DTU Compute 11/09 2019
Michael R. Hansen

02157 Functional Programming
Merge Sort: Exercises in connection with Lecture 2
You shall develop a simple version of merge sort, an interesting sorting algorithm that
has an nlogn worst-case execution time. The purpose of this particular exercise is to get
practice in the development of elegant functional programs on lists — not to develop efficient
sorting programs. Furthermore, you should achieve a basic understanding of computations
of recursive functions on lists.

Strive for succinctness and elegance when you solve this problem — it is important that
your programs and program designs can be communicated to other people.

Remarks:
e We shall later in the course study techniques addressing efficiency.

e There are efficient sorting functions in the .NET libraries, for example, List.sort.

The merge sort algorithm can be expressed by a functional composition using two functions:
merge and split, where merge combines two sorted lists into a single sorted list, and split
extracts to lists of almost the same sizes from a given list.

The merge function

A merge of two sorted lists, e.g. merge [1;4;9;12] [2;3;4;5;10;13]) is a new sorted list,
[1;2;3;4;4:5;9;10;12;13], made up from the elements of the arguments.

Declare and test this function so that you are sure that all branches of the declaration
work correctly.
The split function

Declare a function to split a list into two lists of (almost) the same lengths. You may
declare the function split such that

split [zo; @1 20235 .. s xn—1] = ([wo;xe;.. ], [T1;235...])

Declare and test this function so that you are sure that all branches of the declaration
work correctly.



The sort function

The idea behind top-down merge sort is a recursive algorithm: take an arbitrary list s
with more than one element and split it into two (almost) equal-length lists: zs; and zs,.
Sort zs; and zs, and merge the results. The empty list and lists with just one element are
the base cases.

Declare a function for top-down merge sort in F+#.

Test this function so that you are sure that all branches of the declaration work correctly.

Simple performance tests

The function randomList n range (see www.imm.dtu.dk/courses/02157/plan.html) gen-
erates a random list of length n containing integers between 0 and range:

let randomlList n range = let rand = let gen = new System.Random()
(fun max -> gen.Next(max))
List.init n (fun _ -> rand range);;

By use of the toggle #time;; (see Page 203 in the textbook) you can measure the com-
putation time of expressions in the interactive F# environment. It takes, for example, 7
milliseconds (of real time) to sort a list with 30.000 elements using List.sort.

> let xs30000 = randomList 30000 1000000; ;
val xs30000 : int list =
[601720; 623254; 419482; 809447; 974642; 338449; 36665; 883508; ... ]
> #time;;
-—> Timing now on

> List.sort xs30000;;
Real: 00:00:00.007, CPU: 00:00:00.015, GC genO: O, genl: O, gen2: O
val it : int list =

[29; 36; 39; 68; 125; 144; 167; 171; 220; 258; 273; 296; 354; ... ]

Test the running time of your sorting function on lists of sizes 10, 100, 1000, 10000, .. ..
Remarks:
e The problems with stack overflow you most likely ran into with list sizes between

10000 and 100000 can easily be eliminated using the techniques from Chapter 9. The
compiled code will also be much faster when using these techniques.

e The function List.sort is implemented by converting the list to an array and use a
highly efficient in place array-sorting algorithm. This gives a much better algorithm
than the simple one described above (even when the efficiency considerations of
Chapter 9 has been taken into account).


www.imm.dtu.dk/courses/02157/plan.html

