02157 Functional programming

Exercises: Week 10

This exercise set consists of 3 problems:

Problem 1 is the second problem from the exam set from May, 2021.
Problems 2 and 3 are the third problem and fourth problem from the exam set from December, 2021.

Problem 1

The function countBy from the List library could have the following declaration:

```
let rec ins x = function
    | (y,n) :: ys when x=y -> (y,n+1)::ys
    | pair :: ys -> pair::ins x ys
    | [] -> [(x,1)];;
    ins: 'a -> ('a * int) list -> ('a * int) list when 'a : equality
let rec cntBy f xs acc = match xs with
            | [] -> acc
    | x::rest -> cntBy f rest (ins (f x) acc);;
    cntBy: ('a -> 'b) -> 'a list -> ('b * int) list -> ('b * int) list
        when 'b : equality
let countBy f xs = cntBy f xs [];;
    countBy: ('a -> 'b) -> 'a list -> ('b * int) list when 'b : equality
```

where ins and cntBy are helper functions. Notice that the F \# system automatically infers the types of ins, cntBy and countBy.

1. Give an argument showing that
'a -> ('a * int) list -> ('a * int) list when 'a : equality
is the most general type of ins and that
```
('a -> 'b) -> 'a list -> ('b * int) list -> ('b * int) list
when 'b : equality
```

is the most general type of cntBy. That is, any other type for ins is an instance of 'a -> ('a * int) list -> ('a * int) list when 'a : equality. Similarly for cntBy.

An example using countBy is:

```
countBy (fun x -> x%%) [1 .. 3];;
    val it : (int * int) list = [(1, 2); (0, 1)]
```

2. Give an evaluation showing that countBy (fun x \rightarrow x $\%$) [1 . . 3] evaluates to $[(1,2) ;(0,1)]$. Present your evaluation using the notation $e_{1} \rightsquigarrow e_{2}$ from the textbook. You should include at least as many evaluation steps as there are calls of ins, cntBy and countBy.

Problem 2

Consider the following declarations:

```
type T = | One of int | Two of int * T * int * T
let rec f p t =
    match t with
    | One v when p v -> [v] (* C1 *)
    | Two(v1,t1,_,_) when p v1 -> v1::f p t1 (* C2 *)
    | Two(_,_,v2,t2) -> v2::f p t2 (* C3 *)
    | _ -> [];; (* C4 *)
```

1. Give the type for f and describe what f computes. Your description should focus on what it computes, rather than on individual computation steps.

Notice that the declaration of f has a match expression with 4 clauses marked C1 to C4 in comments.

A test description for f consists of

- a value p_{v} for argument p ,
- a value t_{v} for argument t ,
- the expected value of $\mathrm{f} p_{v} t_{v}$, and
- an enumeration of the clauses that are selected during evaluation of $\mathrm{f} p_{v} t_{v}$. The order in which clauses are enumerated is not significant. Repeated enumeration of a clause is not necessary.

2. Give a small number (≤ 4) of test descriptions for f. Together they should ensure that every clause of f is selected during an evaluation.

Problem 3

A type for so-called tries is defined as a tree type Trie<'a>, where a node carries a value of type 'a, a truth value, and an arbitrary number of child tries:

```
type Trie<'a> = N of 'a * bool * Children<'a>
and Children<'a> = Trie<'a> list
```

Consider the three values $\mathrm{t} 1, \mathrm{t} 2$ and t 3 of type Trie<int>:

```
let t1 = N(0, false, [N(0, false, [N(1,true,[])])]);;
let t2 = N(0, true, [N(0, false, [N(1,true,[])])]);;
let ta = N(1,true,[N(2,true,[])]);;
let tb = N(3,false,[N(0,true,[])]);;
let tc = N(2,true,[]);;
let t3 = N(0,false, [ta;tb;tc]);;
```

The three values are illustrated as trees in the following figure, where each node carry an integer value, and a shaded node indicates that the truth value associated with the node is true. Shaded nodes are also called accepting nodes.

t1 accepts $[0 ; 0 ; 1] \quad \mathrm{t} 2$ accepts $[0]$ and $[0 ; 0 ; 1] \quad \mathrm{t} 3$ accepts $[0 ; 1],[0 ; 1 ; 2],[0 ; 3 ; 0]$ and $[0 ; 2]$

A value in a node of a trie is called a letter. For example, trie t3 contains four letters: $0,1,2,3$.

A word is a list of letters. Furthermore, a word w is accepted by a trie t if there is a path from the root of t to an accepting node, so that w equals the list of letters of the nodes of
the path. For example, $[0 ; 1 ; 2]$ is accepted by t 3 and the tries t 1 , t2 and t 3 accept 1,2 and 4 words, respectively, as shown in the figure.

1. Declare a function that counts the number of nodes of a trie. For example, t3 has 6 nodes.
2. Declare a function accept $w t$ that can check whether word w is accepted by trie t. Give the type of accept.
3. Declare a function wordsOf: Trie<'a> -> Set<'a list> that gives the set of words accepted by a trie t.

Leaves of tries have the form $\mathrm{N}(v, b,[])$. Leaves where $b=$ false do not contribute to the words accepted by a trie and such leaves are called useless.
4. Declare a function that can check whether a trie contains useless leaves.

The degree of a node $\mathrm{N}(v, b, t s)$ is the length of the list of children $t s$. The maximum degree of all nodes in a trie is called the degree of a trie.
5. Declare a function that computes the degree of a trie.

