
02157 Functional programming Michael R. Hansen
DTU Compute

November 14, 2023

Exercises: Week 11

This exercise set consists of 2 problems:

Problem 1 is the second problem from the exam set from May, 2022.

Problem 2 is the fourth problem from the exam set from May, 2022.



Problem 1

The functions skipWhile and takeWhile from the List library could have the following
declarations:

let rec skipWhile p = function

| x::xs when p x -> skipWhile p xs

| xs -> xs;;

val skipWhile: (’a -> bool) -> ’a list -> ’a list

let rec takeWhile p = function

| x::xs when p x -> x::takeWhile p xs

| _ -> [];;

val takeWhile: (’a -> bool) -> ’a list -> ’a list

Notice that the F# system automatically infers the types of these functions.

1. Give an argument showing that (’a -> bool) -> ’a list -> ’a list is the most
general type of takeWhile. That is, any other type for takeWhile is an instance of
(’a -> bool) -> ’a list -> ’a list.

Let diff5 be declared by:

let diff5 n = n<>5;;

2. Give an evaluation of the expression skipWhile diff5 [2;6;5;1;5;6]. Use the nota-
tion e1 ⇝ e2 from the textbook and include at least as many steps as there are recursive
calls.

3. Describe what takeWhile and skipWhile compute. Your descriptions should focus on
what they compute, rather than on individual computation steps.

4. Consider each of the above declarations and explain briefly whether the considered
function is tail recursive or not. If you encounter a function that is not tail recursive,
then provide a declaration of a tail-recursive variant with an accumulating parameter
for that function.



Problem 2

Consider now binary trees where leaf nodes (constructor Leaf) carry characters:

type T = Leaf of char | Branch of T*T

The figure below shows a tree t0 of type T containing three characters: ’a’, ’b’ and ’c’.

Branch

Leaf

’a’

Branch

Leaf

’b’

Leaf

’c’

A tree t is called legal if any character occurs at most once in t and t contains at least 2
characters. Thus, t0 is a legal tree.

1. Make an F# value for the tree t0 shown above and declare a function

toList: T -> char list

that gives the list of characters occurring in a tree. The sequence in which the characters
occur in the list is of no significance.

2. Declare a function legal t that can check whether a tree t is legal.

We assume from now on that trees are legal and consider the so-called Huffman coding
for characters in a given tree t, where a code ds = [d1; d2; . . . ; dn] (type Code) is a list of
directions denoting a path from the root to a leaf in t.

type Dir = | L // go left

| R // go right

type Code = Dir list

type CodingTable = Map<char, Code>

For example, the codes for ’a’, ’b’ and ’c’ in t0 are [L] [R;L] [R;R], respectively.

Furthermore, a coding table (for a given tree) is a map from characters to their codes. The
coding table for t0, for example, has the entries (’a’, [L]), (’b’, [R;L]) and (’c’, [R;R]).

The code for a list of characters cs = [c1; . . . ; cm], given a coding table, is obtained
by appending the codes for the individual characters of cs. For example, the code for
[’c’;’a’;’a’;’b’] is [R;R;L;L;R;L].



3. Declare a function encode: CodingTable -> char list -> Code that gives the code
for a list of characters for a given coding table. The function should raise an exception
if the coding table does not contain a code for some character in the list.

4. Declare a function ofT: T -> CodingTable that gives the coding table for a tree.

We now consider a function to reproduce the character list cs from a code ds on the basis
of the underlying tree t. This function is called decode:

decode: T -> Code -> char list

For example, decode t0 [R;R;L;L;R;L] = [’c’;’a’;’a’;’b’].

It is convenient to use a helper function

firstCharOf: T -> Code -> char * Code

in the declaration of decode.

This helper function decodes the first character of the code and returns that character and
the remaining code. For example,

firstCharOf t0 [R;R;L;L;R;L] = (’c’, [L;L;R;L])

firstCharOf t0 [L;L;R;L] = (’a’, [L;R;L])

firstCharOf t0 [L;R;L] = (’a’, [R;L])

firstCharOf t0 [R;L] = (’b’, [])

5. Give declarations for the functions firstCharOf and decode.


