

 Medical Image Analysis, Ph.D course

 Project : Find & track leucocytes

 Institute : IMM

 Teacher : Milan Sonka

 Authors : Michael Lund, s012499
 Lars A. Conrad - Hansen, s022897

 Course period : 20/10/02 – 24/10/02

____________________ ____________________

Introduction :

The project we were assigned to solve was based on five raw-data sequences, which
displayed blood vessels and their circumferential tissue. Our task was to identify and
track the leucocytes passing through the respective vessels.
In order to complicate things, each image was contaminated with two dark shadow-like
blobs under which the leucocytes could hide; on top of that, the vessels shifted their size
and shape within the individual sequences, which was especially apparent in sequence
three (figure 1).

Figure 1 : Sample image

The writing on the bottom of each image didn’t make things any easier either, so we
didn’t have any shortage of obstacles. Besides that, the images were noisy and the gray
level of the leucocytes changed from frame to frame.

All relevant code can be inspected in the appendix.

Angle of Attack :

The first objective of the project was to extract the region of interest (the lumen) on
which we then afterwards could focus on.
There are many ways to extract the blood vessel in the sequences given, manual,
automated, or semiautomated methods. We decided to try to develop an automated
method to extract the lumen. When developing an automated method, is it important that
the method is robust. We therefore spent quite a lot of time examining different ways to
extract the lumen. We looked into gray level threshold, variance threshold, morphological
operators, filters and edge detectors. Several of the methods looked interesting, but the
single most interesting image analysis tool seemed to be the good old threshold
technique.
One of the most apparent features of the lumen is the lower gray level values and more
homogenous distribution of pixel intensities. In general the lumen is ‘darker’ than the
area outside the lumen. Especially the 2 dark blobs are significant darker than the
surroundings and lay in the lumen or close to it, in all 5 sequences. It could therefore be
tempting to these blobs as guides, but to our knowledge these blobs cannot in general be
expected to lie next to the lumen. Our preliminary trials had shown us that a rough
outline of the lumen could be achieved by thresholding the variance of the image (20*20
neighborhood), but we decided to use the gray level intensities instead.

The grainy multi-structural appearance of the tissue outside the lumen persuaded us to
use a morphological filter, which, when we tested it later against other filtering methods,
provided the best results, since it also enhanced the edges of the vessel by closing some
of the gaps. The filter consisted of an erosion followed by two dilations and finally
another erosion.

The thresholding was accomplished using the algorithm for optimal thresholding, which
initially takes four ‘almost’ arbitrary pixel values as background, whereas the rest of the
image is regarded as object (these points are only almost arbitrary, since they should be
situated in the vicinity of the respective corners of the image in order to insure stable
results). At the next step, the means for the background as well as the object gray-level
values are computed using

 µ t
B =

pixelsbackground

jifbackgroundji

−
∑ ∈

#

),(),(; µ t
O =

pixelsobject

jifobjectsji

−
∑ ∈

#

),(),(

from which the threshold

 T(t+1) =
2

t
O

t
B µµ +

is calculated. This procedure is iteratively repeated until T(t+1) = T(t).

In MATLAB code the filter was constructed
using the imerode and imdilate functions; applying
the filter on top of the thresholding procedure, pro-
duced the best results

The following two boxes show the implementation of the thresholding algorithm. We
searched for the optimal threshold of each individual image in the respective sequences
and discovered that they only marginally differed from each other within each sequence (
approx. ± 1 pixel !), so we decided to calculate the threshold average, which then was
applied.

imseq = double(im(:,:,num));
imthresh = imseq < thresh;
mask = strel(’disk’,masksize);
trin1 = imerode(imthresh,mask);
trin2 = imdilate(trin1,mask);
trin3 = imdilate(trin2,mask);
trin4 = imerode(trin3,mask);

[r c z] = size(im);
for s = 1:z
 thresh(s) = optimalThresh1(im(:,:,s));
end;

thresh = (sum(thresh))/z

function T = optimalThresh1(im)

[r c]=size(im);
col_c=floor(c/50);
rows_c=floor(r/50);
corners=[im(1:rows_c,1:col_c); im(1:rows_c,(end-col_c+1):end);...
 im((end-rows_c+1):end,1:col_c);im((end-rows_c+1):end,(end-col_c+1):end)];
T=mean(mean(corners));
loop = 0;

while loop == 0

 mean_obj=sum(sum((im > T).*im))/length(find(im > T));
 mean_backgnd=sum(sum((im <= T).*im))/length(find(im <= T));
 new_T=(mean_obj+mean_backgnd)/2;
 if(new_T==T)
 loop = 1;
 else
 T=new_T;
 end;
end;

In order to assess the effectiveness of thresholding followed by filtering, we took the
gradient magnitude of the resulting data and superimposed the results onto their
respective originals.
Figure 2 in the upper half on the next page illustrates this. We didn’ t quite manage to
remove all of the noise yet and there are indentations on some of the plots, due to the
morphological removal of the text.

Figure 2 : Superimposed gradient of the thresholded and filtered images

The following table displays the values for thresholds and mask sizes that produced the
best results when applied on the respective sequences :

Sequence Threshold Morphological mask
1 190 9
2 140 7
3 150 7
5 90 11
6 90 15

The various filter sizes were assessed visually using the function morphfilter(), which is
included in the appendix.

Our next attempt was to isolate the region of interest from the remaining noise. The
initial idea to solve this problem was to employ a graph-searching algorithm, but all the
algorithms we devised were dependent on some sort of initial value to start it. We tried
the different implementations out on the easiest sequence (sequence 1) , and found the
methods too cumbersome to work with, due to the necessity of initializing each
independent graph. Figure 3 displays the resulting regions of interest, where it is
apparent that the results are not exactly stable (especially if we keep in mind that the
easiest sequence was used).

Figure 3 : Extracting the region of interest using graph searching on sequence 1

Some of the graphs were simply cut off or bent inwards where the writing in the original
images was located, and on three occasions the graphs strayed off where they were pulled
into different directions, due to the underlying noise.

The advantages of this method were that no initial values
were needed to start of the search, thus improving the
speed, and that only the truly connected components
resulted as output, ridding us of all the stray values.

Figure 4 : Superimposed extracted regions of sequence 3

[L,t]=bwlabel(trin4);
 [lx1,ly1] = find(L==1);
 maxreg = size(lx1);
 counter = 0;
 for reg = 2:t
 [lx1,ly1] = find(L==reg);
 [a,b] = size(lx1);
 if maxreg(:,1) < a;
 maxreg = size(lx1);
 counter = reg;
 end;
 end;
 if counter == 0
 counter = 1;
 end;
 [lx1,ly1] = find(L==counter);

We then thought of a much more efficient method
by classifying everything that resulted from the
thresholding and filtering as regions, from which
then the largest region was extracted, knowing that
the largest region corresponded to our region of
interest. This procedure was also applied on each
individual image of the respective sequences, using
the function bwlabel().

Figure 5 : First image of sequence 3; left the original, right the extracted region

Figure 4 shows the results of our region extraction on the first 25 images of sequence 3
superimposed on their original images and figure 5 focuses on an individual image and
its region of interest.
The extracted regions still had small holes where the text used to be, and the shadow-like
blobs are not filtered out, but since the leucocytes that we eventually wanted to track,
couldn’ t really be seen underneath those structures anyway, we decided that the results
were good enough and could be used in the next phase of the project.

The next objective was to locate the leucocytes. The leucocytes have the property that
they have pixel values close to the threshold value. When applying the threshold it came
soon apparent that we had a problem with our lumen extraction. With our used method
the border bumps inward when leucocytes lie next to the border. Our method was to
imprecise. We decided therefore to improve our method. We decided to use a snake to
improve our border finding. The snake should be started in the center of the previous
extracted region and expand until it reach the border. An ordinary snake with balloon
force and gradient image energy was therefore used.

The new result was a lot better. Visual inspection showed results close to the true border,
there were however some problems, most of then minor. One of the problems were the
digits in the bottom of the picture, the snake couldn’ t go past the digits. It was therefore
decided to exclude the lower part of the image. In a few of the images there were also
problems with the corners of the snake. There only major problem were with sequence 3,
the snake didn’ t behave good enough to be used in a automated system. In some regions
did the border seem to be to weak.

The next step in the process was to filter out
the region selected by the snake. This was
easily done.

The “only” remaining item is to locate the
leucocytes. Again it was decided to found
the procedure on thresholding with the
previous calculated values.
However this information is not sufficient,
some of the images are contaminated with
long “bright” stripes that to our knowledge
has nothing to do with leucocytes. The
segmented regions were separated into
leucocytes or garbage based on size. Objects
with a large or small (in x or y direction)
size were classified as garbage. Objects with
small area were likewise considered as
garbage.
The last measure is based on the gradient of
the objects. Objects not yet classified as
garbage and having large gradients are
rewarded (classified as leucocytes).

Below are seen some images showing some
of our results. The first 2 images are from
the same frame. The circles are identified
leucocytes and the diamonds are rejected
objects.

The first of the two images are filtered with an average filter. Not only gave this filter
better result, but it made it also easier for us to visual track the leucocytes. The above
result seems okay; the “ objects” in the left part of the image is to our knowledge not
leucocytes. The following results are not as good.

It is apparent from the above results that our method is not good enough. Especially the
object just above the upper dark spot, has a problem, it sort of flicks on and off. Actually
are we not ourselves sure whether the object is a leucocyte or not.

Conclusion

When we started our project we expected that it shouldn’ t take to long time, but we must
we have use more time than expected and there is still room for improvements. One of
the major problems with the sequences is the many artifacts and poor playback quality. It
should however still be possible to achieve much better results.
The procedure for localization of the lumen border can still be improved and should
properly be based on the image gradient (like the snake) either in the form of a modified
snake, level sets or similar methods.

However, the major improvement required is with the leucocyte classification. By using
the gradient information more active and by analyzing the shape of the objects and their
gradients it should be possible to improve the classification. If the classification method
also considers the 3D information, a pretty robust method should derive.

The best result could properly be achieved with a quite different method; a pixel
classification approach were maybe the best solution.

 APPENDIX

 MATLAB Functions

function morphfilter()

close all;
load Test1;
im = Test1; num = 1;
imseq = double(im(:,:,num));
thresh = 190;
imthresh = imseq < thresh;
endloop = 17; % i.e. the max size of the mask
figure
colormap(gray),imagesc(imseq),title(’Original Image’);
for t = 3:2:endloop;
 figure,
 colormap(gray),
 mask = strel(’disk’,t);
 trin1 = imerode(imthresh,mask);
 subplot(2,2,1),imagesc(trin1),title(’A-B’);
 trin2 = imdilate(trin1,mask);
 subplot(2,2,2),imagesc(trin2),title(’(A-B)+B’);
 trin3 = imdilate(trin2,mask);
 subplot(2,2,3),imagesc(trin3),title(’((A-B)+B)+B’);
 trin4 = imerode(trin3,mask);
 subplot(2,2,4),imagesc(trin4),title(’(((A-B)+B)+B)-B’);
end;

function RegionFinder2(filname)

close all;
if nargin == 0
 filname = ’Test1’;
end;

if filname == ’Test1’
 load Test1;
 im = Test1;
 thresh = 190;
 masksize = 9;
elseif filname == ’Test2’
 load Test2;
 im = Test2;
 thresh = 140;
 masksize = 7;
elseif filname == ’Test3’
 load Test3;
 im = Test3;
 thresh = 152;
 masksize = 7;
elseif filname == ’Test4’
 load Test4;
 im = Test4;
 thresh = 90;
 masksize = 11;
else
 load Test5;
 im = Test5;
 thresh = 90;
 masksize = 15;
end;

[r c z] = size(im);
for s = 1:z
 thresh(s) = optimalThresh1(im(:,:,s));
end;

thresh = (sum(thresh))/z

grad = 1;
%autosearch(im,grad,thresh,masksize);
%displaySeq(im);
image_holder = regfind(im,thresh,masksize);

function dummy = regfind(im,thresh,masksize)

[x y z] = size(im);
dummy = zeros(x,y,z);
d = 39;
figure
zsqrt = round(sqrt(z))+1;
for num = 1:z

 %********** morphfilter ******************************

 imseq = double(im(:,:,num));
 imthresh = imseq < thresh;
 mask = strel(’disk’,masksize);
 trin1 = imerode(imthresh,mask);
 trin2 = imdilate(trin1,mask);
 trin3 = imdilate(trin2,mask);
 trin4 = imerode(trin3,mask);

 %************* extracting the largest region *********

 [L,t]=bwlabel(trin4);
 [lx1,ly1] = find(L==1);
 maxreg = size(lx1);
 counter = 0;
 for reg = 2:t
 [lx1,ly1] = find(L==reg);
 [a,b] = size(lx1);
 if maxreg(:,1) < a;
 maxreg = size(lx1);
 counter = reg;
 end;
 end;
 if counter == 0
 counter = 1;
 end;
 [lx1,ly1] = find(L==counter);
 size([lx1,ly1]);
 for k = 1:size(lx1)
 dummy(lx1(k),ly1(k),num) = im(lx1(k),ly1(k),num);
 end;
 colormap(gray),subplot(zsqrt,zsqrt,num),imagesc(dummy(:,:,num)),title(sprintf(’Region #: %i’,num));

end;

return;

function T = optimalThresh1(im)

[r c]=size(im);
col_c=floor(c/50);
rows_c=floor(r/50);
corners=[im(1:rows_c,1:col_c); im(1:rows_c,(end-col_c+1):end);...
 im((end-rows_c+1):end,1:col_c);im((end-rows_c+1):end,(end-col_c+1):end)];
T=mean(mean(corners));
loop = 0;

while loop == 0
 mean_obj=sum(sum((im > T).*im))/length(find(im > T));
 mean_backgnd=sum(sum((im <= T).*im))/length(find(im <= T));
 new_T=(mean_obj+mean_backgnd)/2;
 if(new_T==T)
 loop = 1;
 else
 T=new_T;
 end;
end;

return;

function displaySeq(im)

close all;

[x y z] = size(im);
if z < 30
 fin = z;
 elseif z > 30 & z < 60
 fin = z/2;
 else
 fin = z/4;
end;
fin = 30;
count = 1;
zsqrt = round(sqrt(fin))+1;
figure
for num = 30:60
 subplot(zsqrt,zsqrt,count),colormap(gray),imagesc(im(:,:,num)),title(sprintf(’Im #: %i’,num));
 count = count + 1;
end;

return;

function autosearch(im,gradient,thresh,masksize)

drawgradient = gradient;
[x y z] = size(im);
dummy = zeros(x,y,2);
if z < 30
 fin = z;
 elseif z > 30 & z < 60
 fin = z/2;
 else
 fin = z/4;
end;
zsqrt = round(sqrt(fin))+1;
figure
for num = 1:fin

 %********** morphfilter ******************************

 imseq = double(im(:,:,num));
 imthresh = imseq < thresh;
 mask = strel(’disk’,masksize);
 trin1 = imerode(imthresh,mask);
 trin2 = imdilate(trin1,mask);
 trin3 = imdilate(trin2,mask);
 trin4 = imerode(trin3,mask);

 %***************** Finding the different regions ***

 [L,t]=bwlabel(trin4);

 %************* extracting the largest region *********

 [lx1,ly1] = find(L==1);
 maxreg = size(lx1);
 counter = 0;
 for reg = 2:t
 [lx1,ly1] = find(L==reg);
 [a,b] = size(lx1);
 if maxreg(:,1) < a;
 maxreg = size(lx1);
 counter = reg;
 end;
 end;
 if counter == 0
 counter = 1;
 end;
 [lx1,ly1] = find(L==counter);
 size([lx1,ly1]);
 dummy(:,:,2) = imseq;
 for k = 1:size(lx1)
 dummy(lx1(k),ly1(k),2) = L(lx1(k),ly1(k));
 end;
 subplot(zsqrt,zsqrt,num),colormap(gray),imagesc(dummy(:,:,2));
 if drawgradient == 0
 [dx dy] = gradient(double(trin4));
 gradmag = sqrt(dx.^2 +dy.^2);
 mat1 = gradmag;
 [x1 y1] = find(mat1);
 hold on;
 subplot(zsqrt,zsqrt,num),plot(y1,x1,’b.’);
 hold off;
 end;

end;
return;

function points = makeSnakeMask (im,tres)

numPoints = 80; radius = 15;
filtersize = 15; sigma = 3;

alfa = 0.1; beta = 0.2; imW = 0.6; gamma = 0.1; balloon = 1.2; numIter = 2500;

[a b z] = size(im);

points = zeros(numPoints,2,z);

for imagenr = 1:z
 imagenr

 avimage = convolve2(im(:,:,imagenr), fspecial(’Average’,7) ,’same’);
 center = calcCenter(avimage,tres,11);

 hpimage = highpad(im(:,:,imagenr));

 SnakePoints = CircleSnake(center,numPoints,radius);

 points(:,:,imagenr) = My_IM_Snake(hpimage,sigma,filtersize,SnakePoints,numIter, alfa, beta, gamma, imW,

 balloon,100);

end

function im = highpad(im)

im(1:10,:)= 255;
im(end-10:end,:) = 255;
im(:,1:10) = 255;
im(:,end-10:end) = 255;

function newPoint = My_IM_Snake (bwimage,sigma,filtersize,SnakePoints, numIter, alfa, beta, gamma, imW, balloon, restep)

% Get gauss filterede image and gradient
[gaussImage, imageGrad, dfx, dfy] = gaussFilter(bwimage,sigma,filtersize);

newPoint = SnakePoints;

% The recalculation of the snake
for i = 1:numIter

 [newPoint c a b im ba] = IterateOnce(dfx, dfy, newPoint, gamma, alfa, beta, imW, balloon);
 if (mod(i,restep)==0)
 newPoint = reparameterize (newPoint);
 end
end

end

% Iteration function
% ---
function [newPoint, change, alfaTerm, betaTerm, imageTerm, balloonTerm] = IterateOnce(dfx, dfy, Old, timestep, alfa, beta, imW, balloon)

n = size(Old,1);

temp = [Old(end-1,1) Old(end,1) Old(:,1)’ Old(1,1) Old(2,1);
 Old(end-1,2) Old(end,2) Old(:,2)’ Old(1,2) Old(2,2)]’;

imageTerm = zeros(n,2);
alfaTerm = alfa*(temp(2:end-3,:)+temp(4:end-1,:)-2*temp(3:end-2,:));
betaTerm = beta*(-temp(1:end-4,:)-temp(5:end,:)+4*temp(2:end-3,:)+4*temp(4:end-1,:)-6*temp(3:end-2,:));

for i = 1:n
 x = round(Old(i,1));
 y = round(Old(i,2));
 imageTerm(i,:) = [dfx(y,x),dfy(y,x)];
end

imageTerm = imW * imageTerm;

Nxy = ones(n,1)*mean(Old)-Old;
Nxy = Nxy./(sqrt(sum((Nxy.*Nxy),2))*[1 1]);
balloonTerm = balloon*Nxy;

change = (timestep*(alfaTerm+betaTerm+imageTerm-balloonTerm));
newPoint = max(Old+change,10);

end

% Gaussian filtering
function [gauss, imageGrad, dfx, dfy] = gaussFilter(image,sigma,filtersize)

gauss = conv2(image, fspecial(’Gaussian’,filtersize,sigma),’same’);
[dx dy] = gradient(gauss);
imageGrad = dx.*dx +dy.*dy;
[dfx dfy] = gradient (imageGrad);

end

% reorganize points
function XY = reparameterize (XY)

N = size(XY,1);
XYp1 = XY([2:end 1],:);

dXY = sqrt(sum((XY-XYp1).*(XY-XYp1), 2));
L = sum(dXY);
arc = [0 cumsum(dXY)’];
arcNew = (L/N) * (0:(N-1)) ;
xxxNew = interp1(arc, [XY(:,1)’ XY(1,1)], arcNew,’linear’);
yyyNew = interp1(arc, [XY(:,2)’ XY(1,2)], arcNew,’linear’);
XY = [xxxNew’ yyyNew’];
end

function LeucoTrack2(maskim,orgIm,tres)

[a b z] = size(maskim);

figure(1); movegui(’northwest’);colormap(’bone’)
figure(2); movegui(’north’);colormap(’bone’)

for i = 1:z

 % opsætning
 fcIm = convolve2(double(maskim(:,:,i)), fspecial('Average',5) ,'same');
 fcIm = imerode(fcIm>0,strel('disk',7)).*fcIm;
 corgIm = double(orgIm(:,:,i));

 % baggrund
 tIm = fcIm > 0; tIm2 = (1 - tIm);
 mask = imerode(tIm,strel('disk',7));
 grad = convolve2(my_grad(corgIm).*mask, fspecial('Average',5) ,'same');

 % threshold til de 2 pletter
 tres2 = (min(min(fcIm+tIm2*256))+tres)/2;
 mask3 = imerode(fcIm > tres2,strel('disk',5));

 % isolering af leucocytes
 tIm3 = (fcIm>tres);
 ctIm2 = imdilate(tIm3,strel('disk',3));

 % masker baggrund + pletter ud
 mctIm2 = ctIm2.*mask3.*mask;
 ixIm = (mask.*ctIm2);

 [lim n] = bwlabel(ixIm);

 for w = 1:n
 lw = (lim==w);
 [x y] = find(lw);

 difx=max(max(x))-min(min(x));
 dify=max(max(y))-min(min(y));
 sx = size(x,1);
 if (difx<30 & difx>4 & dify<30 & dify>4 & sx > 100 & sum(sum(lw.*grad))*size(x,1)>10000)
 center = [center;mean(x) mean(y)];
 else
 reject = [reject;mean(x) mean(y)];
 end
 end

 figure(1), imagesc(fcIm);title(i);axis off % masked image
 figure(2), imagesc(corgIm);title(i);axis off; % original image

 if n > 0;

 if size(center,1)>0
 figure(1);
 hold on; plot(center(:,2),center(:,1),'wo','LineWidth',1.5,'MarkerSize',15);hold off;
 figure(2);
 hold on; plot(center(:,2),center(:,1),'wo','LineWidth',1.5,'MarkerSize',15);hold off;
 end
 if size(reject,1)>0
 figure(1);
 hold on;plot(reject(:,2),reject(:,1),'rd','LineWidth',1.5,'MarkerSize',15);hold off;
 figure(2);
 hold on;plot(reject(:,2),reject(:,1),'rd','LineWidth',1.5,'MarkerSize',15);hold off;
 end
 end

 drawnow

 pause

end

function res = my_grad(im)

[dx1 dy1] = gradient(im);
res = sqrt(dx1.*dx1 +dy1.*dy1);

