
02157 Functional programming Michael R. Hansen
DTU Compute

November 1, 2023

Exercises: Week 10

This exercise set consists of 3 problems:

Problem 1 is the second problem from the exam set from May, 2021.

Problems 2 and 3 are the third problem and fourth problem from the exam set from
December, 2021.

Problem 1

The function countBy from the List library could have the following declaration:

let rec ins x = function

| (y,n) :: ys when x=y -> (y,n+1)::ys

| pair :: ys -> pair::ins x ys

| [] -> [(x,1)];;

ins: ’a -> (’a * int) list -> (’a * int) list when ’a : equality

let rec cntBy f xs acc = match xs with

| [] -> acc

| x::rest -> cntBy f rest (ins (f x) acc);;

cntBy: (’a -> ’b) -> ’a list -> (’b * int) list -> (’b * int) list

when ’b : equality

let countBy f xs = cntBy f xs [];;

countBy: (’a -> ’b) -> ’a list -> (’b * int) list when ’b : equality

where ins and cntBy are helper functions. Notice that the F# system automatically infers
the types of ins, cntBy and countBy.

1. Give an argument showing that

’a -> (’a * int) list -> (’a * int) list when ’a : equality

is the most general type of ins and that

(’a -> ’b) -> ’a list -> (’b * int) list -> (’b * int) list

when ’b : equality

is the most general type of cntBy. That is, any other type for ins is an instance of
’a -> (’a * int) list -> (’a * int) list when ’a : equality. Similarly for
cntBy.

An example using countBy is:

countBy (fun x -> x%2) [1 .. 3];;

val it : (int * int) list = [(1, 2); (0, 1)]

2. Give an evaluation showing that countBy (fun x -> x%2) [1 .. 3] evaluates to
[(1,2); (0,1)]. Present your evaluation using the notation e1 ⇝ e2 from the text-
book. You should include at least as many evaluation steps as there are calls of ins,
cntBy and countBy.

Problem 2

Consider the following declarations:

type T = | One of int | Two of int * T * int * T

let rec f p t =

match t with

| One v when p v -> [v] (* C1 *)

| Two(v1,t1,_,_) when p v1 -> v1::f p t1 (* C2 *)

| Two(_,_,v2,t2) -> v2::f p t2 (* C3 *)

| _ -> [];; (* C4 *)

1. Give the type for f and describe what f computes. Your description should focus on
what it computes, rather than on individual computation steps.

Notice that the declaration of f has a match expression with 4 clauses marked C1 to C4 in
comments.

A test description for f consists of

� a value pv for argument p,

� a value tv for argument t,

� the expected value of f pv tv, and

� an enumeration of the clauses that are selected during evaluation of f pv tv. The
order in which clauses are enumerated is not significant. Repeated enumeration of a
clause is not necessary.

2. Give a small number (≤ 4) of test descriptions for f. Together they should ensure that
every clause of f is selected during an evaluation.

Problem 3

A type for so-called tries is defined as a tree type Trie<’a>, where a node carries a value
of type ’a, a truth value, and an arbitrary number of child tries:

type Trie<’a> = N of ’a * bool * Children<’a>

and Children<’a> = Trie<’a> list

Consider the three values t1, t2 and t3 of type Trie<int>:

let t1 = N(0, false, [N(0, false, [N(1,true,[])])]);;

let t2 = N(0, true, [N(0, false, [N(1,true,[])])]);;

let ta = N(1,true,[N(2,true,[])]);;

let tb = N(3,false,[N(0,true,[])]);;

let tc = N(2,true,[]);;

let t3 = N(0,false, [ta;tb;tc]);;

The three values are illustrated as trees in the following figure, where each node carry an
integer value, and a shaded node indicates that the truth value associated with the node
is true. Shaded nodes are also called accepting nodes.

0

0

1

0

0

1

0

3

0

1

2

2

t1 t2 t3

t1 accepts [0;0;1] t2 accepts [0] and [0;0;1] t3 accepts [0;1], [0;1;2], [0;3;0] and [0;2]

A value in a node of a trie is called a letter. For example, trie t3 contains four letters:
0, 1, 2, 3.

A word is a list of letters. Furthermore, a word w is accepted by a trie t if there is a path
from the root of t to an accepting node, so that w equals the list of letters of the nodes of

the path. For example, [0; 1; 2] is accepted by t3 and the tries t1, t2 and t3 accept 1, 2
and 4 words, respectively, as shown in the figure.

1. Declare a function that counts the number of nodes of a trie. For example, t3 has 6
nodes.

2. Declare a function accept w t that can check whether word w is accepted by trie t.
Give the type of accept.

3. Declare a function wordsOf: Trie<’a> -> Set<’a list> that gives the set of words
accepted by a trie t.

Leaves of tries have the form N(v, b, []). Leaves where b = false do not contribute to the
words accepted by a trie and such leaves are called useless.

4. Declare a function that can check whether a trie contains useless leaves.

The degree of a node N(v, b, ts) is the length of the list of children ts. The maximum degree
of all nodes in a trie is called the degree of a trie.

5. Declare a function that computes the degree of a trie.

