;

Motor myMotor;
Sensor mySensor ;

public Feeder(Motor m, Sensor s) { myMotor = m; mySensor = s; }

9

public void run () {
try {

final boolean closeToA = (myMotor == Motor.A);
final int myMask = closeToA ? Poll .SENSOR1_MASK : Poll .SENSOR2_MASK ;

Poll e = new Poll ();
int done = (int) System.currentTimeMillis (); // When last bag is through

myMotor.forward ();

while (true) {
// Await arrival of a bag
mySensor .activate ();
while(mySensor . readValue () > BLOCKED) { e.poll(myMask ,0); }

Thread.sleep (800); // Wait for colour to be valid

boolean destA = (mySensor .readValue () > BLACK); // Determine destination
mySensor .passivate ();

Thread.sleep (2000); // Advance beyond sensor
if (Motor.C. isForward () != destA) { // Must stop

myMotor.stop ();
int now = (int) System.currentTimeMillis ();
if (now < done) Thread.sleep(done -now);
Motor.C. reverseDirection ();
myMotor.forward ();

}

done = ((int) System.currentTimeMillis ()) + 6000;
if (Motor.C. isForward () != closeToA) done = done + 6000; // Long path

Thread.sleep (1200); // Follow to end of feed belt
}

} catch (Exception e) { }
}

}

public class SingleSort {

static final int BELT_SPEED = 5; // Do not change

public static void main (String [] arg) {
Motor.A.setPower (BELT_SPEED);
Motor.B.setPower (BELT_SPEED);
Motor.C.setPower (BELT_SPEED); Motor.C.forward ();

Thread f1 = new Feeder(Motor.A, Sensor.S1); f1.start();
Thread f2 = new Feeder(Motor.B, Sensor.S2); f2.start();

try{ Button.RUN. waitForPressAndRelease();} catch (Exception e) {}
System.exit (0);

}
}

This program only works if bags arrive at one check-in at a time and with a proper
separation. Here the program uses the activation light to inform the operator that a
new bag may be put on the feed belt (provided the sensor is clear). The program waits
until the previous bag has reached the end of the feed belt before allowing a new bag.

10

5 The Assignment

You are expected to model the baggage sorting system using the simple control strategy
provided by the SingleSort program and verify that bags on one feed belt are correctly
and efficiently sorted.

[In the follow-up assignment option you will be asked to design and implement your own
control strategy catering for both feed belts and verify that it sorts correctly.]

Specifically you must accomplish the following tasks:

1. Model the physical system (i.e. the LEGO construction) in UPPAAL.

2. Model the given simple control program SingleSort.java (see 4.2) in UPPAAL.

3. Formalize and verify the following properties:

• Bags are delivered at the right destination.

• Every bag is eventually delivered.

• No collisions take place (when the system is properly used).

• No bumping occurs. [Although not possible in this assignment given the
separation of bags when a single feed belt is used, the property should be
formulated and verified.]

• While a bag is turning (in section c), neither the feed belt nor the distribution
belt is stopped or reversed. [This is a precondition for the timings to be valid.]

• The distribution belt is never stopped or reversed when it carries a bag.
[Another timing precondition.]

• Any further erroneous behaviour that you may have identified does not occur.

For the given program, these properties should hold when only one of the check-
ins is used and bags are put on the feed belt only when i) the feedbelt is moving
forward, ii) section a) is clear of other bags, and iii) the sensor is active.

4. Demonstrate that some of these properties may fail to hold (or erroneous conditions
occur), when bags are allowed to arrive at both check-ins.

5. Show that he system mail fail to sort correctly if the colour of the bag is read
within one of the uncertainty zones shown in Figure 2. [In the given program, you
may change the two first sleep periods to 1500 and 1300 respectively preserving
the stop position at the middle of section b).]

6. Determine by analysis the minimum and maximum handling time (from arrival
to delivery) for both yellow and black bags arriving at Check-in 1 and use the
UPPAAL model to validate these numbers by showing appropriate properties.

7. [Optional, see below]
The timings used in the SingleSort.java program are not tight. Determine by
analysis the best worst-case bag handling time that can be achieved by adjusting

11

the timings of the program (i.e. the sleep/timeout periods, not the program struc-
ture) and validate this in UPPAAL. Of course, the system should still sort bags
correctly.

8. [Optional, see below]
Show that the system (with the given non-optimal timings) will work correctly
when the check-ins are used one at a time with at proper inactivity period when
switching from one check-in to another. Determine by analysis the minimum in-
activity duration needed and validate this using UPPAAL.

9. [Optional, see below]
In the given program, the bags are stopped in the middle of section b) and are
separated by at least 4.0 seconds. Analyze whether another stop position might
allow bags to be entered with less separation time and demonstrate your finding
using UPPAAL verifications.

10. [Optional, see below]
Make a green version of the system (with the given timings) such that the distri-
bution belt stops if no bags are checked in for some period. State and verify this
property on a UPPAAL model of the modified system. Also, a corresponding Java
implementation must be made and handed in.

11. [Optional, see below]
Enable simultaneous check-in at both feed belts. The solution should be as sim-
ple as possible and might be very inefficient. The solution must be modelled in
UPPAAL with a corresponding implementation in Java (both to be handed in).
Verify that the solution works in UPPAAL and test the implementation using the
simulator.

Each group member must choose exactly one of the optional task 7.–11. and carry this
one out on his/her own. The choices of a group must be distinct, i.e. no two members
should do the same optional task.

The work must be described in a report as detailed in Section 8.

6 Modelling Guidelines

Physical Model

You should start by modelling the physical system (i.e. the Lego version of the sorting
facility). The purpose of the physical model is to enable verification of a variety of
system controllers. Therefore, the model should reflect both the intended behaviour of
the system as well as relevant undesired behaviour. In other words, the model should
allow for things to go wrong such as stopping the Distribution Belt prematurely etc.

You may consider the following monkey test : Assume that the RCX brick is replaced by
a monkey controlling the outputs (presumably in an arbitrary way). What could happen

12

in the physical system? Does your model cater for that?

Erroneous Behaviour

Beware that you should not (and cannot) model any conceivable behaviour in all details.
First of all, you may decide that certain control possibilities should not be modelled at all.
E.g. you may assume that the speed settings of the motors is always fixed (corresponding
to a setting of 5).

For other control aspects you may need to limit the control behaviour for which the
model will work correctly. For instance, you may constrain the possible control solutions
by making the (very reasonable) assumption that it makes no sense to move the feed
belts backwards. If they ever are, this should be considered erroneous (control) behaviour
and it should be verified that the actual controller never attempts to do so.

In task 3. above, two instances of erroneous behaviour have already been identified in
order to rely on the timings and avoid uncertainty in the model:

• While a bag is turning (in one of the c-sections) neither the relevant feed belt nor
the distribution belt must be stopped.

• Once a bag is on the distribution belt, it should not be stopped nor reversed.

In the report you must discuss and identify which further control behaviour you consider
erroneous and explain how you have checked that such behaviour does not occur.

Environment

The physical model should also comprise an environment/user component that reflects
the assumptions you make on the use of the system — e.g. when bags are loaded onto
the feed belts. It may be assumed that the user can observe the activation lights of the
sensors and the occupation of the sensors in order to determine whether a bag may be
entered. The user component should be able to generate different usage scenarios.

The Stop Problem

A particular modelling issue is the (feed belt) stop problem. When a bag is stopped within
some section the feed belt, its precise position cannot be recorded and when resumed, it
should therefore be treated as being somewhere within the section. As discussed at the
lectures, possible modelling approaches are:

• to allow stopping of bags only at specific places at the feed belt

• to use use constant time stop periods (see examples at the project page)

• to use time discretization (with risk of state explosion)

13

For some of these approaches to work, you may have to make usage assumption about
the system, e.g. by allowing at most one bag at a feed belt at any time ensuring this
through the environment/user component.

[Since the SingleSort program uses a fixed stop position, the first option is the obvious
choice for this assignment. If needed by your own control program, you may use another
approach in the optional follow-up assignment.]

Sensors

The two sensors form part of the interface to the control model. Basically it should be
possible for the control model to read a sensor at any time getting a value that reflects
the color of any bag that might be in front of the sensor.

As a first approximation, you may model the sensor as a shared variable set by the bag
while passing.

However, also the activation state of the sensor should be properly modelled in order to
enable the user to react to the activation light of the sensor. Ideally, it should also be
modelled that sensor readings may not be valid when the sensor is inactive.

Motors

Also the three motors form part of the interface to the control model. The current state
of each motor should be accessible for the bags in order to determine their movements.

The motors should not constrain the controller. In particular, it must be possible to
apply any motor command at any time.

Control Model

Once the physical model is satisfactory, you may construct a control model which
should control the physical systems in order to sort the bags. The control model should
represent the SingleSort.java program that will eventually be running on the RCX
brick and must thus be clearly separated from the physical model. For example, the
control model may only refer to information obtained from the sensor readings.

The interface between the physical model and the control model should be asynchronous,
i.e. it must be possible to change the motor settings at any time and it must be possible
to read the sensor values at any time.

If you use channel synchronization at the interface, you must make sure that the above
asynchrony is ensured.

The control model must clearly reflect the structure of the control program: Each con-
current thread should be represented by a UPPAAL process and the control structure
of each thread must be readily recognized in the automaton.

14

The Poll mechanism in LejOS for awaiting events/conditions should not be mimicked
in details, but rather be represented in a more abstract way.

The timeout mechanism used the program (setting the done mark) is not feasible in
UPPAAL. Instead a similar timing effect must be achieved using UPPAAL clocks.

You may assume that the control processes react immediately to changes of
the input values and that sleeping is precise. In reality there will be some
jitter but that will be order of a few milliseconds if the processor is not
heavily loaded (hence no busy waiting!) and may be neglected.

7 Verification Guidelines

In order to make the verification feasible, you should:

• Be sure to avoid variables which may grow without bounds (check!).

• Limit the number of bags considered simultaneously.

• Avoid unnecessary non-determinism, such as allowing bags to enter in arbitrary
order. Alternatively, you may use scalar types for bags as described on the project
page.

• Use properly bounded types for all integer variables.

• Avoid using fine-grained timing. Instead, use conservative time constants based
on a suitable time unit.

• Use committed states for sequences of local actions in the control model.

• You may have to restrict the verification to a finite number of bags (i.e. not re-
cycling them), and perhaps even imposing particular timing constraints on their
check-ins.

If you cannot verify in short finite time (say a few minutes), it is very likely that the
state space has become too large for UPPAAL to handle in the available RAM. You can
follow the memory usage in the tool. Once the machine starts to swap, you might as
well give up.

Try to use some of the verification options or to reduce the state space as indicated
above. If nothing helps, discuss this in the report.

15

8 Report Requirements

Your work on this assignment must be documented by a report. The report should
comprise the following:

• A brief introduction including your work distribution (see below).

• An overview (accompanied by an illustration) of how the various model compo-
nents are divided into a physical and a control part and how the components
interact. Especially the interface between the physical and the control parts must
be specified.

• A description of the physical modelling including:

– The overall modelling principle.

– Your deliberations on difficult modelling issues, in particular the stop problem.

– Identification of control behaviour considered erroneous.

– Your assumptions on the environment/user behaviour.

– Argumentation that the physical model does not constrain the control model.

– Argumentation that the control model does not unrealistically constrain the
physical model.

• A description of your modelling of the simple sorting program — especially how it
reflects the Java program structure and how the program timing has been modelled.

• A description of the your verification attemps and the results of these (whether
successful or not).

• A discussion of the coverage of the verification: Does it cater for specific scenarious
only, or does it cover a more general class of possible uses?

• A description of your findings for the analysis tasks 4., 5. and 6.

• A section for each of the optional tasks describing your deliberations and results.

• A conclusion in which you should summarize your findings of the assignment.

Report Form

The report must be uploaded to the assignment at DTU Learn as a pdf-file.

The report must have a front page identifying the course, the assignment, the group
number, and the participating students.

The report should be consise and preferably not exceed 10–12 pages. To this you may add
appendices. Printouts of your automata and listings of declarations should occur in the
report or as an appendix. Large automata should be presented by making appropriate
excerpts.

Also the UPPAAL model(s) (with queries) and possibly Java programs must uploaded
to DTU Learn in a separate zip-file.

16

General

The report and model files must be uploaded to DTU Learn no later than Friday,

March 22, 2024 at 23.59.

Please note:

• There should be an introductory section declaring the contributions of the partici-
pants to the various parts of the work and the report. Each group member must
be the sole contributor to one of the optional tasks. Otherwise contribution may
be (evenly) shared among the participants. By participating in the group upload,
you agree to this declaration.

• Any collaboration with other groups on smaller parts of the assignments must be
declared and clearly identified. Collaboration on major parts is not acceptable.

• Any undeclared use of others’ work is strictly prohibited.

• If you for some (very good) reason cannot meet the deadline you must contact
HHL in due time before the deadline. Any excess of the deadline will be taken into
account for the assessment.

Also note that amendments and practical details will be put on the project page found
via the course home page. You should consult this if you encounter problems.

17

