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Abstract

This thesis investigates the use of Markov Random Fields (MRF) for formulating
priors on 3D surfaces represented as triangle meshes. The problem is addressed
by focusing on mesh smoothing, which is of great interest in many applications of
geometry processing, e.g., computer vision and reverse engineering.

Firstly, a mesh-smoothing vertex process is developed. It is a process that
combines a smoothness prior described through MRF with the simple observa-
tion model into MAP-MRF framework. An edge process for detecting features
(ridges) is developed next, where the feature-detecting function allows specifying
the sharpness of the ridge. Lastly, vertex process and edge process are coupled in a
feature-preserving mesh-smoothing method. Smoothing is done by iterative vertex
replacement, using Metropolis sampling and simulated annealing scheme.

Preliminary but promising experimental results are presented, proving the fea-
sibility and demonstrating the use of MRF on triangular meshes. Developed priors
and the optimization methods are discussed, and some possible improvements sug-
gested.
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Preface

For most students the work on the Master’s thesis is a continuation of previous
project or course. I have not followed that pattern. In choosing my project I left
the safety of the regular image grid and the familiar Matlab environment and took
a small step from Image Analysis towards Computer Graphics.

Well, looking back at the past half year, I must confess that the great steepness
of the learning curve was discouraging during the first months, as I had to become
familiar with C++, OpenGL and the GEL framework, and get into a whole new
field of surface modeling. In the mean time the literature has become comprehen-
sible, tools familiar and endless possibilities folded out. Now, a week before the
hand-in date, it feels as if I have just started.

5



6



Acknowledgements

My thanks to Jakob Andreas Bærentzen, Associate Professor, DTU, whose GEL
framework provided the basis for my work, and whose advice helped a lot along
the way.

Many thanks also to Mads Nielsen, Professor, DIKU, for his ideas and sugges-
tions for this thesis; someday I hope to follow up on all of them.

Heartfelt thanks to my project advisor Henrik Aanæs, Associate Professor,
DTU, for his advice, support, and encouragement, and for never showing even
the slightest sign of annoyance when I regretfully did not follow his advice.
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Chapter 1

Introduction

The primary aim of this thesis is to investigate the use of Markov Random Field
(MRF) theory in formulating priors on surface meshes.

Markov Random Fields have been used extensively for solving Image Analysis
problems at all levels. The local property of MRF makes it convenient for modeling
dependencies of image pixels, and the MFRs-Gibbs equivalence theorem provides
a joint probability in a simple form, making MRF theory useful for statistical Image
Analysis. Typical applications include image restoration and segmentation, edge
detection, texture analysis and many more. The majority of these MRF applications
are built on a regular pixel grid, even though MRF theory, in its general form, does
not require regularity of the sites.

The biggest challenge in formulating MRF on triangular meshes is dealing
with the irregularity of the surface mesh – vertices can have a different number
of adjacent vertices, and the distance between the two adjacent vertices can vary.
MRF has not yet found its application in the field of 3D mesh modeling, and some
formulations described in this thesis are modeling experiments.

Two processes are developed in this thesis. First, the vertex process utilizes a
smoothness prior based on absolute mean curvature and a likelihood function to
smooth the mesh in MAP-MRF framework. Second, the edge process is a feature-
detecting MRF, which is based on edge sharpness and the support from neighboring
edges. Those two processes are then coupled together, so that the vertex process
smooths, but not across the feature edges of the edge process — the labels returned
from the edge process are used as the weights for the vertex process.

The primary aim of the thesis is addressed by focusing on mesh smoothing be-
cause it is easy to see the effects of the priors in this setting. Besides, as the use
of the geometry scanning devices increases, efficient mesh-smoothing algorithms
that can be used for denoising the acquired data are highly desirable. Models ac-
quired by geometry scanners are often noisy and require smoothing before further
processing. To remove the noise while preserving the features is not a trivial prob-
lem.

In the next chapter, Related Work, the brief overview of the current state in
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14 CHAPTER 1. INTRODUCTION

the field of mesh smoothing is presented. Chapters 3 and 4, Markov Random
Field Theory and Optimization, introduce the theory and terminology of MRF, to-
gether with the optimization scheme which is used throughout the work. Chapter
5, Markov Random Fields on Surface Meshes, sets the basis for the work described
in following chapters. In Chapter 6, Mesh Smoothing, different smoothness priors
are is developed and compared. The results of using the developed priors are pre-
sented in Chapter 7. Chapter 8, Feature Detection, outlines the formulation of the
feature-detecting function, with the result and discussion following in Chapter 9.
The smoothness prior and feature detecting function are in Chapter 10, Feature-
Preserving Mesh Smoothing, combined into feature-preserving mesh smoothing
scheme. Chapter 11 contains more of the experimental results. Chapter 12 sug-
gests some possible improvements and extensions of the developed model and the
final chapter offers some concluding remarks.

The implementation of the smoothing algorithm was done in C++ using the
GEL framework, which contains a half-edge data structure for representing triangle
meshes. No special care has been taken to make the implementation as efficient as
possible, the focus being put on flexibility and transparency. The analysis of the
results was done in Matlab, and Matlab was also used for analysis of some smaller
issues that occurred along the way.

By the end of the project, quite a large collection of images and movies was
produced. Some of them, together with the C++ and Matlab code, may be found
online athttp://www.itu.dk/people/vedrana/smooth. The electronic version (can be
practical for a more detailed inspection of the images) of this report is also available
there.



Chapter 2

Related Work

Mesh-smoothing algorithms have a long history in the field of geometry process-
ing. In [Taubin, 1995] a linear and isotropic technique is proposed, as a gener-
alization of frequency-domain image filtering. The diffusion process that uses a
geometry flow analogy[Desbrunet al., 1999] is introduced next. Both techniques
are efficient, but fail to distinguish between noise and features of the underlying
object.

To address this problem, anisotropic diffusion[Desbrunet al., 2000] and dif-
fusion smoothing of the normal field[Tasdizenet al., 2002] are proposed. The
results are impressive, but the computation complexity puts a limit on the size of
the model. More efficient methods are also proposed, such as non-iterative feature-
preserving smoothing[Joneset al., 2003] based on robust statistics, and an adapta-
tion of bilinear filtering to surface meshes[Fleishmanet al., 2003]. More recently,
in [Diebelet al., 2006] Bayesian approach is presented using the smoothness prior
and the conjugate gradient for optimization. Methods here are feature-preserving,
but without an explicit feature detection scheme.

The method for recovering feature edges proposed in[Atteneet al., 2005] is
based on the dual process of sharpening and straightening feature edges. Vertex-
based feature detection using an extension of the fundamental quadric is utilized in
a smoothing method described by[Jiao and Alexander, 2005].

Comprehensive study on the use of Markov Random Field theory for solving
Image Analysis problems can be found in books by[Li, 2001] and[Winkler, 2003].
Markov Random Field theory is convenient for addressing the problem of piece-
wise smooth structures. In[Geman and Geman, 1984] a foundation for the use of
MRF in Image Analysis problems is presented in an algorithm for restoration of
piecewise smooth images, where gray-level process and line processes are used.
Some of the other applications of Markov Random Fields for problems involving
reconstruction of piecewise smooth structures include[Diebel and Thrun, 2005],
where high-resolution range-sensing images are reconstructed using weights ob-
tained from a regular image. In[Hartelius and Carstensen, 2003] a coupled MRF
is used for locating grids with possible cracks in the structure. In[Sunet al., 2003]
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16 CHAPTER 2. RELATED WORK

a stereo matching problem is addressed by three coupled MRFs modeling piece-
wise smoothness and occlusion.

The only example of applying MRF on 3D meshes is presented in[Willis et al.,
2004], where MRF are used as deformable 3D models for surface sculpting. The
potentials used for sculpting control the deformation of the surface by modeling
elasticity and plasticity and are as such quite different then the smoothness priors
developed here.

This work investigates the possibility of formulating surface priors in terms of
MRF, and using those priors for reconstructing the surface from the noisy date.
In particular, a prior for piecewise smooth surface has been developed and suc-
cessfully used for feature-preserving mesh smoothing. Unlike most other mesh
smoothing algorithms, this approach does not only preserve sharp ridges, but also
explicitly detects the ridges. This makes it possible to expand the model by defin-
ing the prior on the surface ridges.

The method described here is not automatic, and calls for an estimation of
a considerable set of parameters. However, this allows a great control over the
performance of the priors.



Chapter 3

Markov Random Field Theory

The content of this chapter is almost entirely adopted from[Li, 2001] and is pre-
sented here in condensed form as an introduction to the theory and the terminology
of MRF.

3.1 Sites and Labels

Many problems can be posed in terms of sites and labels, where the solution to a
problem is a set of labels assigned to sites. This involves a discrete set of sites

S= {1, . . . ,m}

and a set of labelsL. A label is an event that may happen to a site. Depending on
the problem at hand, a label set may be continuous or discrete.

The labeling problem is to assign a label from the label setL to each of the sites
in S. The set

f = { f1, . . . , fm}

is called a labeling of sites inS. This can be regarded as a mapping fromS to L

f : S→ L, f (i) = fi .

Typical use of MRF in Image Analysis problems are image restoration and
smoothing, where the image pixels take the role of the sights, and labels are con-
tinuous or discrete pixel values. A labeling would then be any assignment of pixel
values to pixels. Similarly, an edge detection in an image could be posed as assign-
ing a label from a set{edge, non-edge} to image pixels.

Sites on a lattice, as for example image pixels, are considered spatially regular.
The sets of sites that do not present spatial regularity are considered irregular. In the
remainder of the thesis we deal with irregular sets of sites, which contain vertices
or edges of 3D meshes.

In the terminology of random fields, a labeling is also called a configuration.
In Image Analysis, a configuration or labeling can correspond to an image or an
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18 CHAPTER 3. MARKOV RANDOM FIELD THEORY

edge map. The set of all possible configurations is called the configuration space
Ω. The cardinality of configurations space is

|Ω|= |L|m ,

wherem is the size ofS. For the discrete labeling problem withmsites andM labels
there exist a total number ofMm possible configurations. Among all labelings,
there are only a small number of them which are good solutions and maybe just a
few that are optimal in terms of a certain criterion. Defining the optimal solution
and finding it are two important topics in the optimization approach to labeling.

3.2 Neighborhood System and Cliques

To develop MRF theory we need to define spatial dependencies between sites, and
we do that by choosing a neighborhood system.

A neighborhood system is defined as

N = {Ni |i ∈ S} ,

whereNs is the set of sites neighborings. The neighboring system has the follow-
ing properties:

1. the site is not neighboring itself:i /∈Ni , ∀i ∈ S,

2. neighboring is mutual:i ∈N j ⇐⇒ j ∈Ni , ∀i, j ∈ S.

The neighborhood system induces a symmetric binary relation overS, so for two
sitesi, j ∈ Swe say that they are neighbors ifi ∈N j and j ∈Ni .

The setNi is typically defined as a collection of sites within a certain radius
from i. For regular sites (e.g., image pixels) this results in all internal sites hav-
ing neighborhoods of the same size and shape. For irregular sites this results in
neighborhoods of irregular shapes and sizes. Neighborhood system does not need
to be defined in terms of spatial proximity, alternative definitions of neighborhood
can be used, for example, in terms of Delaunay triangulation of the irregular sites.
In the remainder of the thesis we deal with 3D meshes, where the neighborhood
system is defined in terms of mesh connectivity.

A pair (S,N ) defines a graph in the usual sense, whereS contains the nodes
andN determines the links between the nodes according to the neighboring rela-
tionship. A cliquec for (S,N ) is defined as a a complete subgraph of(S,N ). In
other words, cliquec is a subset of sites inS that are all neighbors to one another.

The collection of all cliques is denotedC . Every site defines a single-site
clique; a pair of neighboring sites defines a pair-site clique; a triple of neighboring
sites defines a triple-site clique; and so on. The collections of single-site, pair-site
and triple-site cliques are denoted byC1, C2 andC3 respectively.
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3.3 Random Fields

Let F = {F1, . . . ,Fm} be a family of random variables defined on the set of sitesS,
where each random variableFi takes a value from the set of labelsL. The familyF
is called a random field.

The notationFi = fi denotes the event thatFi takes the valuefi and the notation
(F1 = f1, . . . ,Fm = fm) or F = f denotes a joint event, wheref = f1, . . . , fm is a
configuration ofF . A labeling f of the sites is a configuration ofF , corresponding
to a realization of the field.

For a discrete label set, the probability that a random variableFi takes the value
fi is denotedP(Fi = fi), abbreviatedP( fi). The joint probability is denotedP(F =
f ), abbreviatedP( f ). For a continuous label set we have corresponding probability
density functions.

3.4 Markov Random Fields

A random fieldF is said to be a Markov Random Field onSwith respect toN if
and only if the following conditions are satisfied:

1. positivity: P( f ) > 0,∀ f ∈ Ω,

2. Markovianity:P( fi | fS−{i}) = P( fi | fNi ).

where fS−{i} denotes the set of labels of all sites buti, and fNi denotes the set of
labels at the sites neighboringi.

The Markovianity describes the local characteristics of the random field —
only neighboring labels have direct interaction with each other.

MRF can be specified in terms of the conditional probabilitiesP( fi | fNi ), but
MRF provide no obvious methods for deducing the joint probability from the as-
sociated conditional probabilities.

3.5 Gibbs Random Fields

A random fieldF is said to be a Gibbs Random Field (GRF) onSwith respect to
N if and only if its configurations obey a Gibbs distribution. A Gibbs distribution
takes the form

P( f ) =
1
Z

e−
1
T U( f ) ,

where
Z = ∑

f∈Ω
e−

1
T U( f )

is a normalization constant,T is a constant called the temperature, andU( f ) is the
energy function.
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The energy
U( f ) = ∑

c∈C

Uc( f )

is a sum of clique potentialsUc( f ) over all possible cliquesc. The value ofUc( f )
depends on the local configuration on the cliquec.

P( f ) measures the probability of the occurrence of a particular configuration.
The configurations with lower energy are more probable. The temperature controls
the sharpness of the distribution — when it is high all configurations tend to be
equally probable, while near zero temperature the probability distribution concen-
trates around the global energy minima, see also Figure 4.1.

3.6 Markov-Gibbs Equivalence

An MRF is characterized by its local property (Markovianity), whereas a GRF is
characterized by its global property (Gibbs distribution). The Hammersley-Clifford
theorem[Hammersley and Clifford, 1971] establishes the equivalence of these two
types of properties. The theorem states thatF is an MRF onSwith respect toN
if and only if F is a GRF onSwith respect toN .

The theorem provides a simple way of obtaining the joint probabilityP( f ) by
specifying the clique potential functionsUc( f ). Clique potential functions should
be chosen depending on the desired system behavior, encoding a-priori knowledge
about interactions between labels. Choosing the forms and parameters of the po-
tential functions is a major topic in MRF modeling.

3.7 MAP-MRF Labeling

Bayes statistics is a theory widely used for estimation and decision making.
The probability of the labelingf given the observationd is called the posterior

probabilityP( f |d) and can be evaluated using the Bayes rule

P( f |d) =
p(d| f )P( f )

p(d)
.

The termP( f ) is called the prior probability of labelingf , p(d| f ) is the condi-
tional probability density function of the observationsd, also called the likelihood
function of f for d fixed, andp(d) is the density ofd, also called the evidence.

Whend is given (i.e., the evidence is constant) the Bayes rule can be written as

P( f |d) ∝ p(d| f )P( f ) .

In the maximum a-posteriori (MAP) solutions, as a special case in the Bayes
framework, only the most probable estimate is of interest. The optimal MAP solu-
tion is obtained by maximizing the posterior probability

f ∗ = argmax
f∈Ω

P( f |d) = argmax
f∈Ω

p(d| f )P( f ) .
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In MAP-MRF labeling,P( f |d) is the posterior distribution of an MRF. An im-
portant modeling step in MRF-MAP labeling is to derive the posterior distribution.
The prior is obtained from the prior energyU( f ) for the labeling, which in turn is
a sum of clique potentials. Likelihood distribution can often also be expressed in
terms of likelihood energy

p(d| f ) ∝ e−U(d| f )

leading to the posterior probability

P( f |d) ∝ e−U( f |d) ,

where
U( f |d) = U(d| f )+U( f )

is the posterior energy.
The MAP estimate is then equivalently found by minimizing the posterior en-

ergy function
f ∗ = argmin

f∈Ω
U( f |d) .

The procedure of the MAP-MRF approach summarized in[Li, 2001] is also
followed in the presentation of the mesh-smoothing MRF process presented later.
The summary is:

1. Pose a labeling problem as a discrete or continuous, on a regular or irregular
set of sites, and chose an appropriate MRF representation off .

2. Derive the posterior energy to define the MAP solution to a problem in the
following four steps:

• Define a neighborhood systemN onSand the set of cliquesC for N .

• Define a prior clique potentialsUc( f ) to giveU( f ).

• Define the likelihood energyU(d| f ).
• Add U( f ) andU(d| f ) to yield the posterior energyU( f |d).

3. Find the MAP solution.

In the above summary, the prior model depends on the output that we expect
and the likelihood model depends on physical considerations such as the sensor
noise. The parameters on both models have to be specified, manually or automati-
cally. An optimization algorithm for finding the MAP solution needs to be chosen,
where the main issues are the quality and the efficiency.
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Chapter 4

Optimization

After the modeling is done and energy function described, the remaining problem
is to find the optimal solution. A variety of local and global optimization methods
exist. This chapter briefly presents only the optimization method used here and
only in it’s most general form. In Section 6.7, after the mesh-smoothing prior is
defined, optimization is re-visited to discuss specific mesh-smoothing issues.

4.1 Metropolis Sampler

The Metropolis sampler is a random sampling algorithm, which generates a se-
quence of configurations from a probability distribution using a Monte Carlo pro-
cedure. The sampling scheme is:

1. randomly initializef ,

2. for i ∈ Sdo

(a) let f ′i′ = fi′ for all i′ 6= i, choosef ′i ∈ L at random,

(b) replacef by f ′ with probability p = min{1,P( f ′)/P( f )}, whereP is
the given Gibbs distribution,

3. repeat 2.N times.

At each step, a new configurationf ′ is chosen by randomly changing only one
label. The new configuration is accepted according to the Metropolis criterion.
Metropolis criterion assures that the new configuration will be accepted as soon as
it has a higher probability. Still, even with a smaller probability the new config-
uration has a chance of being accepted, depending on the ratioP( f ′)/P( f ). This
allows the algorithm to leave the local energy minima.

Looking at the Metropolis criterion for accepting a less probable configuration,
and using Gibbs distribution we obtain the following probability of acceptance

p =
P( f ′)
P( f )

= e−
1
T (U( f ′)−U( f )) ,

23
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whereU is the potential of the configuration. This is function of the energydiffer-
enceand the temperatureT.

To investigate the role of the temperatureT, we look at the case when

∆U = U( f ′)−U( f ) > 0

which means that the new configuration results in a higher energy.
For a limit ofT → ∞ the probability of accepting the new configuration

p = e−
1
T ∆U

approaches 1, and the Metropolis sampler reduces to the random sampler, accept-
ing any new configuration regardless of its energy. But asT falls, p also falls, and
for T → 0 it approaches 0, so no increases in the energy are accepted.

To summarize, ifT is large, many ‘bad’ moves are accepted, and a large part
of configuration space is accessed, while for smallT mostly ‘good´ moves are
accepted and the sequence of samples will converge towards the local energy min-
imum. It is this property that allows the use of the Metropolis sampling as the
optimization method.

4.2 Simulated Annealing

Simulated annealing is a stochastic optimization algorithm that simulates the phys-
ical annealing process of melting and then slowly cooling to achieve the optimal
energy configuration. The annealing algorithm is:

1. randomly initializeT and f ,

2. do

(a) randomly samplef underT,

(b) decreaseT,

3. repeat 2. untilT → 0.

A random search method, such as Metropolis sampler, is used to locate next
configuration. The random search is controlled by the temperatureT. In the sim-
ulated annealing scheme theT is initially high and thengradually decreased, to
minimize the risk of the algorithm being trapped in local energy minima.

High initial temperature allows a large part of the configuration space to be ex-
amined. Gradually decreasing the temperature limits the amount of allowed ‘bad´
moved, slowly reducing the part of the configuration space that gets examined.

For a particular logarithmic cooling scheme it is proven that the system con-
verges to minimal energy[Geman and Geman, 1984]. This scheme is unfortunately
too slow for practical applications, but other cooling schemes also produce good
results.
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Figure 4.1 illustrates the effect of decreasing the temperature for a constructed
energy function. For a high temperature the probability distribution is almost uni-
form, while for low temperature it concentrates around the minimum of the energy
function.

Figure 4.1: The effect of decreasing the temperature on the probability distribu-
tion. Right: A constructed energy function.Left: Corresponding Gibbs probabil-
ity distribution for temperatureT = 5, T = 1 andT = 0.2 (from top to bottom).
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Chapter 5

Markov Random Fields on
Surface Meshes

This chapter sets the basis for the work that follows. An idea for defining MRF
in terms of mesh connectivity is discussed first, followed by a section covering the
few assumptions about the meshes dealt with here.

5.1 Triangular Meshes

The surface meshes considered in this thesis are triangular meshes. A comprehen-
sive coverage of the geometric modeling based on triangle meshes is presented in
[Botschet al., 2006].

A triangle meshM consists of geometric and a topological component. The
topology of the mesh can be represented by a set ofm vertices

V = v1, ...vm

and a set of triangular faces connecting them

F = f1, ..., fk , fi ∈V×V×V ,

where each triangle specifies its three vertices fromV. However, it is often more
efficient to represent the connectivity of a triangle mesh in terms of the edges of
the respective graph

E = e1, ...,el , ei ∈V×V .

The geometric embedding of a triangle mesh intoR3 is specified by associating
a 3D positionv to each vertexv ∈ V, so each facef ∈ F actually represents a
triangle in 3D space, specified by its three vertex positions.

An important topological characterization of a surface is whether or not it is
two-manifold, which is the case if for each point the surface is locally homeomor-
phic to a disk (or a half-disk at boundaries). Two-manifold mesh does not contain
the edges that belong to more than two triangles or the vertices that belong to two
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surface sheets. A two-manifold mesh also does not self-intersections, so a property
of being two-manifold also depends on the geometric embedding of the mesh.

5.2 Markov Random Fields on Triangular Meshes

Defining MRF on surface meshes is straightforward if one uses mesh connectivity
to define the MRF neighborhood. Different possibilities are discussed here.

On the bottom line, methods based on MRF deal with labeling the set of sites to
minimize the potential of site cliques. When defining MRF on the surface meshes,
the MRF site can be assigned to the any basic entities of a triangular mesh —
vertices, edges or faces. The vertex and edge process are indeed explored in this
thesis; it is also easy to imagine a useful face process.

Further more, because of the mesh connectivity, equivalent energies can be
obtained by building MRF on different mesh entities. For example, the potential of
3-clique of vertices can equivalently be expressed as the potential of mesh face, and
the potential of 2-clique of vertices as the potential of an edge. This allows some
flexible notation, as it will be used later in the text. The MRF sites will therefore
be assigned to those entities, which we will change or label.

When wanting to smooth the mesh, an immediate approach is to do it by mov-
ing the vertices, so a MRF should be built on the mesh vertices. Alternatively, it
could be done by smoothing the normals of the faces and using those to reconstruct
a smooth surface. This approach has not been followed here.

The next modeling decision involves defining the neighborhood system for the
sites, and the logical choice is to employ the connectivity information of the surface
mesh (and therefore ensuring to stays on the surface). The main implementational
advantage of this approach is obvious: with an efficient mesh data structure, con-
nectivity provides direct access to neighbors.1 However, one has to bear in mind
that such model is generally dependent on the mesh quality, element density and
mesh regularity, so these issues should be addressed when modeling.

The biggest challenge in formulating MRF on triangle meshes is dealing with
its irregularity. A vertex can have a different number of adjacent vertices, and
an edge can have a different number of adjacent edges (it is only faces that show
some regularity there). As a result, for example, one can not directly compare the
potentials corresponding to two vertices.

It is possible to imagine alternative neighborhood systems. For example, the
neighborhood based on spatial proximity, which would reduce the surface mesh
back to a point cloud.

Despite the simplicity and the flexibility of the formulation, MRF has not yet
found its application in the field of 3D mesh modeling. Still, many concepts used

1Sometimes one needs to distinguish between two meanings of the wordneighbor: neighbor in
a MRF sense or neighbor in the terms of mesh connectivity. I used the expressionsadjacentand
incident when describing the mesh connectivity, so the wordneighborwas used mostly in MRF
sense.
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in Image Analysis have over time been generalized and applied to mesh surfaces;
MRF will surely follow.

5.3 Assumptions

Throughout this thesis only the two-manifold meshes are considered. All of the
noise-free meshes used as underlying true surface in the testing of the developed
algorithms meet this assumption. However, after adding a noise it sometimes hap-
pened that the noisy mesh contained self-intersections and was therefore not two-
manifold any more. Nothing special was done with this, even though it is, for
example, clear that such a mesh could not be a result of a point cloud triangulation.

Furthermore, it is assumed that the mesh has a correct topology and triangu-
lation, so that the edges of the triangular mesh follow the ridges of the sampled
surface. Based on this assumption we do not consider the topology changes of the
mesh (e.g., flipping the edge that is traverse to the ridge) although this is likely
to be advantageous in practical applications. Similarity, nothing is done to han-
dle the ‘badly shaped´ triangles. The reason for this is an ambition to isolate the
different effects, and focus only on the effects of developed priors. Of course, the
limited time frame also called for prioritizing. Combining mesh smoothing with
techniques for improving mesh triangulation and mesh quality is a part of a future
work.
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Chapter 6

Mesh Smoothing

The goal of this thesis is to formulate a prior for piecewise smooth surfaces and to
use it for feature-preserving mesh smoothing. Two processes need to be coupled: a
smoothing process defined on the mesh vertices, and an edge process for detecting
discontinuities between the smooth parts. This chapter describes the first process,
mesh-smoothing, where the objective is simply to smooth the mesh, without wor-
rying about preserving features.

The presented model is an MAP-MRF, which combines an MRF smoothness
prior based on absolute mean curvature and a likelihood function based on the dis-
placements from the input mesh. A few alternative formulations of the smoothness
prior are also presented. The mesh is smoothed in an optimization scheme whereby
the positions of the vertices are iteratively changed according to the posterior.

6.1 What is a Smooth Mesh?

There are two general goals of the mesh soothing methods[Botschet al., 2006].
The first goal is denoising measured data. Many meshes acquired by 3D scanners
contain high frequency noise, i.e., small perturbations in the vertex positions. Here,
the goal is to smooth out these artifacts in such a way that the global shape, or the
low frequency component, is preserved. An additional requirement is often the
preservation of certain surface features like sharp edges and corners, which should
not be smoothed.

The other goal of mesh smoothing is the design of high-quality, fair surfaces.
This process is called mesh fairing and the resulting surfaces mush meet certain
aesthetic requirements, put essentially as principle of the simplest shape. An aes-
thetic surface is free of unnecessary details such as noise or oscillations. Mathemat-
ical formulations of this principle often lead to the minimization of certain energy
functionals, often inspired by physical processes such as spanning a membrane or
bending a thin plate.

What do we expect of a mesh smoothing algorithm? Is a perfect cube less or
more smooth than the perfect sphere? Should a smoothing algorithm round the
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sharp edges of a cube?
What we want depends of what we know about the underlying object. If it

has sharp edges, we want them preserved; otherwise, we want the edges to be
smoothed. In the following sections we see that by just changing a energy function
we can obtain different results, in accordance with what we expect of the smoothing
algorithm.

6.2 MRF on Mesh Vertices

The smoothing algorithm should iteratively re-position mesh vertices, in search of
the optimal configuration. The MRF for the smoothing process is therefore built
on the mesh vertices, and the role of the MRF sites is given to vertices. Each mesh
vertex is associated with a MRF site. The random variable (or label) of a vertex
is it’s spatial position. The mesh configuration is any assignment of positions to
mesh vertices.

A short note on the notation: In cases where a distinction is needed between
the vertices and their labels (i.e., spatial positions), the italic font is used for the
vertices and bold face font for the vectors representing the spatial positions of the
vertices. For example,vi is a spatial position of vertexvi , but indices are usedonly
where there is more than one vertex involved in a formula. Assigning a position
to each vertexv from the set of verticesV gives a mesh configurationV. In a
similar fashion, distinction is made between the edgee12 = (v1,v2) and the vector
e12 = v2−v1, but the vectore12 is not a part of the random fields framework.

A smoothness prior will enable the calculation of the smoothness potential for
any mesh configuration. This potential should be expressed as a sum of clique
potentials.

6.3 Smoothness Potential Based on Mean Curvature

Mathematical formulation of mesh fairing leads often to minimization of certain
energy functions, such as curvatures. The initial smoothing algorithm developed
during the work on this thesis is based on minimizing the absolute mean curvature.

The triangle meshes are piecewise linear surfaces and curvature, as well as
other differential properties, is not defined along the edges or at the vertices. How-
ever, if one assumes a triangular mesh to be a piecewise linear approximation of an
underlying smooth surface, the approximation of the differential properties can be
computed directly from the mesh data. A brief overview of different approaches
with this as a goal can also be found in[Botschet al., 2006].

The integral absolute mean curvature at the vertexv, with respect to area at-
tributed to the vertex can then be expressed[Dyn et al., 2001] as

|H̄v|=
1
4 ∑

e∼v
|φe|‖e‖ ,
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wheree∼ v signals that the edgee is incident on the vertexv, ‖e‖ is the length
of edgee andφe is the dihedral angle attributed to the edgee. The dihedral angle
is the angle between the normals of the two faces sharing an edge. The absolute
dihedral curvature ignores the sign of the dihedral angle, treating the convex and
concave angles equally. Illustration of dihedral angles in 2D is shown in Figure 6.1

Figure 6.1: Dihedral angles (angles between the normals) in 2D. Large dihedral
angle signals a sharp turn. Small dihedral angle signals smoothness.

Motivated by the above expression, we want to define the potential of the
smoothness prior as

UV(V) = ∑
e∈E

|φe|‖e‖ , (6.1)

ignoring the constant factor and summing over all non-boundary edges in the mesh
(or usingφe = 0 for the border edges).

This expression is a summation over all the edges, but to fit it into the formal
MRF framework a summation over the cliques of vertices is needed. This is easily
achieved, as it is the positions of four vertices that define a dihedral angle of each
non-boundary edge.

6.3.1 MRF Framework, Neighborhoods and Clique Potentials

The suitable neighborhood for the MRF smoothness prior is defined as follows:
two different verticesv1 andv2 are neighbors if they belong to the faces that share
an edge. This is obviously a well defined neighborhood system. Given a vertex
v of valencyn, the neighborhoodNv of the vertexv is the set containing itsn
adjacent vertices andn vertices that share an opposite edge withv, as illustrated in
Figure 6.2.

For this neighborhood model there are 4 clique types:i) single vertex,ii) an
edge,iii) a triangle, andiv) two triangles sharing an edge. For the smoothness
prior we do not assign any potential to the first three types of cliques, as they do
not provide any information about curvature.

The potential of the 4-clique having the connectivity setting as in Figure 6.3 is
then

UV4(v1,v2,v3,v4) = |φe23|‖e23‖ ,
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v v

Figure 6.2: Left: Changing the position of a single vertexv affects the dihedral
angles of the edges incident to the vertex and the edges opposite to the vertex (all
marked red). The lengths of the edges incident tov are also affected.Right: After
changing the position of the vertexv we need to access its adjacent and opposite
vertices to (re-)calculate the dihedral angles of affected edges; all those vertices
(marked red) form the neighborhood of the vertexv.

whereφe23 is a dihedral angle of the edgee23 = (v2,v3), and‖e23‖ = ‖v3−v2‖ is
the length of the edgee23. Even though it is not explicitly stated in this formulation,
the dihedral angleφe23 is also a function of the positions of verticesv1 andv2 (and
all the positions are given by the labelingV).1

For the setting shown in Figure 6.3, the dihedral angleφe23 is computed as

φe23 = arccos
n123·n243

‖n123‖‖n243‖
,

wheren123 andn243 are normals of the two faces and· stands for the scalar (dot)
product of vectors. The normaln123 is given by

n123 =
(v2−v1)× (v3−v1)
‖(v2−v1)× (v3−v1)‖

,

where× is the vector (cross) product of two vectors. The other normal is obtained
in the same manner.

We can now express the smoothness potential as the sum of potentials of the
4-cliques

UV(V) = ∑
(v1,v2,v3,v4)∈C4

UV4(v1,v2,v3,v4)

and it is indeed equivalent to the formulation of absolute mean curvature.
After this excursion in a formal MRF framework, we will close the full circle

and, because of simplicity of notation, continue using summation over edges, not
the 4-cliques of vertices. In a bit sloppy notation, I will say that the edgee is in the
neighborhoodNv of the vertexv if v is in the 4-clique corresponding to that edge.

1I did attempt to devise the notation with explicit dependencies. It was a kingdom of brackets,
obscure indices and hard-to-read formula. Only the most important dependencies are explicitly stated
here, for example, the clique potential being primarily the function of labeling (i.e., vertex positions).
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v1

v2

v3

v4

Figure 6.3: A 4-clique of vertices. The potential of a 4-clique depends on the
dihedral angle between the normals of the two faces, and the length of the edge
(v2,v3). To get hold of the dihedral angle we need to know the positions of all the
vertices in the clique.

The edge-neighborhood of the vertex is the set of affected edges, as illustrated and
explained in Figure 6.2. Basically the same could be obtained by defining MRF on
mesh faces, and the potential defined here would be a potential of the 2-clique of
faces.

This smoothness potential, based on the absolute mean curvature, depends on
the dihedral angles and the edge lengths. The dependence on the edge lengths
makes it prefer smaller objects — a pure scaling of a mesh would lessen the energy.
This means that the use of this prior could lead to the undesirable shrinking of the
mesh.

When computing the integral mean curvature it is required that the longer edges
contribute more than the shorter ones, but is the dependence on the edge length
also required when smoothing? This question opens the possibility of the alter-
native formulation, with smoothness energy being the sum of dihedral angles. A
comparison of the results obtained by using the two different formulations is in the
results section.

The smoothness prior as defined here served as the basis of most of the work
in this thesis. However, some of the alternative formulations, which are presented
next, have proved to have other desirable properties. The results of using all the
priors are presented and compared later.

6.4 Alternative Formulations of the Smoothness Potential

In all the alternative formulations presented here, as in the original, smoothness
energy is obtained as a sum of potentials over all non-boundary edges (or, equiva-
lently, all vertex 4-cliques, or, also equivalently, two neighboring faces)

UV(V) = ∑
e∈E

f (e) .

The functionf (e) is the evaluation of the smoothness based on the two neighboring
faces, and can be defined in different ways. As everything else remains the same,
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we will look only at this function, which I call for smoothness potential contributed
to an edge, even though it is a function of the position of four vertices.

The first alternative formulation is already mentioned, it is an angle-based po-
tential that does not depend on the edge length

f1(e) = |φe| .

6.4.1 Quadratic and Square-Root Smoothness Potentials

Potentials here are not directly proportional to an angle between the faces that share
the edgee, but are instead functions of the difference between the normals of the
two faces.

Toward the end of the project period the need for a stronger smoothness prior
has emerged – the edge process was taking care of the edges, so a stronger smooth-
ing prior could be applied to the rest of the mesh. I therefore tested the over-
smoothing quadratic potential developed by[Szeliski and Tonnesen, 1992], which
takes the form

f2(e) = ‖n123−n243‖2 ,

wheren123 andn243 are the normals of the faces that share edgee, as in Figure 6.3.
A related feature-preserving square-root prior developed by[Diebelet al., 2006]

was used very successfully for mesh smoothing while preserving features, so I
tested it for comparison. The square-root prior takes the form

f3(e) = ‖n123−n243‖ ,

which is a Euclidean distance in normal space.2

That the quadratic potential is over-smoothing, and the root potential feature-
preserving has been shown by experiment. The intuition behind the performances
of those potentials can also be easily obtained by looking at a simple example,
which also sheds a light on the feature-preserving performance of original angle-
based potential.

To compare the performances of the three priors (quadratic, root and angle
based) we can try to evaluate the different positions of a vertex on the ridge top.
This is illustrated in Figure 6.4 where we look at the 2D problem, corresponding
to the cross section of the surface ridge. Two extreme positions of the vertex con-
necting two slanted lines (which would in 3D correspond to the ridge connecting
two slanted planes) are evaluated. The positionC1 preserves the ridge, while the
positionC2 cuts the top of the ridge. The preference betweenC1 andC2 according
to the three potentials can easily be found by looking at the normals, angles be-
tween the normals and the triangle formed by the tips of the normals, all shown in
Figure 6.4.

2The square-root potential defined here is the root of a quadratic potential, so the names of the
potentials can be misleading. I adapted directly from the original nomenclature.
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α β
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Figure 6.4: Left: A 2D arrangement corresponding to a cross section of the sur-
face ridge. VerticesA andB belong to slanted planes on the opposite sides of the
ridge. VertexC connectsA andB. Two extreme positions of the vertexC are eval-
uated: positionC1 on the top of the ridge; and the positionC2 in between vertices
A andB. Right: The normals, the angles between normals, and the triangle defined
by the tips of the normals, for the two positions of the vertexC: positionC1 results
in only one non-zero angle, the ridge angleγ; positionC2 breaksγ in two smaller
anglesα andβ .

The angle-based potentials operate on the sum of the absolute angles (dihedral
angles for 3D, outer angles for 2D) in the neighborhood, which means that the
choice between positionC1 andC2 depends on the evaluation ofγ andα +β . But,
as we haveγ = α +β , the angle-based potentials are indifferent about positionsC1

andC2. Actually, angle-based potentials are indifferent as long as wa stay in the
triangle4AC1B since the sum of the outer angles around the ridge is always equal
to γ. This means that, in case of the 2D shapes, the square and dodecagon (and
any convex polygon) have the same potential and we can not expect the corners of
the square to be rounded. A potential that rounds the corners should discriminate
between a big angle and two half angles, so one should look for potentials that are
not linear with angle.

The root potential operates on the Euclidean distance between the tips of the
normals, so we look at the triangle defined by the tips of the normals. We have
c < a+b due to the triangle inequality. The root potential prefers one large angle
instead of two smaller, and the positionC1 is preferred. This explains the feature-
preserving properties of the root potential.

The quadratic potential operates on the squared Euclidean distances between
the tips of the normals. Looking at the triangle this time we havec2 > a2 + b2,
an inequality arising from the fact that the triangle in question is obtuse. This
inequality holds always, since the triangle defined by the tips on the normals is
obtuse as long asγ is smaller than 180◦. The quadratic potential will therefore
prefer breaking a largeγ into two smaller angles, cutting off the top of the ridge.

Similar geometric properties, just in 3D, are causing the difference in the feature-
preserving properties of the three potentials. The situation in 3D is, of course, more
complex. Moving just one vertex at the time means that the verticesalongthe ridge
also influence the potential. This influence will make the indifferent angle-based
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potential to actually preserve ridges.
A descriptive comparison of the angle-based, quadratic, square root and the

thresholded potential, which is to be defined next, is found in the Figure 6.5.

6.4.2 Thresholded Smoothness Potential

A thresholded potential was tested in another attempt of achieving feature-preservation
by adjusting the smoothness potential. It takes the simple form of

f4(e) = max(|φe| ,φ0)‖e‖ ,

whereφ0 is some threshold angle. The basic potential used here is curvature-based,
but it could just as well be an angle-based or quadratic potential described above.
The formulation of the potential effectively stops the smoothing of those edges that
are sharper than the threshold.

If one keeps track of the occurrences of edges that reach the smoothness thresh-
old, it will result in classifying edges into low-potential and high-potential. A
thresholded smoothness potential is therefore equivalent to the implicit edge label-
ing.

6.4.3 Comparison of the Four Potentials

In Figure 6.5 the angle-based, quadratic, square-root and the thresholded poten-
tial are compared. The figure brings the plot of the potential functions against the
dihedral angle, and a demonstration of the effect of using those potentials. A corre-
sponding problem in 2D is again used, with two lines meeting at a different slopes,
representing an intersection of two surfaces meeting in a ridge. The potentials of
the connecting point are plotted in different colors.

For the small ridge sharpness, all potentials have similar effect, but as the ridge
sharpness grows, four quite different patterns emerge. It is again confirmed that
angle based formulation is indifferent to the position of the mid-point, as long as
the curve remains concave. The quadratic formulationf2 clearly has the tendency
of over-smoothing sharp corners, while the square root formulationf3 behaves in
a drastically different way, maintaining the big turn and preserving a sharp edge.
The thresholded potentialf4 looks a lot like the square root potential, and has a
strong tendency of preserving, even enhancing, ridges.

To conclude, the choice of the smoothness potential will obviously have influ-
ence on the smoothing performance. If we want the smoothing algorithm to round
the ridges, quadratic potential should be chosen. If we want to preserve the ridges,
the choice should fall on the square-root potential, while using the thresholded
potential allows specifying the angle at which the rounding of the ridge stops.

The results by applying the described potentials on mesh smoothing can be
found in 7.5.
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Figure 6.5: Comparison of the four smoothness potentials.Top to bottom:Angle
potential, quadratic potential, root potential and threasholded angle potential.Left:
Potentials versus the angle.Columns 2–4:Visualization of the corresponding
potentials in 2D for the ridges of different sharpness. Blue color signals the small
potential, red color signals the big potential.
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Figure 6.6: The 2D illustration of the behavior of face normals of the planar
surface when positions of the vertices get perturbed by additive Gaussian noise.

6.4.4 Normals Under Noise

All described smoothness potentials are the functions of the face normals, so a
question about what happens to the mesh normals under noise seemed worth exam-
ining. A distribution that can be approximated by the Gaussian would, for example,
justify the use of the quadratic potential.

A plain surface represented as triangle mesh is considered, so all the face nor-
mals are the same, and all the tips of the normals coincide. We look at the distribu-
tion of the tips of the normals after adding a Gaussian noise to the vertex positions.
The corresponding 2D situation is illustrated in the Figure 6.6.

The tips of the normals lie on the unit sphere, so in general the distribution of
the normals can not be Gaussian. But what happens when the noise is relatively
small compared to the triangle size?

The normal of the face containing verticesv1, v2 andv3 can be computed by

n123 =
(v2−v1)× (v3−v1)
‖(v2−v1)× (v3−v1)‖

.

The denominator in this expression is twice the area of the triangular face.
Assuming the noise small enough that it does not change the area of the triangular
faces, we can consider the denominator to be constant.

As for the nominator, it contains a cross product of two triangle sides. As-
suming the noise small compared to the length of the sides, the result of the cross
product will be normally distributed. The shape of this Gaussian depends on the
shape of the face triangle and can be very elongated or flat, even with the isotropic
vertex noise.

To sum up, for a noise that is small compared to the size of the triangles, the
distribution of the tips of the normals will indeed follow Gaussian distribution.
However, the noise used in the experimental part of this thesis is usually to large
for this assumption to hold.

6.5 Likelihood Function

Applying the smoothness prior should theoretically smooth the mesh until the per-
fectly smooth surface is found. In practical applications we want the output of
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smoothing to relate to the input mesh, which we denote as the initial vertex config-
urationV0.

We assume that the input mesh has an underlying true surface, which was cor-
rupted by the noise of the data-acquisition device. It is the true surface that we want
to recover, having a prior knowledge about it. In the iterative recovery method, the
likelihood function describes the probability of observing the input mesh given the
current candidate configurationV.

In other words, the observation model assures that we do not move too far away
from the input mesh.

Measurement noise is assumed to be isotropic and Gaussian, and therefore the
quadratic function for likelihood energy is chosen

UL(V0|V) = α ∑
v∈V

∥∥v0−v
∥∥2

,

wherev0 denotes the initial position of vertexv in the input mesh. The constantα

is used as the weight determining how much faith one has in the data.
Let me just note that the above can be seen as a contribution of single-vertex

cliques, with clique potential for the labelv being given by

Uv1(v) = α
∥∥v0−v

∥∥2
.

Assuming non-isotropic Gaussian noise, which captures the characteristics of
the sensor (the noise is often elongated along one axis), the likelihood function can
be generalized[Diebelet al., 2006] by applying Mahalanobis distance.

Another possible improvement employed by[Diebelet al., 2006] involves us-
ing the distance fromv0 to the point on the surface defined byV, which is closest
to v0.

6.6 Probability Distributions

After combining the smoothness priors with the observation likelihood, the poste-
rior energy of a mesh vertex configuration takes the form

UPOST(V) = α ∑
v∈V

∥∥v0−v
∥∥2

+ ∑
e∈E

|φe|‖e‖ ,

leading directly to joint probability, which is a Gibbs distribution

P(V) =
1
Z

exp

(
− 1

T
UPOST

)
,

whereZ is a normalizing constant, andT is the temperature, which will play a role
in the optimization scheme.

A curvature based prior is used above, but any other smoothness prior can be
thresholded as well.
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Similarly, the part of the energy affected by the position of the vertexv is given
by

UPOST(v) = α
∥∥v0−v

∥∥2
+ ∑

e∈Nv

|φe|‖e‖

and it leads to conditional probability of the position of vertexv, given its neigh-
borhood

P(v|Nv) =
1
Z

exp

(
− 1

T
UPOST(v)

)
.

6.7 Optimization for Mesh Smoothing

Having defined the model one has to decide on an optimization scheme: How to
find the vertex configuration that maximizes the posterior distribution?

Mesh smoothing is a problem of large dimensionality (even the labels are three
dimensional), and the interaction between the vertices is complex. Instead of mak-
ing any assumptions about the energy function, I applied the Metropolis sampler
with simulated annealing, which was used in many vision-based MAP-MRF appli-
cations[Geman and Geman, 1984], [Hartelius and Carstensen, 2003].

The basic algorithm is already presented in Section 4. Here I describe the issues
specific for the problem at hand.

6.7.1 Metropolis Sampler

The Metropolis sampler works by randomly choosing the new configuration candi-
date and accepting with a certain probability, according to the Metropolis criterion.
As we obtain information about probability distribution by sampling it, it is impor-
tant that those samples are made in the part of the configuration space where the
probability density is high.

Firstly, to ensure reasonably good initial configuration the sampling is started
around the input meshV0, so the input mesh plays two roles: both as the initial
configuration and as a data term.

Secondly, the new configuration candidate should be sampled in vicinity of the
current configuration[Li, 2001]. New configuration candidate is found by chang-
ing a label of a single site, and in this case it means finding a new random position
for a single mesh vertex. To stay in the vicinity of the current configuration, the
new position is sampled according to a Gaussian distribution around the current
position of the vertex

v′ = v+s, s∼ N(0,Σ) .

Initially I used only an isotropic Gaussian, whereΣ = σ2I , andσ is the vari-
ance, but since one is generally more interested in smoothing in the direction of
the normal to the surface, the Gaussian was later on allowed to be elongated in the
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Figure 6.7: For smoothing the mesh we are mostly interested in moving the ver-
tices along the normal direction. The Gaussian distribution used for sampling is
therefore elongated in the direction of the vertex normal.

Figure 6.8: An idea for improving the sampling. In case of the vertex in rela-
tively smooth area we want to sample mostly in normal direction. For vertices
where there is less consensus between the normals of incident faces we want a
less elongated Gaussian. Compare with Figure 6.7.

normal direction

Σ = R

 σ2
N 0 0
0 σ2

T 0
0 0 σ2

T

 ,

whereσN andσT are the variances in the normal direction and in the tangent plane,
andR is the rotation matrix that aligns the direction ofσN with the direction of
the vertex normal. This is illustrated by the corresponding 2D configuration in
Figure 6.7.

Box-Müller transformation, which was used to generate samples from a Gaussian
distribution, is outlined in Appendix A.

The normal to the surface at a mesh vertex is approximated by the angle-
weighted sum of incident face normals[Bærentzen and Aanæs, 2005]

nv =
∑ f φ f nf

∑ f φ f
,

whereφ f is the face angle of facef at vertexv, nf is the normal of facef and the
summation visits all the faces incident tov.
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The sampling algorithm therefore calls for the estimation of the two parameters
σN and σT . Those should be big enough to allow the configuration to change
sufficiently fast, but small enough to allow a lot of updates. The role ofσN andσT

is also discussed later.
The sampling scheme proved very important for the success of optimization.

Figure 6.8 illustrates an initial idea for possible improvement of the sampling
scheme. Vertices in the smooth areas should move mostly in normal direction,
but the vertices in noisy areas of the mesh should be allowed to move in all direc-
tions, i.e., in the direction of the normals of all faces incident tov. So, the idea is
to use the following permutation scheme

v′ = v+
∑ f sf φ f nf

∑ f φ f
, sf ∼ N(0,σ) .

The varianceσ should probably also be adjusted differently for the smooth and for
the noisy areas, and a care should be taken in the case of very sharp corners.

Another sampling issue is the ordering of the update. All vertices should be
updated with the same frequency, but not in some given order to prevent the prop-
agation of configuration in a certain direction. The scheme is used where all the
mesh vertices are updated sequentially in one iteration sweep, but according to the
configuration of thepreviousiteration.

Lastly, it is worth considering whether all moves should be allowed. In most
practical applications the input mesh will be two-manifold, and a two-manifold
output is a requirement. A question can be posed whether it is desirable to in-
troduce self-intersections while heating the system. Simulated annealing should
allow a large part of the configuration space to be examined. However, it is only
a small part of the configuration space that represents the two-manifold mesh, and
the optimization should maybe be limited to those configurations. This would
require not allowing for the moves that introduce self-intersections. To detecting
self-intersection could significantly slow down the smoothing algorithm and would
require the extension of the mesh data-structure.

6.7.2 Simulated Annealing

In a simulated annealing scheme, one starts with a high temperature, which allows a
higher degree of randomness, and gradually cools the system down. The choice has
to be made about the initial temperature, how many iterations are performed at each
temperature, and how much the temperature is decremented at each step as cooling
proceeds. To assure that the system does not get trapped in a local minimum the
initial temperature needs to be set high enough and the cooling should not be too
rapid.

The logarithmic cooling scheme, which was theoretically proven to converge
to minimal energy[Geman and Geman, 1984] is too slow for practical use, so
the faster cooling scheme suggested by[Kirkpatrick et al., 1983] was used. The
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temperatureTi of the i-th iteration is obtained by

Ti = kT(i−1) ,

where the values of the constantk are typically chosen in the range 0.8 – 0.99.
The initial temperature should be such that the first few sweeps of the algorithm

allow for almost all updates[Li, 2001]. This guideline served as basis for the
(optional) estimation of the initial temperature. We know that the probability of
accepting the perturbation is a function of the energy change, so an initial dummy
sweep is preformed where all the vertices get perturbed according to the chosen
sampling scheme. The change of energy for each dummy perturbation is monitored
and the initial temperature is chosen so that even the perturbation with the biggest
increase in energy hasp0 probability of being accepted. This leads to the following
expression for the initial temperature

T0 =−max∆U
logp0

,

where
max∆U = maxU( f ′)−U( f )

is the maximal energy change for all the perturbations of the dummy loop.
The guidelines mentioned here make it easier to chooseT0 andk high enough

for a good annealing scheme, but one also has to consider the running time and
the rate of convergence. Simulated annealing can be rather slow, and to investi-
gate the possibility of applying a local optimization method for mesh smoothing, a
smoothing with a zero temperature was sometimes used.

By smoothing with a zero temperature I consider a greedy optimization scheme
where only nearest local minimum but it’s result can help determine whether gra-
dient descent methods could be used for the problem at hand.

The convergence of the implemented method was not decided by specific con-
vergence criterion; instead I simply let the optimization run for a certain number
of iterations and I monitored the energy and the number of re-positioned vertices.
From the energy plot was is evident that the energy converges as the number of
updated vertices becomes low. This makes it possible to use the number of updates
as convergence criterium. The optimization was usually stopped when only a small
number (a few percent) of the vertices got updated in each iteration.

6.8 Summary

In this chapter I formulated mesh smoothing as a MRF labeling problem on the set
of mesh vertices. Smoothness potential was defined as a sum of the clique poten-
tials, where a clique corresponds to a pair of neighboring faces, and a potential is a
function of dihedral angle.

A number of alternative smoothness potentials was also formulated. All de-
fined potentials are closely related but differ in the evaluation of the smoothness
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from the normals of two neighboring faces. Using analogy with 2D I showed that
the different formulations of smoothness potentials result in different smoothing
properties, e.g., quadratic potential is over-smoothing and square-root potential is
feature preserving.

Smoothness prior was combined with likelihood function into MAP-MRF frame-
work. The optimization method based on the simulated annealing and Metropolis
sampler was presented. The specific issues as cooling schedule and perturbation
scheme were discussed.

In the next chapter I present experimental results of using the smoothing method
described here.



Chapter 7

Mesh Smoothing, Results and
Discussion

In this section I first present one typical mesh-smoothing vertex process and then
analyze the effect of changing input parameters. A discussion on both the modeling
and optimization follows. Lastly, the different smoothness priors are compared and
some possible improvements suggested.

7.1 Typical Smoothing

A small 10×10×10 cube is used as the testing object, since the small size allowed
for many repeated testings. The cube is artificially corrupted by Gaussian noise,
σnoise= 0.3 of the mean edge length, see Figure 7.1. The distance between the
underlying perfect cubes and the noisy cube is also shown in the figure.

To be able to quantify and compare the results, a distance measure between two
meshes is needed. I used the symmetrical vertex-to-surface Hausdorff distance
and symmetrical vertex-to-surface mean error. In short, Hausdorff distance is a
maximum-minimum distance and measures the biggest disparity between the two
surfaces. Mean error measures the mean distance between two surfaces. Those
distance measurements covered in more detail in Appendix B.

The initial temperatureT0 for the typical smoothing was estimated by the dummy
loop. We set the probability of accepting the worst move top0 = 0.5. Annealing
constant was chosen to bek = 0.9, which is a reasonable balance between the qual-
ity and efficiency of optimization. The size of the sampling step was chosen to be
σN = 2σT = 0.1 average edge length. Those are the values usually producing good
result. Finally, the weight of the data termα, was chosen to be 0.1 by trying out a
few different values. The size ofα depends on our faith in data. It also depends on
the average edge length and on the smoothness prior, which makes it hard to give
a general guideline for choosingα.

A few frames from a typical smoothing of a noisy cube can be seen in Fig-
ure 7.2, together with graphs showing the energy minimization and the graph mon-
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distances:
dH = 1.25 (1.10 av.e.l.)
dME = 0.28 (0.24 av.e.l.)

Figure 7.1: Most used testing model, synthetically made 10×10×10 cube(left),
and the same model corrupted with Gaussian noise,σnoise = 0.3 average edge
length(center). Right: Hausdorff distance and mean error between the two mod-
els, expressed also in average edge length of the uncorrupted mesh.

itoring the number of updates. After 10 iterations the mesh is very noisy due to the
high temperature. After 50 iterations the effects of cooling can be seen: the mesh
surface is visibly smoother. After 100 iterations it is even smoother. The result
after 100 and 200 iterations varies slightly, implying convergence.

The number of the updated vertices falls rapidly with the temperature; initially
the most of the model’s 602 vertices were updated, but the number fell under 100
in around 50 iterations. From the plot of the potentials we see initial increase of
energy due to high temperature and a quick convergence. The likelihood potential
increased as the model left the initial configuration, but likelihood contributes very
little to the total potential.

Parameters used for this smoothing are also those that typically produce good
results. In the following section I justify the choice of parameters, and present
a series of tests where each of the parameters is systematically changed until its
influence on the smoothing scheme is visible.

7.2 Parameter Choice

The correct parameter choice is, of course, essential for good results. We can check
the influence of the following parameters:

• T0 andk, initial temperature and annealing constant,

• σN andσT , covariances of the random sampling around a vertex,

• α, weight of the data term.

Let us look at the effect of changing each of these parameters.
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distances,
N = 100:
dH = 0.877
dME = 0.161

distances,
N = 200:
dH = 0.875
dME = 0.157

Figure 7.2: One typical smoothing of a noisy cube. Parameters used: data weight
α = 0.5, initial temperature (estimated by the dummy loop)T0 = 10.3, annealing
constantk = 0.9, sampling stepσN = 2σT = 0.1 average edge length.Top 2 rows:
The mesh configuration for iterations 1, 10, 20, 50, 100 and 200.Bottom left:
The number of updated vertices over time.Bottom center:Potentials over time:
blue — likelihood potential, green — smoothness potential, red —- total poten-
tial. Bottom right:Distance between the outcome mesh and the uncorrupted cube
model after 100 and 200 iterations.
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7.2.1 Cooling Scheme

The cooling schema is tested first. Figure 7.3 illustrates a very slow cooling process
with annealing constantk = 0.99. To allow for the temperature to drop close to
zero, 500 iterations was used. Visually this is the best smoothing result, and the
final energy is also minimal. However, the distance from the uncorrupted cube is
not the smallest. It seems that the high temperature allowed the strongly weighted
prior to take over.

Faster cooling, with the annealing constantk = 0.8, is shown in the Figure 7.4.
The temperature drops faster and so do the number of updated vertices and energy.
Results after 100 iterations are just slightly worse than for the slower scheme.

In Figure 7.5 I tested the annealing to extremes, smoothing with a zero temper-
ature, accepting only those updates that minimize energy, which is clearly visible
in the energy plot. Results are very good — especially the distances.

To wrap up the investigation about temperature we have a smoothing with very
high initial temperature in the Figure 7.6. The number of accepted updates and
energy stays high longer, and the system stays longer time in the mode of randomly
accepting all updates. Eventually the temperature drops and smoothing occurs, but
results are not better than previously.

From the little experiment we can see that simulated annealing helps to find the
low energy and visually smoothest mesh. The results obtained by faster schemes
are slightly worse: high temperature introduces noise, and the system is not given
enough time to recover. Cooling at zero temperature also produced relatively good
result.

7.2.2 Sampling Size

ParametersσN and σT determine the size of the sampling step. Smaller sam-
pling size leads to subtle changes in configuration between iterations, with a larger
number of vertices updated. Bigger sampling size results in fewer and less subtle
changes.

Heuristics provides the general strategy for selecting the size of the sampling
step[Frost and Heineman, 1997], but I based my selection on smoothing perfor-
mance. Good results were obtained with the values aroundσN ≈ 2σT ≈ 0.1 of the
average edge length.

Choosing larger sampling size, as in Figure 7.7, would introduce a lot of noise
during the initial period with large random perturbations resulting in a jumble of
vertices and edges. The increase of likelihood potential is visible on the energy
plot. The system does not recover from the noisy configuration, but some smooth-
ing happens at lower temperatures. Combining big sampling size with zero tem-
perature, in an attempt of eliminating the introduction of noise did helped a bit, see
Figure 7.8.

As demonstrated in Figure 7.9, small sampling size does not allow for enough
movement, vertices make small jumps around the initial positions. The likelihood
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distances:
dH = 1.24
dME = 0.23

Figure 7.3: Very slow cooling, annealing constantk= 0.99. Top 2 rows:Iterations
10, 50, 100, 200, 300 and 500.Bottom: Updated vertices over time, potentials
over time (blue – likelihood, green – smoothness, red – total) and distance to
uncorrupted cube.
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distances:
dH = 0.95
dME = 0.18

Figure 7.4: Faster cooling scheme, annealing constantk = 0.8. Top: Iterations
10, 50 and 100.Bottom:Updated vertices over time, potentials over time (blue –
likelihood, green – smoothness, red – total) and distance to uncorrupted cube.

distances:
dH = 0.81
dME = 0.14

Figure 7.5: Smoothing with a zero temperature,T0 = Tk = 0. Top: Iterations 10,
50 and 100.Bottom: Updated vertices over time, potentials over time (blue —
likelihood, green — smoothness, red — total) and distance to uncorrupted cube.
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distances:
dH = 0.89
dME = 0.19

Figure 7.6: High initial temperature,T0 = 50. Top: Iterations 10, 50 and 100.Bot-
tom: Updated vertices over time, potentials over time (blue — likelihood, green
— smoothness, red — total) and distance to uncorrupted cube.

distances:
dH = 1.57
dME = 0.45

Figure 7.7: Big sampling step for random perturbation of vertices,σN = 2σT = 1
average edge length.Top: Iterations 10, 50 and 100.Bottom: Updated vertices
over time, potentials over time (blue — likelihood, green — smoothness, red —
total) and distance to uncorrupted cube.



54 CHAPTER 7. MESH SMOOTHING, RESULTS AND DISCUSSION

distances:
dH = 0.97
dME = 0.21

Figure 7.8: Smoothing with a zero temperature,T0 = Tk = 0, with big sampling
step for random perturbation of vertices,σN = 2σT = 1 average edge length.Top:
Iterations 10, 50 and 100.Bottom: Updated vertices over time, potentials over
time (blue — likelihood, green — smoothness, red — total) and distance to un-
corrupted cube.

distances:
dH = 1.29
dME = 0.21

Figure 7.9: Small sampling step for random perturbation of vertices,σN = 2σT =
0.01 average edge length.Top: Iterations 10, 50 and 100.Bottom: Updated
vertices over time, potentials over time (blue — likelihood, green — smoothness,
red — total) and distance to uncorrupted cube.
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potential stays very small, and the smoothness potential decreases very slowly. The
number of updates falls, but stays high despite the low temperature. When it starts
to get cold vertices are still close to their initial position. From there, the system
will eventually find the closest local minimum, but the high update number after
100 iterations indicates a very long smoothing before convergence occurs.

With the conclusion that a choice of a good sampling size seems very important
for smoothing process I wrap up the discussion of optimization parameters and
look at the only modeling parameter.

7.2.3 Data Weight

The remaining parameterα weights the likelihood function, which measures the
distance between the input configuration and the present configuration, so the
choice ofα depends upon one’s faith in the data. Whenα is big, as in Figure 7.10,
the optimal configuration did, as expected, bear a close resemblance with the input
configuration. Big data term is also visible in the energy plot.

On the other hand, in the Figure 7.11 we see that even with very small parame-
terα, the initial configuration was not totally forgotten — a locally defined smooth-
ness prior, together with mesh connectivity and a perturbation scheme where ver-
tices move independently, kept the mesh in roughly the same space bounds. I
return to this effect a few paragraphs down, where I discuss the performance of the
smoothing prior.

Lastly, Figure 7.12 contains a comparison of the final results from all the tests,
where it is possible to verify the correlation between the posterior energy and the
distance from the uncorrupted cube. We can see that the configurations resulting in
small energy generally also have a small distance measures from the uncorrupted
cube. The noise-free cube has the minimal total energy (likelihood is calculated in
relation to the noisy cube). That verifies that the model was designed successfully.

We can also see that it is the size of the sampling step,σN andσT , having the
strongest influence on the success of the optimization.

The optimization seems rather robust to the different cooling schemes — the
difference between achieved minimal energies are marginal. Even though the slow
cooling scheme yield visually best result, the distance measure for that mesh is
rather big — the mesh is obviously over smoothed and the rounded edges con-
tribute to high distance measure. This observation raises a question about neces-
sity of finding the global energy minimum. Maybe it is enough to find an energy
minimum which is closest to input mesh? Assuming small noise, the local energy
minimum might be a good solution of the smoothing algorithm.

7.3 Local Versus Global Smoothing

The results presented show considerable denoising of the input mesh. But, are the
results as expected? Some of the smoothed meshes seem very edgy, with almost
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distances:
dH = 1.04
dME = 0.19

Figure 7.10: Big weight for the data term,α = 20. Top: Iterations 10, 50 and
100.Bottom:Updated vertices over time, potentials over time (blue — likelihood,
green — smoothness, red — total) and distance to uncorrupted cube.

distances:
dH = 0.99
dME = 0.18

Figure 7.11: No data term,α = 0. Top: Iterations 10, 50 and 100.Bottom:
Updated vertices over time, potentials over time (blue — likelihood, green —
smoothness, red — total) and distance to uncorrupted cube.
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Figure 7.12: Comparison between the final potential and distance to uncorrupted
cube for some mesh configurations, including all parameter testing results.Top:
Potentials, smoothness potential (red) stacked over likelihood potential (blue).
Bottom: Distances from the uncorrupted cube, Hausdorff distance(red), mean
error (blue). The configuration are from left to right: uncorrupted cube, noisy
(corrupted) cube, smoothing result after 100 iterations, smoothing result after 200
iterations, slow cooling after 500 iterations, faster cooling scheme, smoothing at
zero temperature, high initial temperature, big sampling step, small sampling step,
big sampling step and zero temperature, big data weight, zero data weight (poten-
tial of last two not included since posterior model changed).
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well-defined ridges, even the onewithout the data term. This is not un-expected
after the analysis of the curvature-based potential in Section 7.5, but should one not
expect more rounding of the ridges and corners? Additionally, all of the meshes
preserve their rough shape, evenwithout the data term.

If we again consider smoothing a perfect cube without the data term, optimiza-
tion process should round the corners and also shrink the cube. Assuming low
temperature, how would the optimization perform? All the vertices on the sides
of the cube are in locally optimal positions. The vertices on the edges (ridges) of
the cube are also positioned optimally in regard to their neighborhoods – pulling
inward just one of the ridge vertices would increase the energy. Only the 8 vertices
in the corners of the cube can decrease the energy by being pulled inward. The
smoothing algorithm would make a lot of sweeps just to move the 8 corner ver-
tices. This movement should then propagate down the sides of the cube, leading
again to the small number of vertices around the corner waiting to be pulled in.
The change propagates slowly, and the mesh will effectively preserve the shape
very close to the original shape, even though it is not in the energy minimum (or in
the local minimum).

So, our algorithm generally preserves rough shape, making it applicable for
mesh denoising where only high frequency noise should be removed.

7.4 Efficiency

As the mesh size grows, efficiency becomes a serious issue. For a not extremely
large mesh containing 13000 faces, the smoothing would take close to ten sec-
ond per iteration. Successfully smoothing large mesh with a good cooling scheme
would be very time demanding.

The work of this project was focused in investigating feasibility and perfor-
mance of MRF mesh-smoothing methods and little effort was put in optimizing
the running time of the algorithm. While developing code it was important to leave
room for many possible changes and improvements. Additionally, the performance
was highly monitored all the time, and monitoring just the energy more than dou-
bled the number of operation per iteration. It is surely possible to implement the
MRF smoothing method much more efficiently than done here. However, running
time will undoubtedly be an issue with large meshes.

From the performance analysis it is clear that simulated annealing does produce
the visually best results, but only with a very slow cooling scheme. A lot of noise
is introduced while the temperature is high, and the mesh is not given enough
time to recover if it is cooled down too fast. On the other side, cooling at the
zero temperature produces reasonable results in much less time. The benefits of
simulated annealing are surely present in some cases, but whether it is worth the
extra running time is questionable.

Another efficiency issue is the number of updates per iteration. Toward the end
of the smoothing, just a very small number of vertices are updated. This surely
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Figure 7.13: The comparison of the smoothness potential, which is proportional
to the edge length(left) and the smoothnes potential depending only on the di-
hedral angle(right). Considerable shrinking of the ridge can be seen. Data term
weightα = 0 for this experiment.

indicates convergence, but it also means that a lot of time is used to evaluate bad
moves. As one attempt of helping this problem out, a scheme with adaptive sam-
pling size could be devised. As smoothing progresses and becomes more subtle,
the sampling size could decrease to increase the probability of a good move.

More drastic change would involve trying out deterministic optimization meth-
ods. The success of smoothing at zero temperature raises hopes that even a simple
gradient-based optimization could produce reasonable results. For global optimiza-
tion graduated-non-convexity or belief propagation could possibly be used.

7.5 Comparison of the Different Smoothness Potentials

A comparison of the different smoothness potentials is presented here. For a quick
initial comparison a small model of a ridge has been used first. To see the effect of
different priors on smoothing a more realistic model the noisy cube has been used
again, this time withσnoise= 0.2 average edge length.

On the Figure 7.13 the curvature based potentialf is compared with the poten-
tial that does not depend on the edge length on testing model. I apply only a few
quick sweeps of the smoothing algorithm for this test. As expected, the curvature
potential did shrink the ridge. In most meshes, however, it is not possible to shrink
just the ridge edges, and the data term does not allow significant mesh shrinking.

Figure 7.14 tests all the potentialsf , f1, . . . , f4 on the same small testing model.
The only potential rounding the ridge is the over-smoothing quadratic potential.
Other potentials do not round the ridge, but the original formulation and thresh-
olded version shrink the ridge a bit due to the dependency upon the edge length.

The same five potentials are also compared in the Figure 7.15. For this ex-
periment all the parameters were estimated so that the potentials have comparable
starting positions. The initial temperatureT0 has been estimated by the dummy
loop, and the date weightα has been calculated from the average initial edge po-
tential.

Each potential was used in two optimization processes: one that used simu-
lated annealing, and one that smoothed with zero temperature. The distance from
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Figure 7.14: Comparison of the five smoothness potentials.Left to right: The
initial formulation based on absolute curvature, potential without the dependence
on the edge length, quadratic potential, square root potential and thresholded po-
tential. Data term weightα = 0 for this experiment.

uncorrupted cube was calculated for each final configuration. The likelihood en-
ergy (relative toα) is also marked to help comparison.

It is possible to draw a number of conclusions from the figure. Firstly, all po-
tentials apparat from quadratic give similar results. The quadratic potential, unlike
the others, rounds the sharp surface edges. This again confirms the conclusion
about performances of developed priors.

Secondly, the likelihood energy is always higher when simulated annealing was
used. Simulated annealing therefore makes it possible to for the system to ‘forget’
initial configuration and search for an optimal solution further from it. However,
in most cases smoothing with zero temperature produced the result that was closer
to the noise-free mesh. The best result was produced by using thresholded po-
tential and it is also the configuration that has relatively small likelihood energy.
We can again conclude that the local optimization method might suffice in some
applications.

Lastly, it is hard to make a conclusion about the influence of the edge length in
the formulation of the prior. When I inspected the resulting meshes it looked as if
the formulation without the dependence on the edge length produces more ‘badly
shaped’ triangles (i.e., triangles with either one very small angle or one very large
angle) but more test are needed for a definite answer.

7.6 Conclusion

In this chapter I successfully used the MRF smoothness prior to smooth the noisy
mesh. A typical smoothing was presented first, and general guidelines on the
choice of the optimization parameters were given.

A large experiment is presented next, where I test the influence of each model-
ing and optimization parameter. The resulting meshes and energy plots verify that
the simulated annealing optimization behaves as expected. All results show signif-
icant denoising of the input mesh, but the visually smoothest result is obtained by
applying a very slow cooling scheme.

The good result of the smoothing with zero temperature raised the question
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likelihood:
UL = 45.2

distances:
dH = 0.58
dME = 0.092

likelihood:
UL = 36.5

distances:
dH = 0.64
dME = 0.077

likelihood:
UL = 46.1

distances:
dH = 0.85
dME = 0.099

likelihood:
UL = 36.6

distances:
dH = 0.55
dME = 0.079

likelihood:
UL = 51.9

distances:
dH = 0.77
dME = 0.148

likelihood:
UL = 48.1

distances:
dH = 0.65
dME = 0.136

likelihood:
UL = 44.8

distances:
dH = 0.84
dME = 0.092

likelihood:
UL = 35.6

distances:
dH = 0.56
dME = 0.075

likelihood:
UL = 43.7

distances:
dH = 0.47
dME = 0.088

likelihood:
UL = 34.8

distances:
dH = 0.52
dME = 0.071

Figure 7.15: Another comparison of the five smoothness potentials.Top to bot-
tom: The initial formulation based on absolute curvature, potential without the de-
pendence on the edge length, quadratic potential, square root potential and thresh-
olded potential.Left: Configuration after 300 loops using simulated annealing.
Right: After 200 loops of zero-temperature smoothing. Data weight and initial
temperature are estimated using the dummy loop, annealing constantk= 0.9, sam-
pling stepσN = 2σT = 0.1 .
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about the possibility of using a gradient-based method for optimization. It has
been demonstrated that using zero temperature often yields a smooth result, which
is also very close to the underlying noise-free surface. It is certainly worth exam-
ining gradient-based optimization, since the efficiency of the simulated annealing
becomes a serious issue for large meshes.

As for simulated annealing, it has been demonstrated that the size of the sam-
pling step has a strong influence on the optimization result. One of the important
improvements of the algorithm would be devising the scheme where the step size
becomes smaller and smaller. The criterion for determining the size of the sam-
pling step could be a percentage of the updated vertices. This might be a solution
to a low-frequency oscillations that often do not get smoothed.

Finally, another large experiment for comparing the performances of different
smoothness potentials was presented. This experiment shows that quadratic poten-
tial tends to round the ridges of the surface, while the other potentials preserve the
sharp ridges of the surface. An important question in the remainder of the thesis is
whether an explicit edge labeling can improve feature-preserving mesh smoothing,
or is enough control obtained by a good choice of the smoothness potential.



Chapter 8

Feature Detection

The initial goal of this thesis is to develop a prior for piecewise smooth surfaces.
Two terms are combined in the piecewise-smoothness prior: the smoothness prior
already described in previous chapters, and the edge labeling process to model the
discontinuities in the smoothness of the surface.

This chapter presents a possible formulation of the edge process for detecting
the ridges on the surface of the mesh. The material presented is two fold — on the
one hand we have the original purpose of using the edge process in combination
with the vertex process; on the other hand the edge process can be considered an
independent ridge-detection process.

The aim is to label each mesh edge as either a ridge edge or a non-ridge edge (or
maybe something in between) based on two terms: the sharpness (dihedral angle)
of the edge and the neighborhood support of the other edges. Edge labels will later
be used in a mesh-smoothing process to prevent it from over-smoothing across the
feature edges.

Finding an appropriate formulation for the edge labeling was not straightfor-
ward. On the one hand, the used neighborhood was not big enough to distinguish
between ridge or non-ridge edges. On the other hand, the sharpness of an edge is
not independent of other edges — the edges are constrained by mesh connectivity.

In an attempt of finding the best (and still simple) edge labeling, a few dif-
ferent formulations have been developed. This chapter brings the overview of the
developed formulations and some of the issues regarding the edge labeling. The ex-
perimental results and discussion on using edge labeling as an independent process
follow in the Chapter 9. The results of using edge labeling in combination with
vertex process can be found in Chapter 11.
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8.1 What is a Feature Edge?

A ridge on a piecewise smooth surface is a line along which two smooth surfaces
meet.1 We can say that the ridge edge is a discontinuity in the smoothness of the
surface (which is why we will later use ridge edges to introduce discontinuities in
the smoothing process).

As stated above, the idea of our edge labeling is to use two terms. First term
is the sharpness of the edge, which is again the dihedral angle of the incident faces
used in the vertex process. The larger the dihedral angle, the sharper the mesh
edge, and the more probable it is that the edge lies along the surface ridge.

The second term is neighborhood support. By neighborhood support we mean
a presence of other ridge edges along the same ridge line. To utilize the neighbor-
hood support a measure of parallelism between the edges needs to be devised, to
model the concept of ‘lying along’ the ridge.

Still, this is generally not sufficient information to distinguish between ridge
and non-ridge edges. Mesh edges can have large dihedral angles on the smooth
parts of the surface, where the sampling density is relatively low compared to
the curvature of the surface, and the neighborhood support can still be present,
as demonstrated in Figure 8.1. The fandisk model shown there is noise-free, but
it is still imposable to distinguish between the not very sharp feature ridge and
the non-feature edges on the curved part of the surface, when only sharpness and
neighborhood support are used. We would need the information about curvature of
the surfaces on both sides of the edge to decide whether we deal with the feature
edge or with the curved but smooth surface.

Even more, we have to acknowledge that the discontinuities of the underlying
surface are ambiguous. The curved part of the fandisk modelmight actually be
piecewise planar, composed of many elongated rectangles. So, on the bottom line,
it is impossible to label edges with certainty, but the large neighborhood might
provide a better starting point for finding a more probable labeling.

8.2 Edge Labeling

In edge labeling process we want to assign a label to each mesh edge. The label
should signal the presence of surface feature edge along the mesh edge.

There are few modeling options worth considering:

Continuous or discrete labeling. Intuitively, a choice would probably fall on dis-
crete labeling, as an edge either is or is not a ridge edge. On the other hand,
knowing that the labels will be used as weights in the vertex process the con-
tinuous labeling also becomes interesting, as it might be desirable to leave

1A small terminology clash is encountered here. When working with surface meshes, wordedge
is reserved for describing a connectivity relation between vertices, but talking about surfaces, an edge
would be what I am here callingridge.
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Figure 8.1: Feature and non-feature edges, sharpness and neighborhood support.
Edges marked green are sharper than 160◦ (left) and 156◦ (right). The feature edge
dividing the two smooth surfaces on the left of the fandisk model is not sharper
then the non-feature vertical edges on the curved part of the fandisk. Neighbor-
hood support of adjacent sharp edges would not help distinguish between feature
and non-feature in this case, since the non-feature edge has an ideal support. To
distinguish between feature and non-feature in this case, one should look at the
larger neighborhood.

some room for uncertainty. A label can in that context be seen as probability
of the ridge-edge.

Deterministic or stochastic labeling. In deterministic case the labels are calcu-
lated from the sharpness (and neighborhood) information for the edge. In
stochastic case a random field is associated with each edge with the rest of
the MRF framework built upon it.

In search of the best labeling method all of the combinations were tried and tested.
The overview of the approaches follows, and the the results are presented in the
next chapter.

The additional question that had to be answered was whether the neighborhood
support contributes to the performance of the edge detection or could the same
effect be obtained by utilizing only the information about the edge sharpness. This
will also be re-visited later.

A short note on notation: An edgeei is assigned labelεi , and indices are used
only when there is more than one edge involved. Assigning a label to each of the
edges from the set of edgesE gives a label configurationE.

In case of discrete labeling, the set of labelsL is

L = {0,1} ,

while in the case of continuous labeling the labels can take any value in the interval
between 0 and 1

L = [0,1] .
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Figure 8.2: The cut-off function used for labeling the mesh-edges depending on
the dihedral angleφ . Left: Cut-off angleφ0 = 60◦. Right: Cut-off angleφ0 = 120◦.
The slopes at the cut-off angle in both cases arek = 0.5 for blue,k = 1 for cyan,
k = 2 for yellow andk = 4 for red color.

A bit counter-intuitive, the label 0 signals the occurrence of a ridge along the
edge, while label 1 signals the non-ridge edges. This choice is motivated by the
desire to use labels as weights for the vertex process, and the need to have 0 weight
where smoothing should stop. There are quite a few(1− ε) expressions in the
coming text due to this choice.

8.3 Ridge Sharpness

Looking only at ridge sharpness is the simplest way of assigning labels to dihedral
edges. In discrete deterministic case this is obtained by putting a threshold to
the dihedral angle. As mentioned in Section 6.4.2 putting a threshold to dihedral
angle is equivalent to implicit edge labeling — each occurrence of the dihedral
angle larger than the threshold is equivalent to saying that the edge is sharp. As
demonstrated in the Figure 6.5 thresholded smoothness potential is in itself feature-
preserving.

For a continuous and deterministic case we want a smooth transition between
the labels 1 and 0. A cut-off function is needed, where both the cut-off angleφ0

and the steepness of the transition can be controlled.
The desired properties were found in the function

h(φ) =
1

1+(φe/φ0)s

illustrated on Figure 8.2. Each edge is assigned the labelε = h(φe).
Whenφe = φ0 the edge will be assigned labelε = h(φ0) = 0.5. The parameter

s controls the sharpness of the transition and the slope at the cut-off angle is

k = g′(φ0) =− s
4φ0

.
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So,θ0 is an estimation of the sharpness of the ridges that we want to detect, while
k (or s) serves to model our confidence inθ0.

For the stochastic edge labeling, looking only at edge sharpness means that
we assign non-zero potential only to single-edge cliques. In a discrete case this is
again only a small step from implicit edge labeling by thresholding the smoothness
potential. In the related field of MRF image reconstruction, the similar step is the
introduction of line process[Geman and Geman, 1984] to signal the occurrences
of edges.

To define the labeling that tends to assigns label 0 to edges sharper than a given
thresholdφ0, and label 1 to less sharp edges, each edge is assigned the potential

UE1(e) = (φ0−φe)(1− ε) ,

whereε is the label from the setLE = {0,1} andφe is the dihedral angle of the
edgee. For non-sharp edges, which have a dihedral angle under the threshold, this
expression is minimized by assigning the label 1, and for larger dihedral angles it
is energy-wise better to insert the ridge-edge.

To complete the coverage of possible sharpness formulations let me mention
also the continuous stochastic case. One possibility is to take the discrete case
and allow the labels to be continuous, for the sake of adding a certain lever of
uncertainty to the edge labeling.

In the other formulation of the continues stochastic sharpness potential we add
a level of randomness to the deterministic labeling based on cut-off function. This
sharpness potential penalizes the difference between the assigned label and the
label obtained by the cut-off function

UE1(e) = (ε −h(e))2 .

8.4 Neighborhood Support

The neighborhood support stands for the contribution of the edges lying on the
same ridge line. We first define the edge neighborhood system, which is initially
used in MRF framework, but can also be used for deterministic edge labeling.

Mesh connectivity is again employed for neighborhood relation: two different
edgese1 ande2 are neighbors if they share a vertex. This is obviously well defined
neighborhood system. The neighborhood of an edgeeconsists of all edges that are
incident to one of its two vertices, as shown in the Figure 8.3.

For this neighborhood system we have many types of cliques:a) a single edge,
b) a different number of edges incident on the same vertex andc) a triangle. The
contribution of the single-edge cliques is covered by the edge sharpness part. The
neighorhood support, which is examined here, deals with the two-edge cliques.

A non-boundary edge in a regular mesh will have 10 neighboring edges (5 at
each side), an it is clear that only parallel or close-to-parallel neighboring edges
should act supportive. As the measure of how parallel the two edgese1 ande2
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e

Figure 8.3: Edges marked red are the neighborhood of the edgee. A non-
boundary edge in a regular mesh will have 10 neighbors.

e1 e2

θ

Figure 8.4: A 2-clique of edges. The potential of a 2-clique depends on labels
and the angle of the bend.

are we use the angleθe1,e2 between the directions that the neighboring edges take
on a potential ridge line, see Figure 8.4. Whenθe1,e2 = 0, the edgese1 ande2 are
parallel and this configuration yields the maximal support.

As already mentioned and demonstrated in Figure 8.1 considering only edge
sharpness and neighborhood support is not sufficient for classification of mesh
edges into ridge and non-ridge edges, even in the case of noise-free meshes. The
re-appearing question during the work on this thesis relates to the significance of
the neighborhood support in edge labeling.

The initial idea of employing the neighborhood support was to assist linking
of mesh edges into ridge lines. If, for example, in a chain of three mesh edges the
outer two edges are labeled as ridge edges, we would prefer the middle edge to be
labeled as ridge too, even if it’s dihedral angle maybe does not reach the sharpness
threshold. The change of sharpness along the edge could be contributed to noise,
and neighborhood support is supposed to help detect the ridges across the noise.

One thing is overlooked in the above reasoning — the dihedral angles of the
neighboring edges are not totally unrelated. The constraint lies in a fact that ver-
tices of the mesh form a surface. So, in the example of three linked edges where
the middle one gets a wrong label due to the noise, a little bit of denoising might be
sufficient for the recovery of the middle edge to? In other words, maybe the mesh
connectivity automatically preforms some form of the neighborhood support, mak-
ing its explicit formulation unnecessary?

Before trying to formulate the neighborhood support and solving the dilemma
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by experiment, we can analyze the question by focusing on a simple example pre-
sented on Figure 8.5 where we add more and more noise to the cube model and
plot the histograms of dihedral angelsφe and support anglesθe1,e2.

In a case of a noise-free cube the edge sharpness is enough for a perfect edge
classification. Even with the presence of a small noise the edge sharpness will suf-
fice. At some point the nose will spread the distribution of dihedral angles and the
correct classification based only on dihedral angle is not possible any more. To ex-
amine the possibility of using the neighborhood support we look at the distribution
of the support anglesθ . With the increasing noise the distribution of support an-
gles has experienced the equivalent (if not larger) spreading and mixing, so using
neighborhood support is likely to find features in noise.

Of course, thecombinationof edge sharpness and neighborhood support can
still prove to be useful, but it clearly requires more analysis and experiments.

8.4.1 Formulations of the Neighborhood Support

Initially, we again consider only the discrete labeling. The idea is to make non-
ridge edges neutral in all configurations, and to assign potentials only to interaction
between two ridge edges. For the small anglesθe1,e2 the potential of the two-clique
should be negative, thus supporting two neighboring and close-to-parallel ridge
edges; and for the angles between 90◦ and 180◦ the potential should be positive,
thus preventing the sharp corners in the ridge line. This leads to the following
formulation

UE2(e1,e2) = (θe1,e2 −θ0)(1− ε1)(1− ε2)

whereθe1,e2 is the angle between the edgese1 and e2, ε1 and ε2 are the labels
assigned to edgese1 ande2, andθ0 is the support threshold, which is typically set
to 90◦.

Figure 8.6 shows some of the possible two-edge clique configurations and their
potentials. Just as desired, only the clique containing two ridge edges has non-zero
potential, negative for support and positive for un-support.

In the same figure we can also see the potentials in case where the labels were
allowed to be continuous. The desired properties are maintained — ridge edges in-
teract stronger than non ridge edges; edges that point in the same direction support
each other; orthogonal edges are relatively neutral; and sharp edges meeting at a
small angle show negative support to each other. It is therefore worth trying to use
this linear potential for continuous labels, too.

In the above formulation it is the presence of ridge edges that is supportive
and this support sums up to influence the edge labeling. This potential does not
use the intuition we have about the ridge line, as a chain of ridge edges. In the
next formulation an attempt is made in modeling the feature line for what it is: a
sequence of close-to-parallel edges that have the same sharpness. The two-clique
potential is formulated as

UE2(e1,e2) = (ε1− ε2)2 max(0,θ0−θe1,e2) .
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σnoise(average edge length) 0 0.05 0.1 0.2 0.3
average dihedral angleφe 6◦ 11◦ 16◦ 32◦ 45◦

average support angleθe1,e2 75◦ 77◦ 79◦ 84◦ 90◦

Figure 8.5: The distributions of dihedral angles and support angles for the differ-
ent levels of noise.Top to bottom:Noise levelσnoise= 0,0.05,0.1,0.2,0.3 average
edge length.Left: Model with the edges sharper than 75◦ marked green.Center:
Distribution of the dihedral anglesφe. Right: Distribution of support anglesθe1,e2.
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Figure 8.6: Potentials for some configuration of 2-edge cliques. Red color used
for non-ridge edge, green color used for ridge edge.Left: Discrete edge labeling
with the labels fromLE = {0,1}. Right: Continuous labeling with labels from
LE = [0,1].

For those edges that are up toθ0 parallel we penalize the difference in the labels.
In this case we do not look at the configuration of sharp edges that un-support each
other, but that can be easily included.

8.5 Stochastic Edge Labeling

Let’s first look at the discrete case and the linear potentials. The total potential of
an edge labeling configuration is

UE(E) = ∑
e∈E

(φ0−φe)(1− ε)+β ∑
(e1,e2)∈C2

(θe1,e2 −θ0)(1− ε1)(1− ε2) ,

whereβ is the weighting constant for the support energy. We will refer to the first
part as the sharpness energy (or edginess energy) and the second part as the support
energy. For the configuration of all edges being non-ridge, the total edge labeling
energy is 0, and it can be improved by inserting edges at the right places.

If we operate on a stationary mesh, the anglesφe andθe1,e2 are fixed and the
above reduces to an auto-logistic MRF model[Li, 2001] where the energy takes
the form

U( f ) = ∑
{i}∈C1

αi fi + ∑
{i,i′}∈C2

βi,i′ fi fi′ .

The constantsβi,i′ are interaction coefficients reflecting the pair-site interaction.
The energy of an edge labeling leads directly to the joint probability of the

labeling configuration, which is

P(E) =
1
Z

exp

(
− 1

T
UE(E)

)
,

whereT is the temperature andZ is the normalization constant.
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To obtain conditional probability I looked at the part of the energy that changes
when one alters a single label, which is

UE(ε) =

[
(φ0−φe)+β ∑

e′∈Ne

(
θe,e′−θ0

)
(1− ε

′)

]
(1− ε) . (8.1)

The optimal labeling (given the neighborhood) depends only on the sign of the
expression in the square brackets.

The conditional probability is given as

P(ε|Ne) =
1
Z

exp

(
− 1

T
UE(ε)

)
.

Simply allowing the labels to be continuous does not change the optimal con-
figuration and it has the positive effect on optimization. Despite it being oversim-
plistic approach, this method produces good results.

The stochastic labeling based on the alternative sharpness and support poten-
tials are formulated in similar way.

8.5.1 Optimization

At high temperatures Metropolis sampling always prefers the new label. In the
case of discrete binary labeling a new label is theother label, and this results in a
lot of flickering on the high temperatures. As the temperature decreases flickering
ceases and algorithm starts converging.

The Gibbs sampler is maybe more suited for binary labeling since it evaluates
the probabilities of all the labels, in this caseP(0) andP(1), at each step of the
algorithm. A label is set to 0 with probability

p =
P(0)

P(0)−P(1)
.

The temperature plays similar role in Gibbs sampling, as it does in Metropolis
sampling. In the limit ofT →∞ the probabilityp is 1/2, and in the limitT → 0 the
probability is either 0 or 1, depending on the sign of the energy distance.

Allowing the continuous labels is another way of dealing with flickering.

8.6 Deterministic Edge Labeling

Deterministic edge labeling was mostly used only for the pure sharpness labeling
according to the cut-off function, as described in Section 8.3.

It is also possible to define the deterministic labeling, which includes neighbor-
hood support. To formulate this type of edge labeling we notice that in Equation
(8.1) only a sign of the expression in the square brackets is needed to determine the
label of the edge. This expression can be used to assign the continuous label to an
the edge.
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Figure 8.7: The cut-off function used for labeling the mesh-edges based on sharp-
ness and support measure. The cut-off value is 0, the slopes at the cut-off value are
k = 0.5 for blue,k = 1 for cyan,k = 2 for yellow andk = 4 for red color. Compare
with Figure 8.2

The labeling functionL is formulated as

h(e) = g

[
(φ0−φe)+β ∑

e′∈Ne

(
θe,e′−θ0

)
(1− ε

′)

]
whereg has to be monotonically increasing function that has a codomain in the
interval [0,1] and whereg(0) = 0.5. Functiong serves as a cut-off function, so it
is desirable that its steepness can also be controlled.

Function

f (x) =
1
π

arctan(γx)+
1
2

has desired properties. The constantγ can be used to control steepness of the
function and thus the level of uncertainty we want the labeling to exhibit. For the
largeγ labels will be concentrated close to the asymptotical values of 0 and 1. For
the smallerγ labels will be more evenly distributed.

The direct method can be used with some success in combination with vertex
smoothing process, but it was not useful on its own, as a ridge detecting function.
Due to its deterministic nature and the neighborhood support it would often flicker
between two configurations.

8.7 Summary

In this chapter I presented some methods for detecting ridges on the surface repre-
sented as triangle mesh. The developed methods can be categorized as continuous
or discrete, deterministic or stochastic, with or without neighborhood support.

One formulation used extensively in the remainder of the text is continues, sto-
chastic and with neighborhood support. In this formulation the edge process is
modeled as MRF on mesh edges, with two kinds of clique potentials. The sharp-
ness potential of a single edge is linear to the dihedral angle of the edge. The
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support potential of two edges is linear to the angle between the edges. This for-
mulation is often referred to as the linear edge labeling.

Another often used formulation is based on the cut-off function of the dihedral
angle. This is continues edge labeling without neighborhood support, and it has
the deterministic and the stochastic version.

The important question of whether neighborhood support can contribute to
edge labeling is raised in this chapter. It is in an attempt of finding the answer
to this question that so many different formulations have been developed.

The success of the edge labeling as an independent ridge-detecting process
will be investigated in the next chapter. After coupling the edge process with the
vertex process, the success of different edge labeling methods is investigated again
in Chapter 11.



Chapter 9

Feature Detection, Results and
Discussion

The results presented here cover only the edge labeling with fixed vertex positions.
Even though this is not the primary goal of edge labeling process it can be useful
to see, especially in order to understand the effects of the neighborhood support.

In all figures, the edges shown green are those with the label smaller than 0.5,
and it is those edges that are referred to asdetectededges.

9.1 Stochastic Edge Labeling

The Figure 9.1 shows a discrete edge labeling, using the linear potentials and neigh-
borhood support. Gibbs sampling and simulated annealing were used for optimiza-
tion. The effects of the high temperature are clearly visible. Final configuration has
successfully identified some of the cube ridges.

The discrete labeling would often result in a lot of flickering (i.e., alternating
between two configurations). This could easily be addressed by allowing the labels
to be continues. Labels would still tend to be concentrated around 0 and 1, but with
much nicer optimization.

Instead of applying simulated annealing, the fastest results were found by ini-
tially labeling edges using the threshold on the dihedral angle, and in a few quick
sweeps of the algorithm letting the neighborhood support connect the ridge edges.
This approach is presented in Figure 9.2. The energy plot shows negative en-
ergy already for the initial configuration. The subsequent decrease in energy is
contributed exclusively to the decrease in the support energy, with the sharpness
potential slowly growing as the less sharp edges get labeled as ridges.

Due to the noise, initially are just some of the edges on the models true ridges
labeled as ridge edges. After a few sweeps of the algorithm, ridge edges are con-
nected in longer structures. Surface ridges are rather well detected, but some spu-
rious structures occur when a ridge gets detected in a noise. One of the horizontal
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Figure 9.1: Stochastic discrete edge labeling of a noisy cube using a Gibbs sam-
pler and simulated annealing. Parameters used: neighborhood support weight
β = 1, sharpness thresholdφ0 = 120◦, neighborhood support thresholdθ0 = 90◦,
initial temperatureT0 = 1, annealing constantk = 9.5. Top and middle:Iterations
3, 10, 50 and 100.Bottom left:The number of updated edges over time.Bottom
right: Potentials over time: blue — sharpness potential, green — neighborhood
support potential, red — total potential.
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Figure 9.2: Fast stochastic edge labeling. Fandisk model corrupted with Gaussian
noise,σNOISE= 0.1 average edge length. Parameters used: neighborhood weight
β = 1, sharpness thresholdφ0 = 90◦, neighborhod support thresholdθ = 90◦.
Top: Initial labeling based only on edge sharpness and labeling after 10 iterations.
Bottom left: The number of updated edges over time.Bottom right: Potentials
over time: blue — sharpness potential, red — neighborhood support potential, red
— total potential.

ridges framing the front face of the model gets continued across the planar surface
due to the neighborhood support.

9.1.1 Thresholds

Sharpness thresholdφ0 was originally used to model the sharpness of the ridge
edges. With support thresholdθ0 we can alter the neighborhood support and de-
cide, for example, that only edges with the difference in directions less than 45◦

support each other. However, once we add the sharpness and support potential to-
gether those thresholds start to interact. Choosing a smallθ0 will cause a lot of
unsupport between edges and the total number of edges will decrease. This means
that even some of the edges sharper thanφ0 will not get labeled as ridge edges.
Increasingθ0 will have the opposite effect.

The best strategy is therefore to fixθ0 at 90◦ and useφ0 to regulate the number
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Figure 9.3: The demonstration of the effect of using the neighborhood support.
Left: Thresholding the dihedral angle at 60◦. Right: Result of the stochastic edge
labeling using linear potentials for neighborhood support. Parameters used: sharp-
ness thresholdφ0 = 50◦, neighborhood support thresholdθ = 60◦, neighborhood
support weightβ = 1.

of detected edges. At this setting the orthogonal edges are neutral to each other, but
because of an abundance of very supportive parallel (or near-parallel) edges and no
equivalently unsupportive edges, there will generally be more detected edges than
what one could desire when choosingφ0.

9.1.2 Neighborhood Support Question

As already discussed, and important question is whether neighborhood support
contributes to the correct labeling of edges. Again, the most interesting is in the
case where edge labels are used as the weights for smoothing, but the fixed-shape
situation can be examined first.

In Figure 9.3 a small testing model is used to demonstrate that the neighbor-
hood support works as planned. The model is constructed so that the edges of the
straight ridge are less sharp than the edges of the zigzag ridge. Due to neighbor-
hood support, which is stronger for the straight ridge, it is the less sharp edges that
get labeled as ridges.

Next we want to investigate whether using neighborhood support contributes to
good edge labeling. In Figure 9.4 the edge labeling based exclusively on the dihe-
dral angle is compared with the edge labeling that incorporates the neighborhood
support. We can see that both support based labelings successfully found the upper
cube ridge and the parts of the front ridge, without founding many spurious ridges.
To find the upper edge sharpness-only labeling should put the threshold down to
60◦, and at that point a lot of noise gets labeled as ridges, too.

The conclusion is that the neighborhood supportdoescontribute to the correct
labeling in the case of the fixed mesh. How significant that contribution is, and
does it lead to better smoothing when edge labeling is coupled with vertex process
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Figure 9.4: Comparison of edge labeling with and without the neighborhood sup-
port. Top: Edges thresholded usingθ0 = 60◦, θ0 = 70◦, θ0 = 80◦ (left to right).
Bottom: Two labelings that used linear neighborhood support. Parameters used:
sharpness thresholdφ0 = 90◦, neighborhood support thresholdθ = 90◦, neighbor-
hood support weightβ = 0.8 (left); sharpness thresholdφ0 = 80◦, neighborhood
support thresholdθ = 90◦, neighborhood support weightβ = 0.5 (right).
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is still to be answered.

9.2 Deterministic Edge Labeling

There is not so much to investigate about the deterministic edge labeling on the
fixed meshes. In case of the sharpness-only function, the deterministic edge label-
ing is basically identical to putting threshold on the dihedral angle. Using constant
labels and different cut-off functions can result in labels concentrated around 0 and
1, or in more evenly distributed labels. However, when displaying (and classify-
ing) the edges the threshold of 0.5 is always used, resulting always in same edge
classification.

The case where edge labeling incorporates neighborhood support was hard to
analyze in a fixed mesh setting. Due to the neighborhood support the labeling
would often flicker between two (often quite different) configurations.

9.3 Conclusion

In this section I presented a few results of using an edge labeling as an independent
process for detecting the ridges on the surface representing as a mesh.

A couple of points is demonstrated here. First, it is shown that MRF framework
can be used for the problem of the ridge detection. Secondly, it is demonstrated
that the neighboring support does work as planned and that it contributes positively
to the edge labeling — the results obtained by using neighborhood support were
better than the results when using just the threshold on the edge sharpness. Still,
the truly big question, which will be addressed in the upcoming chapters is: Does
neighborhood support help when we combine the edge and the vertex process?



Chapter 10

Feature-Preserving Mesh
Smoothing

The two processes, vertex process based on the smoothness prior and the edge
process for labeling ridge edges, are in this chapter combined into a coupled MRF,
which can be used for feature-preserving mesh-smoothing.

Coupling the vertex and the edge process is a straightforward step. The only
adjustment needing to be done is to ensure that the vertex process does not smooth
over the sharp edges. However, considering that we have few different smoothness
potentials, a number of different edge labeling schemes, an open question about
the significance of the neighborhood support for the edge labeling, and an ample
amount of parameters for each process, it is clear that examining the coupled model
took some time, patience and a significant flexibility of the implemented code.

The chapter contains the basic formulation of a finished piecewise smoothness
prior and the description of the optimization method. Results and discussion follow
in the next chapter.

10.1 Piecewise Smoothness Prior

To ensure that the vertex smoothing process does not smooth over the sharp edges,
the smoothness potential from Equation (6.1) is modified to the potential when the
edge labelingE is given. In the case of the curvature-based potential we have the
following expression

UV(V|E) = ∑
e∈E

ε |φe|‖e‖ .

The presence of a ridge edge cuts (or, in continuous case, lessens) the smoothness
constraint between the vertices. Any other smoothness potential can be modified
in the same way.

In case of the deterministic edge labeling,UV is the prior energy. Having the
edge labeling defined as the MRF on mesh edges, the total prior energy of the
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piecewise smoothness prior is

UPR = UV(V)+δ UE(E) ,

whereδ is the weight between the smoothness potential and the edge labeling
potential.

Directly from the definition, the vertex potential depends on the edge labeling.
Edge potential also depends on vertex configuration, since one needs to get hold
of dihedral and support angles to calculate the edge energy and all angles change
with the vertex configuration. So, we have a doubly-coupled MRF.

The prior distribution is expressed as

P(V,E) ∝ exp

(
− 1

T
UPR

)
and the posterior distribution is obtained by applying the Bayes rule

P(V,E|V0) ∝ P(V0|V,E)P(V,E) .

As the edge labelingE is not observed for the likelihood probability we use

P(V0|V,E) = P(V0|V) .

10.2 Optimization Scheme

The posterior energy consists of three terms: likelihood energy, smoothness energy
and edge-labeling energy (the last again consisting of two terms: sharpness energy
and neighborhood support energy). In case of a discrete edge-labeling MRF, this
is a combination of the real and the combinatorial problems.

To use Metropolis sample for optimization, at each iteration of the algorithm
every vertex and every edge should be perturbed, evaluated, and allowed to be
updated according to the Metropolis criterion. For each perturbation a conditional
probability should be evaluated by looking at the part of the total energy, which is
affected by the perturbation.

Evaluating the edge perturbation is almost the same as in the pure edge process,
where the edge sharpness and neighborhood support are evaluated. Only additional
factor to consider is the change in the smoothness potential due to the labeling of
the edge, so only one additional term needs to be evaluated.

Vertex perturbation, on the other hand, has a big effect on the edge-labeling
energy. Changing a vertex position affects all edges incident to the vertex, which
in turn affects all two-edge cliques. For a regular mesh where a vertex is incident
to 6 edges only this would mean evaluating 105 additional angles, a considerable
computations burden.

So, instead of minimizing the total posterior energy, a much simpler optimiza-
tion scheme is used where I alternate between the vertex process and the edge
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process, optimizing one at a time. The convergence is not guaranteed, but the ex-
periment show that this also leads to the minimization of the joint energy. This
also means that instead of using weightδ to balance the smoothness potential and
edge labeling potential, I can use two different temperaturesTV andTE, for ver-
tex process and one edge process respectively. This also makes it possible to use
different cooling schemes for vertex and edge process. It proves very useful later.

10.3 Two Questions

The work on the coupled model consisted mainly in experiments to determine how
do the developed priors preform and what is the best way of formulating the prior
for piecewise smooth surfaces. Additionally, experiments were done to cast the
light on two open questions:

1. Does the edge labeling that includes neighborhood support contribute pos-
itively to smoothing piecewise smooth surfaces, or can the same effect be
achieved by using only sharpness of the edges?

2. Does the separate edge labeling process contribute positively to smoothing
piecewise smooth surfaces, or can the same effect be achieved by using only
well-chosen smoothness prior?

The reason for asking the first question is already covered in Section 8.4. Sec-
ond question is interesting if the answer to the first question is ‘No’. If the neigh-
borhood support proves not useful, does it make sense to explicitly label the edges
if we can chose a feature-preserving smoothness prior as demonstrated in Chap-
ter 7?

10.4 Summary

In this chapter I described the way of coupling one of the smoothness priors devel-
oped in Chapter 6 and one of the edge labeling methods developed in Chapter 8.
The result is a feature preserving mesh smoothing scheme. Since the edge labeling
method is in fact ridge-detecting, the scheme developed here is preforming best on
piecewise smooth surfaces with sharp ridges between the smooth parts.

Instead of optimizing the total vertex and edge energy, which would be com-
putationally very demanding, the optimization scheme with alternating vertex and
edge process is developed.

There is a number of smoothness priors to chose from, and a number of edge
labeling methods, so there was many coupled combinations to test. The two ques-
tions, which should be resolved by the experiment, are posed here. The first is
about the role of neighborhood support, and the second about the role of the edge
labeling. Experimental results addressing those questions are presented in the next
chapter.
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Chapter 11

Final Results and Discussion

This chapter contains some of the experiments conducted to evaluate the perfor-
mance of the coupled model.

First, an evolution of the developed smoothing methods is presented — the
results shown there are not the best achieved results, but are instead examples of
the problems one can encounter when using the methods in question.

Some of the successful smoothing is presented and discussed next. And lastly,
the question about the role of the edge process is addressed and resolved in this
chapter.

11.1 Smoothing Evolution

In order to cast some light on the two questions formulated above, an experi-
ment was preformed, where we start with pure smoothing and add first sharpness-
based edge process and later also neighborhood support. This experiment does not
present the best performance of a chosen smoothing methods. On the contrary,
some parameters were chosen to demonstrate the pitfalls connected with each of
the smoothing processes.

First, Figure 11.1 shows two runs of pure smoothing. The two potentials used
are the familiar quadratic and square-root potentials. As before, quadratic potential
over-smooths the ridges and leaves no dihedral angle over 75◦. The square-root po-
tentials preserves the ridges, and those mesh edges that have dihedral angle larger
than 75◦ are shown red.

Next, in Figure 11.2 the deterministic edge labeling is used. Ridge edges are
detected nicely, but quite a lot of noise got labeled (and preserved) as features,
too. This is an often observed problem of deterministic edge labeling — once a
noise gets labeled as a ridge its smoothing is prohibited and in turn it becomes a
ridge edge. The label acts as a self-fulfilling prophecy. That kind of behavior is
partly what we want a prior to do, as we want the prior to find what we are looking
for. But the problem with deterministic labeling is that it does not allow for an
alternative hypothesis, but gets stranded in it’s initial estimations.
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Figure 11.1: The results of the two different pure smoothing processes.Top:
Using the over-smoothing quadratic smoothness potential.Bottom: Using the
feature-preserving square-root smoothness potential.

Figure 11.2: The result of the process where the quadratic smoothness prior is
coupled with the deterministic edge labeling based on cut-off function.



11.2. FINAL RESULT 87

In Figure 11.3 the stochastic process is used, introducing some randomness to
exactly the same cut-off function as used in the previous figure. Improvement is
obvious. Allowing the evaluation of the alternative labeling resulted in the very
successful ridge detection. The only artifact is one zigzag ridge.

Finally, in the Figure 11.4 the neighborhood support is introduced and we can
immediately see it’s effect. Some cube ridges get detected, but so do some features
in the noise. In the case of the linear prior we clearly see the effect of ‘chaining’
the ridge edges.

As mentioned, this experiment exposed the worst side of the used smoothing
methods, but it also proved that introducing each new step in the ‘evolution’ of the
smoothness has effect on the performance.

11.2 Final Result

The best results were obtained by using the quadratic smoothness prior and con-
tinuous stochastic edge labeling based on linear potentials. Those are the results
presented here. However, all of the other combinations also produced satisfactory
results, if a good choice of parameters was used.

It is understandable that over-smoothing quadratic prior is preforming best in
coupled model. When the edge process takes care of the edges, the smoothing
should be as strong as possible. As for the edge process, the stochastic versions
proved better then the deterministic. A certain level of randomness is needed to pre-
vent the edge process being fixed on noise, or missing to detect an over-smoothed
edge.

To obtain a good smoothing result using the combined model, one has to think
about a couple of issues:

Cooling schemes for vertex and edge process.The optimization method made it
possible to chose the cooling schemes for the vertex process and edge process
independent of each other. This proved very useful. It was observed that the
best result were found when the temperature of the edge process stayed on
the constant, small value. This would introduce enough randomness in the
edge process, so that the alternative solutions got explored. The smoothing
process could use simulated annealing scheme, but good result in consider-
ably less time were obtained when smoothing with zero temperature.

Ordering of vertex and edge process.The smoothing process can be significantly
assisted if ordering of the vertex and edge process is chosen well. Having
a very noisy input mesh, it proved useful to start with a few sweeps of the
vertex process to remove the worst noise, before turning the edge process
on. This should, on the other hand, not be used with the meshes that are not
very noisy, where it is important to detect the edges before they get rounded
by the smoothing process. A possibility of turning the edge labeling off can
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Figure 11.3: The result of the process where the quadratic smoothness prior ic
coupled with the stochastic edge labeling based on applying penalty to the distance
from the result of the cut-off function.

Figure 11.4: The result of two rather different processes, but both using quadratic
smoothness prior coupled with the edge labeling, which includes the neighbor-
hood support.Top: The edge process based on linear smoothness and support po-
tential, but where labels are allowed to be continuous.Bottom:The edge process
based on applying sharpness penalty to labeling that differs from the cut-off func-
tion and a neighborhood support where parallel neighboring edges are forced to
have similar labels.
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also prove useful when ridges get detected, and smoothing algorithm is given
some more iterations to remove the low frequency noise.

In Figure 11.5 a result of using the coupled model is shown. The noise is
removed and the edges preserved. However, some low frequency oscillations are
still present, and the ridges of the model are not straight. The likelihood potential
for the noise-free image is rather high, and we can conclude that the data term
contributes to the low frequency noise.

distances:
dH = 0.66 (0.58 av.e.l.)
dME = 0.19 (0.16 av.e.l.)

distances:
dH = 0.31
dME = 0.04

potentials/model noise-free noisy smoothed
likelihood 46 0 16

smoothness 0 334 9
sharpness -63 -127 -52
support -85 -41 -79

total -102 166 -106

Figure 11.5: Smoothing the noisy cube using the coupled model.Top left: Test-
ing model, 10×10×10 cube.Top center:Cube corrupted with Gaussian noise,
σnoise= 0.2 average edge length.Top right: Cube smoothed using the quadratic
smoothness prior and stochastic continuous labeling based on linear potentials.
Parameters used: data weightα = 0.5, vertex process temperatureTV = 0, sam-
pling stepσN = 2σT = 0.1 average edge length. Neighborhood support weight
β = 0.5, sharpness thresholdφ0 = 60◦, support thresholdθ0 = 90◦, edge process
temperatureTE = 0.05, no annealing (k=1). Middle: Hausdorff distance and mean
error between the noise-free model and the remaining two models.Bottom: The
potentials for all three models, where likelihood potential has the noisy mesh as
reference, and edge labels are rounded for better comparison.
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Figures 11.6 and 11.7 show the smoothing of the corrupted fandisk model. Al-
most all feature edges are successfully preserved, apart from a very subtle feature
edge, which was commented next to Figure 8.1. The low frequency oscillations
have again not been totaly removed, especially from the more noisy mesh. Allow-
ing more than just 100 iterations would probably help, even though the plots of the
updates and potentials implies convergence.

However, the fandisk model has 13 000 faces, and smoothing it was a true test
of the algorithms efficiency. Almost an hour was needed for 100 iterations. An
implementation focused on efficiency would certainly improve running time, but
smoothing large meshes would still be time demanding.

11.3 Why Not Just Thresholded?

Yet again a question about the role of the edge labeling is addressed here. Edge
labeling allows a control over the sharpness of the preserved edges. Could the
same be achieved by using a well chosen smoothness prior? A small experiment
has been conducted to answer this question.

The results on the Figure 11.8 demonstrate the control achieved by changing
the sharpness thresholdφ0. Feature edges of different sharpness get labeled and
preserved. This allows a precise use of the surface prior.

In the Figure 11.9 the thresholded smoothness prior is applied to the same
model. The results exhibit the same control of the ridge sharpness — by changing
the threshold we influence the number of rounded edges. So, itis possible to
obtain similar results by using only smoothness prior, but after more than double
iterations.

However, when comparing the quality of the results one can see that the explicit
edge labeling produces nicer result, with less artifacts. The thresholded smoothness
prior has even left an inverted triangle.

11.4 Conclusion

In this chapter I used the coupled vertex and edge process to smooth the mesh,
while detecting and preserving sharp ridges of the mesh surface. The presented
results show considerable denoising of the mesh surface, but small low-frequency
oscillations would often still be present in the smoothed mesh. To remove the
low-frequency oscillations (i.e., preform mesh fairing) the data term needs to be
adjusted carefully. Adaptively changing the size of the sampling step could proba-
bly also contribute to the removal of the small oscillations.

The questions about the role of the edge labeling process and the role of the
neighborhood support are addressed in this chapter. It has been shown that both
of those processes help preserve sharp surface ridges. However, as we increase
the complexity of the smoothing algorithm, the number of smoothing parameters
grows, and it gets increasingly difficult to estimate the parameters or to predict the



11.4. CONCLUSION 91

Figure 11.6: Reconstructing the fandisk model corrupted by Gaussian noise
σnoise= 0.1 average edge length. Model used: quadratic smoothness prior and sto-
chastic continuous edge labeling based on linear potentials. Parameters used: data
weightα = 0.1, vertex process temperatureTV = 0, sampling stepσN = 0.05 av-
erage edge length,σT = 0.02 average edge length. Neighborhood support weight
β = 0.5, sharpness thresholdφ0 = 80◦, support thresholdθ0 = 90◦, edge process
temperatureTE = 0.05, no annealing (k=1). Top: Corrupted model and recon-
structed model (100 iterations).Middle left: The number of updated vertices
(blue) and edges (green) over time.Middle right: Potentials over time: blue —
likelihood potential, green — smoothness potential, cyan — sharpness potential,
magenta — support potential, red — total potential.Bottom: Edge labeling for
iterations 1 (based only on sharpness), 5, 10 and 100.
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Figure 11.7: Reconstructing the fandisk model corrupted by Gaussian noise
σnoise = 0.2 average edge length. The model and the parameters the same as
in Figure 11.6, apart fromφ0 = 70◦, α = 0.2. Top: Corrupted model and re-
constructed model (100 iterations).Middle: Updates over time (blue — vertices,
green — edges), potentials over time (blue — likelihood, green — smoothness,
cyan — sharpness, magenta — support, red — total).Bottom: Iterations 1, 5, 15
and 100.
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Figure 11.8: Sharpness control for the coupled model. Sharpness thresholdφ0

determines which edges are labeled as ridge and which edges get smoothed. The
edgy model has edges from 68◦ to 108◦ in steps of 5◦. Left to right: Sharpness
threshold put to 85◦,95◦,105◦ and 115◦. Top to bottom:Initial edge labeling (based
only on sharpness), labeling after 100 iterations, and a final reconstruction.
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Figure 11.9: Sharpness control for the smoothing without edge labeling, but with
the thresholded smoothness potential. Smoothness threshold put to 65◦,75◦ and
85◦ (left to right), the results after 300 iterations.

behavior of the smoothing algorithm. Some of the common pitfalls (e.g., detecting
the ridge in the noise) has also been shown.

Still, even though the explicit edge labeling produces nicer result, using only
smoothness potential might be sufficient for some applications, especially where
the automatic smoothing is needed. In cases where we want more control in de-
scribing surface prior it would be beneficial to use the coupled model.
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Future Work

The future work following from this thesis can roughly be divided it in three
groups. First, I suggest a number of small improvements to the algorithm im-
plemented here. Second, a functional mesh smoother could be developed, where
we drop the assumptions about the correct topology, and consider the input mesh
as triangulation of a point cloud obtained from a 3D scanner. Third, a number
of extensions to both the smoothness prior and to the edge labeling are possible,
which would allow describing priors for other types of surfaces. In this chapter I
briefly mention the different possibilities.

12.1 Improvements of The Existing Algorithm

Some of the possible improvements have already been discussed, mostly regarding
the optimization scheme. In Section 6.7.1 I suggest the improvements of the ran-
dom sampling algorithm regarding the shape of the used Gaussian distribution and
the size of the update step.

More importantly, the benefit of the simulated annealing should be investi-
gated, and some deterministic optimization method should be tested for compari-
son.

As for the edge labeling, the more efficient priors should be devised, probably
using larger neighborhood than here.

12.2 A Functional Mesh Smoother

The focus of this thesis was to investigate the performance of the developed smooth-
ness priors with the idea of using it for smoothing the mesh. In practical applica-
tions the input mesh will be obtained the 3D scanners, and the assumptions about
correct topology and triangulation will be invalid. For example, there is in general
no guarantee that the tip of the ridge will get sampled or that the mesh edges lie
along the surface features. A smoothing system should therefore take those facts in
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consideration. Likewise, a care should be taken to ensure the quality of the output
mesh (e.g., the shape of the triangular faces).

In a practical smoothing system focus should be put on surface to surface
smoothing. The likelihood function developed here, which measures the displace-
ment of the vertices, is therefore not an optimal choice. The distance between
surfaces should be measured instead, as briefly mentioned in Section 6.5.

12.3 Extensions of the Model

The basic model developed here could be extended in different ways. The prior
for piecewise-quadratic surfaces can be developed, by requiring the curvature to
be constant between the ridges. As for the ridge detection, an additional prior
forcing the detected ridges to be straight or smoother could significantly assist the
mesh fairing process. A mechanism for removal of unwonted spurious ridge-edge
structures is yet another likely improvement.

It could be possible to use the piecewise-smoothness prior for segmenting the
mesh in smooth parts, which could then allow for another representation of the
underlying surface.



Chapter 13

Conclusion

The primary aim of this Master’s thesis was to investigate the use of MRF theory in
formulating priors on surface meshes. A few different priors have been presented
here, showing indeed that the desired results are produced in this setting.

It is pretty straightforward to define MRF on triangular meshes using the mesh
connectivity. However, when implementing a smoothing algorithm a lot of details
had to be dealt with.

In case of the vertex process, the developed priors are easy to understand and
produce a desired result. The analysis and the experimental results show that the
quadratic potential rounds the sharp ridges, square root potential preserves sharp
ridges, and thresholded potential makes it possible to control the sharpness of the
ridges that one wants preserved. Still, there are many open questions about the op-
timization for the vertex process. The Metropolis sampler with simulated annealing
was used to avoid making any assumptions about the energy function. However,
the results indicate that the gradient-based method could also be applied success-
fully, which would surely improve the efficiency of the algorithm.

In case of the edge process, it is not easy to formulate the neighborhood support
in a simple and straightforward way. The sharpness of the edges is constrained by
the mesh connectivity and the role of the neighborhood support is not obvious in
this setting. It is demonstrated that neighborhood support contributes to good edge
labeling, but almost just as good a result is obtained without the use of neighbor-
hood support. On the other hand, it is observed that the explicit edge labeling helps
detect the ridges on the surface.

In this work some light is shed on the behavior of the MRF priors on triangular
meshes. After the promising preliminary results, it would surely be interesting to
see a practical application that uses MRF on surfaces. This is probably just a matter
of time.
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Appendix A

Box-Müller Transformation

Box-Müller transformation[Box and Muller, 1958] is a popular method of gener-
ating pseudo-random samples from a normal (Gaussian) distribution. The method
generates pairs of independent normally distributed random numbers, given a source
of uniformly distributed random numbers.

Let u1 andu2 be two independent and uniformly distributed random numbers,
u1,u2 ∼ U[0,1], whereu1 6= 0. The numbers

z1 =
√
−2ln(u1)cos(2πu2)

z2 =
√
−2ln(u1)sin(2πu2)

are then independent and normally distributed random numbers,z1 ∼ N[0,1] and
z2 ∼ N[0,1].
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Appendix B

Hausdorff Distance

One of the simplest distortion measurements for 3D models is Hausdorff distance,
a generic technique used to define a distance between two nonempty sets.

To define the Hausdorff Distance between two surfacesSandS′ we start with
defining point-to-surface distance between a pointp belonging to surfaceSand a
surfaceS′ as

d(p,S′) = min
p′∈S′

‖p− p′‖ ,

where‖.‖ is the Euclidean norm. From this definition, the Hausdorff distance
betweenSandS′ is given as

d(S,S′) = max
p∈S

d(p,S′) .

As illustrated on Figure B.1, the Hausdorff distance is in general not symmet-
rical, so it is convenient to introduce the symmetrical Hausdorff distance

ds(S,S′) = max
(
d(S,S′),d(S′,S)

)
.

When surfacesSandS′ are represented as triangle meshes,d(p,S′) can be com-
puted analytically for any pointp∈ S, as the minimum of the distances betweenp

S′

S
p′ p

Figure B.1: Hausdorff distance is generally not symmetrical. In this case
d(S,S′) = d(p,S′) < d(p′,S) = d(S′,S).
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and all the triangles that make the surfaceS′. However, to obtain the maximum for
p∈ S it is necessary to resort to sampling of the triangles that make the surfaceS
[Aspertet al., 2002].

Instead of sampling the surfaceS, a fairly good approximation of the Hausdorff
distance is obtained if one considers only the verticesv of the surfaceS. This leads
to vertex-to-surface Hausdorff distance

dv(S,S′) = max
v∈V

d(p,S′)

whereV is the set of vertices of the triangle mesh that represents the surfaceS. In
the similar way as above, the symmetric version of the vertex-to-surface Hausdorff
distance is defined.

The mean and the root-mean-square error can also be approximated in the
vertex-to-surface manner as

dm(S,S′) =
1
|V| ∑

v∈V

d(v,S′)

drms(S,S′) =

√
1
|V| ∑

v∈V

d(v,S′)2

where|V| is the number of vertices in the mesh that makes the surfaceS.



Bibliography

[Aspertet al., 2002] Nicolas Aspert, Diego Santa-Cruz, and Touradj Ebrahimi.
Mesh: Measuring errors between surfaces using the Hausdorff distance. In
Proceedings of the IEEE International Conference on Multimedia and Expo,
volume I, pages 705 – 708, 2002.

[Atteneet al., 2005] Marco Attene, Bianca Falcidieno, Jarek Rossignac, and
Michela Spagnuolo. Sharpen&bend: Recovering curved sharp edges in trian-
gle meshes produced by feature-insensitive sampling.IEEE Transactions on
Visualization and Computer Graphics, 11(2):181–192, 2005.

[Bærentzen and Aanæs, 2005] Jakob Andreas Bærentzen and Henrik Aanæs.
Signed distance computation using the angle weighted pseudo-normal.IEEE
Transactions on Visualization and Computer Graphics, 11(3):243–253, may
2005.

[Botschet al., 2006] Mario Botsch, Mark Pauly, Christian R̈ossl, Stephan
Bischoff, and Leif Kobbelt. Geometric modeling based on triangle meshes.
SIGGRAPH Course Notes, 2006.

[Box and Muller, 1958] George Edward Pelham Box and Mervin Edgar Muller. A
note on the generation of random normal deviates.The Annals of Mathematical
Statistics, 29:610–611, 1958.

[Desbrunet al., 1999] Mathieu Desbrun, Mark Meyer, Peter Schröder, and
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