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Motivation

Data fusion of multisource remote sensing and geographic

data for classification purposes, has been an important

research topic for more than a decade

Different types of information from several data sources are

used in order to improve the classification accuracy as

compared to the accuracy achieved by single-source

classification

A major observation in previous research on multisource

classification, is that conventional parametric statistical

pattern recognition methods are not appropriate in

classification of such data
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Motivation

Traditionally, in pattern recognition, a single classifier is used

to determine which class a given pattern belongs to

However, in many cases, the classification accuracy can be

improved by using an ensemble of classifiers in the

classification

In such cases it is possible to have the individual classifiers

support each other in making a decision

The aim is to determine an effective combination method

which makes use of the benefits of each classifier but avoids

the weaknesses
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Multiple Classifier – Diagram
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Bagging

Proposed in 1994 by Breiman

Simple method

m samples randomly and uniformly selected from a sample

set of size m

Done in parallel or series

Uses resampling but not re-weighting

All classifiers have equal weights

Reduces classification variance
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Bagging Algorithm:
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Boosting

AdaBoost proposed in 1995 by Freund and Schapire

Concentrates on difficult samples

Tends to not overfit noiseless data

Reduces classification variance and bias

Done in series

Computationally demanding

Bad performance on noisy data

Requires minimum accuracy of 0.5 for each base

classifier
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AdaBoost.M1 Algorithm:

Input: A training set S with m samples, where
each sample Zj is from class ωj, the base
classifier is I and the number of classifiers is T .
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AdaBoost.M1 Algorithm:

1. S1 = S and weight(Zj) = 1 for j = 1 . . . m (Z ∈ S1)

2. For i = 1 to T{

3. Ci = I(Si)

4. εi = 1
m

∑

Zj∈Si:Ci(Zj)6=ωj

weight(Zj)

5. If εi > 0.5, set Si to a bootstrap sample from S with

weight(Z) = 1 ∀x ∈ Si and goto step 3.

If εi is still > 0.5 after 25 iterations, abort!

6. βi = εi/(1 − εi)

7. For each Zj ∈ Si{ if Ci(Zj) = ωj then

weight(Zj) = weight(Zj) · βi}.

8. Norm weights such that the total weight of Si is m.

9. }
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AdaBoost.M1 Algorithm:

Output: The multiple classifier C
∗.
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Consensus theory involves procedures for combining single

probability distributions to summarize estimates from

multiple data sources (multiple experts).
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Consensus Theory

Consensus theory involves procedures for combining single

probability distributions to summarize estimates from

multiple data sources (multiple experts).

The data from each source are at first classified into a

number of source-specific data classes.

The information from the sources is then aggregated by a

global membership function and the data are classified

according to the usual maximum selection rule into a

number of user-specified information classes.

The combination formula obtained in consensus theory is

called a consensus rule.
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Consensus Theory

Linear opinion pool (LOP):

Cj(Z) =
n

∑

i=1
λip(ωj|zi)

Z =
[

z1, . . . , zn
]

input data vector, p(ωj|zi) source-specific

posterior probability and λi’s (i = 1, . . . , n) source-specific

weights.
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Consensus Theory

Linear opinion pool (LOP):

Cj(Z) =
n

∑

i=1
λip(ωj|zi)

Z =
[

z1, . . . , zn
]

input data vector, p(ωj|zi) source-specific

posterior probability and λi’s (i = 1, . . . , n) source-specific

weights.

Each of the data sources needs to be modeled.

The weights are associated with the sources in the global

membership function to express quantitatively the goodness

of each source.
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Linear Opinion Pool
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Consensus Rules

Logarithmic opinion pool (LOGP):

Lj(Z) =

n
∏

i=1

p(ωj |zi)
λi

or

log(Lj(Z)) =

n
∑

i=1

λi log(p(ωj |zi)).

λ1, . . . , λn are weights which should reflect the goodness of

the data sources.
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Weighting of the Data Sources

Each data source is at first treated separately and classified

using statistical methods.
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Weighting of the Data Sources

Each data source is at first treated separately and classified

using statistical methods.

Weighting mechanisms are needed to control the influence

of each data source in the combined classification.

The weights are optimized in order to improve the combined

classification accuracies.

Both linear and non-linear methods are considered for the

optimization.
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Weighting

The weight selection schemes in consensus theory should

reflect the goodness of the separate input data, i.e.,

relatively high weights should be given to input data that

contribute to high accuracy.
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Weighting

There are at least two potential weight selection schemes:

The first scheme is to select the weights such that they

weight the individual sources but not the classes within

the sources. One such possibility is to give all the

sources equal weights (equal weighting method).

The second scheme is to choose the weights such that

they not only weight the individual sources but also the

classes within the sources. Here optimization can be

performed (optimal weighting method).
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Weighting

In the second scheme, the combined output response, Y ,

can be written as

Y = f(X, Λ)

where X contains source-specific posteriori discriminative

information and Λ corresponds to the source-specific

weights

If f is linear and Y = D is the desired output of the classifier

then it is needed to solve

XΛ = D

where Λ is an unknown matrix.
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Weighting

Λ’s least square estimate, Λlopt, is sought to minimize the

squared error, i.e.

Λlopt = arg min
Λ

‖XΛ − D‖2.

Λlopt is then given by

Λlopt = (XT X)−1XT D

where XT is the transpose of X, and (XT X)−1XT is the

pseudo-inverse of X if XT X is non-singular.
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Weighted LOP
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Weighting

When f in Y = f(X, Λ) is non-linear:

A neural network or a genetic algorithm can be used to

obtain an estimate of f .

The individual source classifiers can be considered to

preprocess the data for the neural networks or the

genetic algorithms.
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Weighting

A neural network or a genetic algorithm can be used to

obtain an estimate of f .
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preprocess the data for the neural networks or the
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If Y = D is the desired output, the process can be
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Weighting

If Y = D is the desired output, the process can be

described by

Λnlopt = arg min
Λ

‖D − f(X, Λ)‖2.

The update equation for the weights of the neural

network is

∆Λnlopt = η‖D − f(X, Λ)‖∇Λf

where η is a learning rate.
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Optimized LOP
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Experiments

Two multisource geographic and remote sensing data sets

were classified

Colorado Data Set

Anderson River Data Set

Bagging and boosting was performed in Waikato

Environment for Knowledge Analysis (WEKA)
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Classifiers

Minimum Euclidean Distance (MED)

Maximum Likelihood (ML)

Conjugate-Gradient Backpropagation (CGBP)

Linear Opinion Pool (LOP)

Logarithmic Opinion Pool (LOGP)

Bagging

Boosting (AdaBoost.M1)
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Classifiers

Bagging

Boosting (AdaBoost.M1)

Decision Table

j4.8 (An implementation of the C4.5 decision tree)

1R (Classification based on one feature)
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Colorado Data Set

Classification was performed on a data set consisting of the

following 4 data sources:

Landsat MSS data (4 spectral data channels).

Elevation data (in 10 m contour intervals, 1 data

channel).

Slope data (0-90 degrees in 1 degree increments, 1 data

channel).

Aspect data (1-180 degrees in 1 degree increments, 1

data channel).
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Colorado Data Set

Class # Information Class Training Test

Size Size

1 Water 301 302

2 Colorado Blue Spruce 56 56

3 Mountane/Subalpine Meadow 43 44

4 Aspen 70 70

5 Ponderosa Pine 1 157 157

6 Ponderosa Pine/Douglas Fir 122 122

7 Engelmann Spruce 147 147

8 Douglas Fir/White Fir 38 38

9 Douglas Fir/Ponderosa Pine/Aspen 25 25

10 Douglas Fir/White Fir/Aspen 49 50

Total 1008 1011
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Colorado Data Set – Training
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Colorado Data Set – Test
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Colorado Results

All multiple classifier schemes show improvement over

single classifiers

Highest training accuracies using AdaBoost on j4.8
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Colorado – Test accuracies
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Anderson River Data Set

Six data sources were used:

Airborne Multispectral Scanner (AMSS) with 11 spectral

data channels (10 channels from 380 to 1100 nm and 1

channel from 8 to 14 µm).

Steep Mode Synthetic Aperture Radar (SAR) with 4 data

channels (X-HH, X-HV, L-HH, L-HV).

Shallow Mode SAR with 4 data channels (X-HH, X-HV,

L-HH, L-HV).

Elevation data (1 data channel, where elevation in

meters = 61.996 + 7.2266 * pixel value).

Slope data (1 data channel, where slope in degrees =

pixel value).

Aspect data (1 data channel, where aspect in degrees =
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Anderson River – Data Set

Class # Information Training Test

Class Size Size

1 Douglas Fir (31-40m) 971 1250

2 Douglas Fir (21-30m) 551 817

3 Douglas Fir + Other Species(31-40m) 548 701

4 Douglas Fir + Lodgepole Pine (21-30m) 542 705

5 Hemlock + Cedar (31-40m) 317 405

6 Forest Clearings 1260 1625

Total 4189 5503
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Anderson River – Training
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Anderson River – Test
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Anderson River Results

Bagging with j4.8 is more accurate than
consensus theoretic classification

AdaBoost gives higher accuracies than
bagging
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Anderson River Results
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Conclusion

Multiple classification generally improves on
single classification in terms of accuracies

Adaboost with well selected base classifiers
was the most accurate method in
experiments
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