
Height and Tilt Geometric Texture

Vedrana Andersen1, Mathieu Desbrun2, J. Andreas Bærentzen1,
and Henrik Aanæs1

1 Technical University of Denmark
2 California Institute of Technology

Abstract. We propose a new intrinsic representation of geometric tex-
ture over triangle meshes. Our approach extends the conventional height
field texture representation by incorporating displacements in the tan-
gential plane in the form of a normal tilt. This texture representation
offers a good practical compromise between functionality and simplicity:
it can efficiently handle and process geometric texture too complex to be
represented as a height field, without having recourse to full blown mesh
editing algorithms. The height-and-tilt representation proposed here is
fully intrinsic to the mesh, making texture editing and animation (such
as bending or waving) intuitively controllable over arbitrary base mesh.
We also provide simple methods for texture extraction and transfer using
our height-and-field representation.

1 Introduction

Fig. 1. Examples from our height-and-tilt geometric texture representation. Left: A
lychee fruit scan is modified to wrap the spikes. Middle: Geometric texture applied after
a deformation of the base shape. Right: A synthetic texture over plane is transferred
onto an arbitrary object.

The advent of laser scanners, structured light scanners, and other modalities
for capturing digital 3D models from real objects has resulted in the availability
of mesh with complex geometric details at a wide range of scales. Handling this
geometric complexity has brought numerous challenges. In this paper, we ad-
dress the problem of representation and editing of the finest level details known
as geometric texture. It is important to distinguish this use of the word texture



2 V. Andersen et al.

Fig. 2. Limitations of the height field representation of the geometric texture. Of the
two textures only the left one can be described as the texture superimposed on the a
shape

from texture mapping where an image is mapped onto a shape via parametriza-
tion. In recent years the use of texture mapping has expanded greatly, and one
application of texture mapping is to map geometric texture onto a smooth base
shape by means of height map images. This approach often performs adequately,
but geometric texture such as thorns, scales, bark, and overhangs simply cannot
be described by height fields: a single valued height field is insufficient for these
common types of geometric texture, see Fig. 2.

Tangential displacements could be included alongside normal (height) dis-
placements. However, there is no simple canonical basis in which to encode tan-
gent vectors. To produce a basis one might use the partial derivative of a map
from parameter domain to the surface, or choose one outgoing edge from each
vertex. Unfortunately, these obvious methods are not intrinsic to the shape, re-
quiring either an added parametrization, or an ordering of the edges, and further
editing of the geometric texture may suffer from artifacts accordingly.

To deal with full 3D texture, researchers have proposed cut-and-paste [1] and
example-based [2] methods, as well as approaches that stretch and fit patches
of 3D texture to create complex geometric textures [3]. These methods are also
capable of handling weaved textures, or textures of high topological genus. They
do not, however, offer intrinsic representations of the texture on the surface, but
increase the geometric complexity of the object instead, making use of full-blown
mesh editing methods [4].

Contributions. We propose an intermediate type of geometric texture representa-
tion, compact and practical, offering a compromise richer than displacement field
textures but much simpler than full 3D textures. We will assume that small-scale
surface details are easily separable from the base surface, but are not necessarily
representable as height fields over the base surface. Our representation adds a tilt
field to the conventional height field texture representation, with this tilt field
being stored using one scalar per edge in a coordinate-free (intrinsic) manner. A
resulting height-and-tilt texture model can be used for extraction, synthesis and
transfer of a large family of geometric textures. Additionally, we demonstrate
that dividing a texture into a height field and a tilt field offers new and intuitive
mesh editing and animation possibilities without the computational complexity
associated with global mesh editing methods, see Fig. 1.



Height and Tilt Geometric Texture 3

Related Work. Texture is often an important feature of 3D objects, explain-
ing the abundance and variety of methods proposed to synthesize texture on
surfaces [5–7]. The main goal of most texture synthesis algorithms is to syn-
thesize a texture (color, transparency, and/or displacement) onto an arbitrary
surface resembling a sample texture patch [8, 9]. Common to these methods is
the limitation to textures represented by an image or a scalar displacement field.

While height fields defined over surfaces have been used for many years,
newer and richer representations have only started to appear recently. In [10] for
instance, fur was modeled through the addition of a tangential displacement to
rotate a discrete set of hair strands away from the normal direction. A similar
idea based on vector-based terrain displacement maps to allow for overhangs was
also proposed for gaming [11].

Tangent fields have also recently been used to control texture growth direc-
tions [12, 13]. A convenient, intrinsic representation of tangent vector fields was
even proposed in [14], along with vector field processing directly through edge
value manipulations.

To overcome the limitations of conventional heightfield-based texture repre-
sentations, we model geometric texture as a locally tilted height field over the
base shape. By storing the height field as scalars over mesh vertices (i.e. discrete
0-forms [15]), and storing the tilt field as scalars over mesh edges (i.e. discrete
1-forms), we obtain an intrinsic, coordinate-free representation of fairly complex
geometric textures.

2 Background on Tangent Vector Fields as One-Forms

As we make heavy use of representing tangent vector fields as discrete 1-forms,
we briefly review the mathematical foundations proposed in [15, 14].

From vector fields to 1-forms. From a vector field defined in the embedding
space, one can encode its tangential part t to a surface mesh by assigning a
coefficient cij to each edge eij . This coefficient represents the line integral of the
tangent vector field t along the edge. The set of all these values on edges offers
an intrinsic representation (i.e. needing no coordinate frames) of the tangent
vector field.

From 1-forms to vector fields. From the edge values, a tangent vector field can
be reconstructed using, for instance, a vertex-based piecewise-linear vector field.
The value of the vector field at a vertex is computed from the coefficients of the
incident edges: the contribution of one face fijk (see Fig. 3, left) to the field at
the vertex vi is

tijk(vi) =
1

2Aijk
(cije

⊥
ki − ckie⊥ij) , (1)

where cij and cki are coefficients on edges eij and eki respectively, and e⊥ij and

e⊥ki are edges eij and eki (as 3D vectors) rotated for π/2 in the plane of fijk
(see the discussion about Whitney edge basis functions in [15]). Averaging these



4 V. Andersen et al.

vk

vi

vj

eki

eij

ejk

t

vk

vi

vj

eki

eij

ejk

Fig. 3. Left: The contribution of the face fijk to the tangent field at vertex vi.
Right: Piecewise linear interpolation of the tangent field

contributions from all incident triangles thus provides a 3D vector per vertex of
the mesh.

Least-squares 1-form assignment. The averaging process used in the reconstruc-
tion makes the encoding of vector fields by 1-forms lossy: a piecewise-vector field
converted into a 1-form may not be exactly recovered once converted back. To
provide the best reconstruction of the field from edge coefficients, we do not
compute the edge coefficients locally, but proceed instead through a global least
squares fit. If we store in M the reconstruction coefficients defined in (1) (that
depend only the connectivity and vertex coordinates of the mesh, not on the
tangent vector field), we find the set of edge coefficients C by solving the linear
system

M C = V , (2)

where the vector V contains the coordinates of the input vector field at vertices.
Each vertex contributing three equations while there is only one unknown per
edge, this system is slightly overdetermined (depending on the genus), and solv-
ing it in a least squares fashion yields a very good representation of a tangent
vector field over the triangular mesh with little or no loss.

Tangent vector field reconstruction. To transfer a tangential field from one mesh
to another we need to evaluate the field on arbitrary point of the mesh surface.
For a point P on the face fijk with barycentric coordinates (αi, αj , αk) associated
with vertices i, j and k we get

t(P ) =
1

2Aijk

(
(ckiαk − cijαj)e

⊥
jk + (cijαi − cjkαk)e⊥ki + (cjkαj − ckiαi)e

⊥
ij

)
,

which amounts to evaluating the face contribution to each of the vertices, as in
(1), and linearly interpolating those using barycentric coordinates, as illustrated
in Fig. 3, right.

3 Texture Representation

In the texture representation proposed here, we make the usual assumption
that the finely-tesselated textured object comes from a smoother base shape,



Height and Tilt Geometric Texture 5

onto which a small-scale geometric texture is superimposed without affecting the
topology of the base shape. We will first describe how to establish our discrete
representation before introducing applications.

3.1 Texture Extraction

Given a finely-tesselated textured object, we must first decide what constitutes
geometry (base shape) and what constitutes small-scale texture (displacement
from base shape, see Fig. 4, left). While this is a notoriously ill-posed problem,
many good practical methods have been proposed. In fact, any approach that
proceeds through a smoothing of the textured surface while minimizing the tan-
gential drift throughout the process is appropriate in our context. For example,
a few steps of mean curvature flow [16] provides a good vertex-to-vertex corre-
spondence between the original textured surface and a smoother version, used as
base shape. For more intricate geometries, a multiresolution smoothing strategy
such as [17] or a spectral approach such as [18] are preferable (see Fig. 4, middle).
Alternatively, defining or altering the base shape by hand might be appropriate
if specific texture effects are sought after or if the condition mentioned in Fig. 4,
left, is significantly violated.

3.2 Pseudo-height and Tilt

From displacements to heights and tilts. With a base shape available, the dis-
placement of vertex vs is simply defined as

d = v0 − vs ,

where vs is a position of the vertex vs on the base (smoother) shape, and v0

is the position of the corresponding vertex on the textured surface (see Fig. 4,
right). Storing this displacement as a vector would require either using three

d

vs

ns

Fig. 4. Left: Geometry texture superimposed on objects’s base shape in form of vector
displacements. The points at the intersections of the textured surface and the base
shape have zero displacements. Middle: One way of obtaining the base shape in case of
non-heightfield texture would be to use the multiresolution hierarchies as in [17] and
trace the points through a sufficient number of levels. Right: The displacement d of
the vertex vs can be described in terms of displacement length and the rotation from
the normal vector



6 V. Andersen et al.

coordinates, or defining and maintaining an explicit two-dimensional local coor-
dinate frame over the surface. Instead we split the displacement into two fields:
a pseudo-height and a tilt, both of which can be represented in a coordinate-free
way based on discrete differential forms [15], [14].

The Pseudo-height field h represents the signed length of the displacement

h = sign(d · ns)‖d‖ ,

where ns is the normal on the surface at vs. Our pseudo-height is thus analogous
to a typical height field, with values sampled at vertices then linearly interpolated
across triangles. However we also define a tilt field: this is a vector field that
defines the tilt (rotation) of the displacement direction with respect to the base
normal direction. More precisely, the tilt t is induced from the displacement d
and the base normal ns as

t =
d

‖d‖
× ns .

Notice that the tilt is a vector in the tangent space of the base shape: its
direction is the rotation axis for a rotation that transforms the displacement
direction into the normal direction and the magnitude of the tilt is the sine of the
rotation angle. Therefore, we encode the tilt using the edge-based discretization
reviewed in Sect. 2. Using the tilt instead of the tangential displacement offers
an intuitive description of the texture: the height truly represents the magnitude
of the displacement, while the tilt indicates the local rotation of the normal field.
We will see that this particular decomposition allows for very simple editing of
geometric textures.

In summary, we converted a displacement field into an intrinsic, coordinate-
free geometric texture representation

texture = (h, t) ,

consisting of two terms, the pseudo-height h stored as a single scalar per vertex,
and the tilt t stored as a single scalar per edge.

Continuity of height and tilt. Notice that if the condition explained in Fig. 4 is
satisfied, our height-and-tilt representation is continuous: the height field van-
ishes when the textured surface crosses the base shape, while the tilt field ap-
proaches the same value on both sides of the surface. However, in practice, one
cannot exclude the possibility of having some points that have displacement
only in tangential direction, which creates a discontinuity in the height field. To
avoid loosing texture information (the “height” of the tangential drift), we use
a non-zero sign function in our implementation.

3.3 Texture Reconstruction

Given a base shape and the height-and-tilt texture representation as described
above, we can easily reconstruct the textured object. The tilt field t is calculated



Height and Tilt Geometric Texture 7

first from the edge coefficients, as explained in in Sect. 2. To obtain the direction
of the surface displacement, we then simply need to rotate the base shape normal
ns around the axis ns × t by the angle α satisfying

sinα = ‖t‖, cosα = sign(h)
√

1− ‖t‖2 .

Our height-and-tilt texture can also be transferred from a source shape to a
target shape. We need to define a mapping between the two shapes and sample
both the height field and the target shape. Typically, such a mapping between
two shapes uses a small number of patches as flat as possible [19], and a map-
ping between each pair of patches is achieved through, for instance, conformal
parametrization of small circular patches. Once such a mapping has been es-
tablished, our pseudo-height field can be copied from source to target through
simple resampling (using, e.g., barycentric coordinates). The tilt can also be
transferred efficiently: for each of the target edges, we sample the edge at a
number of locations (5 in our implementation), evaluate the tilt vector field (as
covered in Sect. 2) at these samples from the map we have between the source
and the target, and integrate the dot product of the linearly interpolated vector
field over the edge.

Fig. 5 and 6 show three examples of transferring a non-heightfield texture
patch to the target mesh by the means of simple resampling.

Fig. 5. The texture of the scanned lychee fruit (edited to achieve the whirl effect, left)
is extracted from the base shape (middle) and transferred to the base shape of the
avocado fruit (right)

4 Applications

We present two types of applications of our height-and-tilt texture representa-
tion. For editing and animation, the shape of the object is held constant while
the texture on the shape is altered; for deformation and resizing, the shape is
deformed and the texture is simply reapplied to it.



8 V. Andersen et al.

Fig. 6. The synthetical texture (left) transferred to the shape of an avocado (middle)
and to the shape of a lychee fruit (right)

4.1 Editing and Animation

Our height-and-tilt texture representation is amenable to a number of simple
editing functions. Height and tilt fields can be modified together or separately,
which results in new possibilities for geometric texture editing and animation.
For instance, we can simulate the effect of spikes swaying on the surface (as if
moved by the wind) by changing the texture fields in time. Fig. 7 demonstrates
a few examples, such as set tilt, which fixes the tilt of the texture; wrap, which
wraps (bends) the texture spikes; and wiggle, which creates a wave-like effect on
the spikes. While these operations may not be visually relevant on all textures,
they are very effective on spiky textures.

4.2 Deformations and Resizing

Combined with base shape deformation, our representation can also handle a
wide range of effects. Fig. 8 exhibits some of the benefits of our approach, where
a non-purely height field texture is extracted using a given base shape. The base
shape is then deformed, and the texture can be added back in a realistic way.
However, since our representation is normal-based, it will still exhibit distortion
artifacts for severe bending (i.e. large compared to the scale of the texture).
The simplicity of our method cannot (and in fact, is not designed to) handle
very complex shape deformation that much more costly Laplacian-based editing
methods can [20]. Nevertheless, it alleviates the limitations of height field texture
methods while keeping their computational efficiency. In an another example
shown in Fig. 9 the base shape has been scaled, but the height-and-tilt texture
representation preserves the size and shape of the texture elements.

5 Discussion and Conclusion

We presented a height-and-tilt texture representation to efficiently encode and
process small-scale geometric textures over fine meshes. As an extension of



Height and Tilt Geometric Texture 9

Fig. 7. An example of simple operations on height-and-tilt fields. Left to right: A tilt-
free texture, set tilt operation, wrap operation and wave operation. Up to down: The
effect on 2D synthetic texture for two different parameters, on 3D synthetic texture,
and on a scan of a lychee fruit for two different directions



10 V. Andersen et al.

Fig. 8. Our texture representation allows us to extract the texture of the tentacle stick
using a (given) base shape. After bending the shape, we can reapply the texture to
the shape. On far right is the result of applying the space deformation directly to the
textured shape. Notice on the enlarged detail that our method does not deform texture
elements

Fig. 9. The original tentacle stick and its (given) shape, left up. The shape is then
resized (grown by the factor of 1.5 on right, shrunk to half size on left down) and the
texture is put back on it. Due to the texture elements being represented as heights and
tilts the size and the shape of the tentacles is not significantly affected by resizing



Height and Tilt Geometric Texture 11

heightfield-based textures, they share their simplicity (texture editing is achieved
only via local computations) and and their intrinsic nature (i.e. they are coordinate-
free). Thanks to the added tilt field, a rich spectrum of geometric textures can
be stored, edited, animated, as well as transferred between surfaces.

One has to bear in mind some of the present limitations of our method.
Firstly, we rely on existing methods to separate texture from geometry. As our
notion of texture is richer than the usual height field approach, it is likely that
better methods to provide base shapes can be derived. Second, since our repre-
sentation is normal based, the texture extraction can be sensitive to the smooth-
ness of the base shape. This can be addressed by additional smoothing of the
normal field of the base shape prior to texture extraction in our implementation.
Additionally, storing the tilt in the tangent field may be, for some applications,
inappropriate if the tilt field does not vary smoothly over the surface. To be
more robust to non-smoothly varying tilt fields, we utilize the fact that tilt field
has maximal magnitude one and constrain the least squares system (2) so that
an edge coefficient is not larger than the edge length.

The obvious extension of height-and-tilt texture representation is to synthe-
size (grow) geometric texture on arbitrary meshes, possibly using the tilt field to
control the direction of the growth. Another future endeavor could be to inves-
tigate whether we can provide a high fidelity geometric texture with fewer base
vertices through field and surface resampling.

Also note the our texture representation is simple enough that a GPU im-
plementation would be fairly easy, allowing for real-time animation of objects
displaced with non-heightfield geometric texture or, perhaps more importantly,
a system for real time editing of 3D objects with complex geometric texture.

Acknowledgments. This research was partially funded by the NSF grant CCF-
0811373.

References

1. Sharf, A., Alexa, M., Cohen-Or, D.: Context-based surface completion. In: SIG-
GRAPH ’04: ACM SIGGRAPH 2004 Papers, New York, NY, USA, ACM (2004)
878–887

2. Bhat, P., Ingram, S., Turk, G.: Geometric texture synthesis by example. In:
SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on
Geometry processing, New York, NY, USA, ACM (2004) 41–44

3. Zhou, K., Huang, X., Wang, X., Tong, Y., Desbrun, M., Guo, B., Shum, H.Y.: Mesh
quilting for geometric texture synthesis. In: SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers, New York, NY, USA, ACM (2006) 690–697

4. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Lapla-
cian surface editing. In: SGP ’04: Proceedings of the 2004 Eurographics/ACM SIG-
GRAPH symposium on Geometry processing, New York, NY, USA, ACM (2004)
175–184

5. Wang, L., Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., Shum, H.Y.: View-
dependent displacement mapping. In: SIGGRAPH ’03: ACM SIGGRAPH 2003
Papers, New York, NY, USA, ACM (2003) 334–339



12 V. Andersen et al.

6. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantiza-
tion. In: SIGGRAPH ’00: Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, New York, NY, USA, ACM Press/Addison-
Wesley Publishing Co. (2000) 479–488

7. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analo-
gies. In: SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, New York, NY, USA, ACM (2001) 327–340

8. Ying, L., Hertzmann, A., Biermann, H., Zorin, D.: Texture and shape synthesis
on surfaces. In: Proceedings of the 12th Eurographics Workshop on Rendering
Techniques, London, UK, Springer-Verlag (2001) 301–312

9. Wei, L.Y., Levoy, M.: Texture synthesis over arbitrary manifold surfaces. In:
SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, New York, NY, USA, ACM (2001) 355–360

10. Angelidis, A., McCane, B.: Fur simulation with spring continuum. The Visual
Computer: International Journal of Computer Graphics 25 (2009) 255–265

11. McAnlis, C.: Halo wars: The terrain of next-gen. Game Developers Conference
(2009)

12. Praun, E., Finkelstein, A., Hoppe, H.: Lapped textures. In: Proceedings of ACM
SIGGRAPH 2000. (2000) 465–470

13. Magda, S., Kriegman, D.: Fast texture synthesis on arbitrary meshes. In: EGRW
’03: Proceedings of the 14th Eurographics workshop on Rendering, Aire-la-Ville,
Switzerland, Switzerland, Eurographics Association (2003) 82–89

14. Fisher, M., Schröder, P., Desbrun, M., Hoppe, H.: Design of tangent vector fields.
In: SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, New York, NY, USA, ACM
(2007) 56

15. Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational
modeling. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, New York, NY,
USA, ACM (2006) 39–54

16. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular
meshes using diffusion and curvature flow. In: SIGGRAPH ’99: Proceedings of
the 26th annual conference on Computer graphics and interactive techniques, New
York, NY, USA, ACM Press/Addison-Wesley Publishing Co. (1999) 317–324

17. Kobbelt, L., Vorsatz, J., Seidel, H.P.: Multiresolution hierarchies on unstructured
triangle meshes. Computational Geometry: Theory and Applications 14 (1999)
5–24

18. Vallet, B., Lvy, B.: Spectral geometry processing with manifold harmonics. Com-
puter Graphics Forum (Proceedings Eurographics) (2008)

19. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes.
In: Eurographics conference proceedings. (2002) 209–218

20. Botsch, M., Sumner, R.W., Pauly, M., Gross, M.: Deformation transfer for detail-
preserving surface editing. In: Vision, Modeling and Visualization 2006. (2006)
357–364


