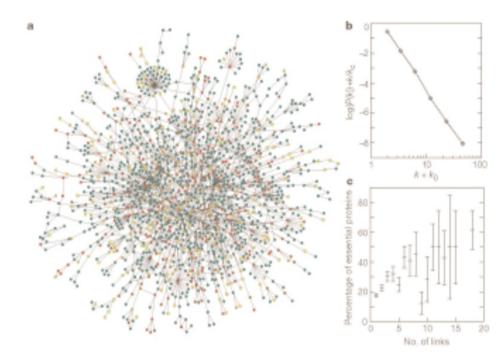
Statistical inference for the discovery of hidden interactions in complex networks

Roger Guimerà

ICREA and Chemical Engineering, Universitat Rovira i Virgili

NetSci'13 Copenhagen, June 4, 2013

One billion dollars to map the human proteome



Jeong, et al., Nature (2001)

naturenews

news archive nature news home

comments on this story

Published online 23 April 2008 | 452, 920-921 (2008) | doi:10.1038/452920a News

opinion

specials

Biologists initiate plan to map human proteome

features

news blog

nature joi

٠

٠

.

٠

Rel

٠

٠

٠

ories by subject

Biotechnology

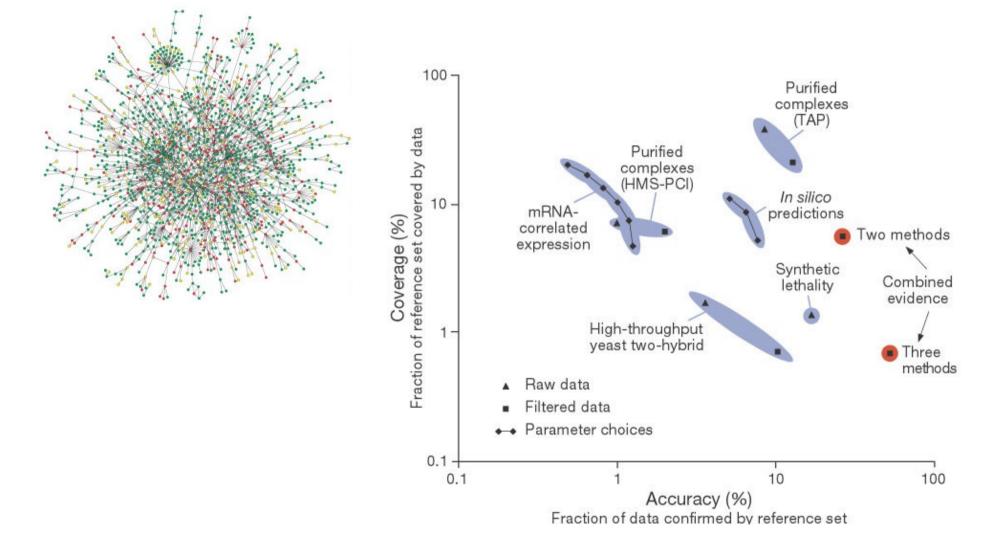
Business Cell and molecular piology Chemistry Genetics Health and medicine _ab life Technology

ories by keywords Proteomics Human Proteome Project Human Proteome Organisation Proteins Human Genome Project catalogue and characterize all proteins in the human body - a Human Proteome Project - are being drawn up by a small group of researchers. But with a price tag of around US\$1 billion, some question whether the organizers can raise enough money or momentum for such an undertaking.

Project aims to characterize all human proteins. Helen Pearson Ambitious plans to

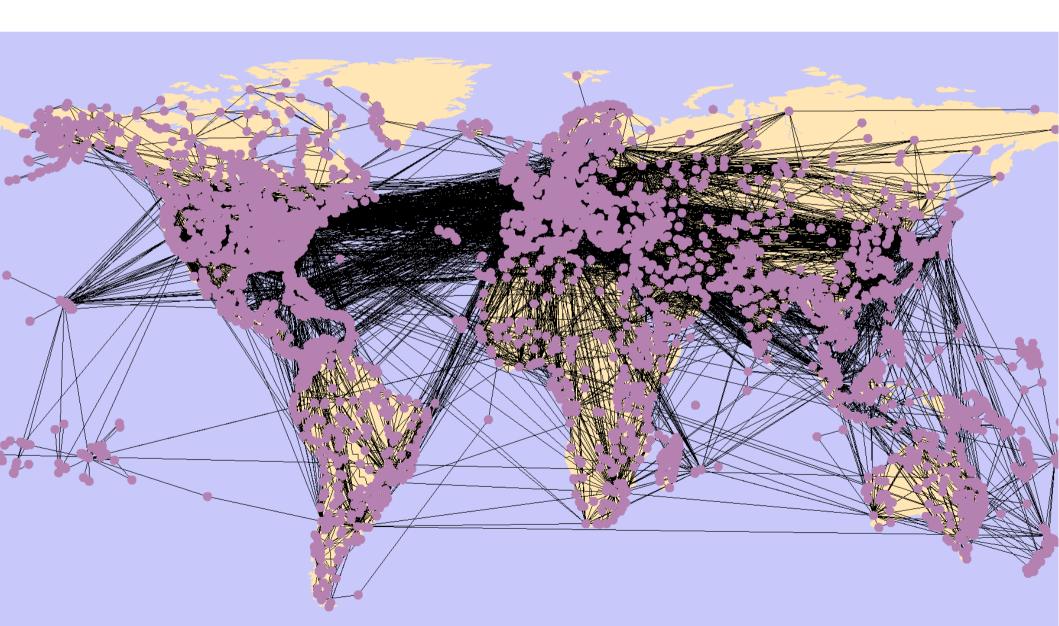
his article elsewhere

Accuracy and coverage are a concern for protein interaction (and most other) datasets

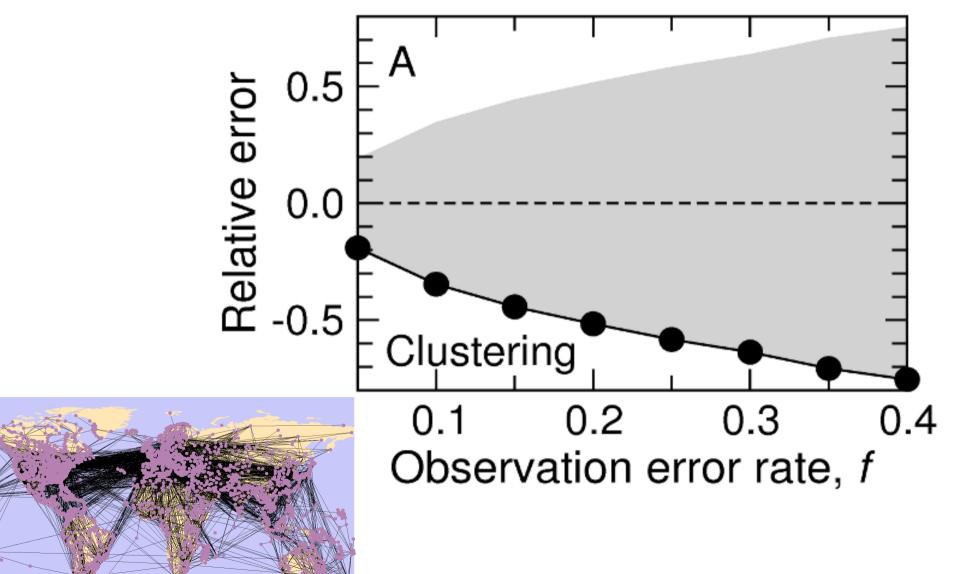


von Mering et al., Nature (2002)

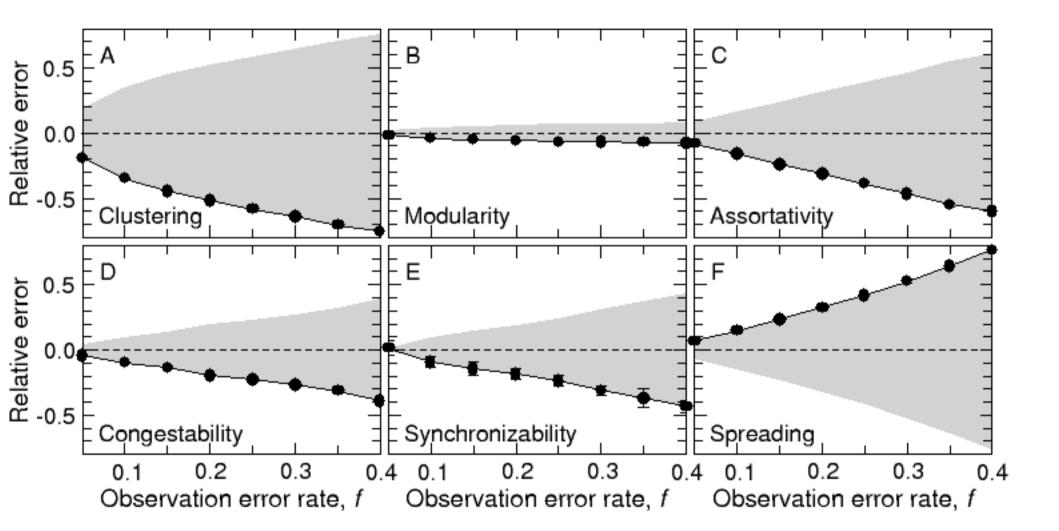
All network data is subject to noise



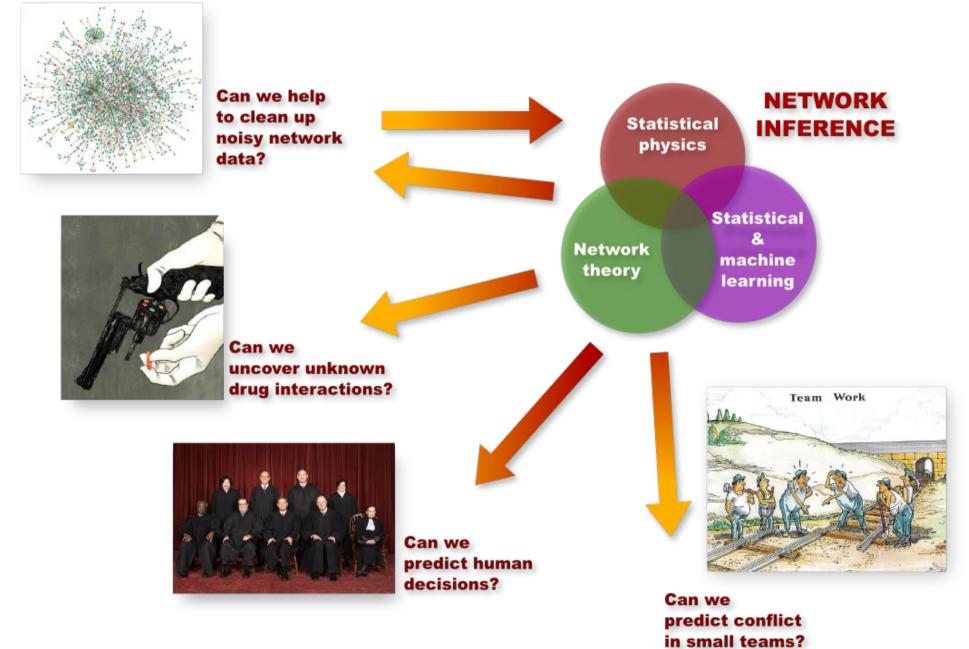
Network properties are often sensitive to even low error rates



Network properties are often sensitive to even low error rates



For the most part, we ignore(d) the issue of network data reliability and pretend(ed) that there is no problem



What is to be done?

→ Given a single noisy observation of a network, determine:

- Missing interactions Interactions that exist but are not captured in our observation of the system
- Spurious interactions Interactions that do not exist but, for some reason, are included in our observation
- Reconstruct the network, so that our reconstruction has properties that are closer to the properties of the true network

What is to be done?

→ Given a single noisy observation of a network, determine:

- Missing interactions Interactions that exist but are not captured in our observation of the system
- Spurious interactions Interactions that do not exist but, for some reason, are included in our observation
- → Reconstruct the network, so that our reconstruction has properties that are closer to the properties of the true network

→ But:

- We want to be able to do this for arbitrary real networks about which we don't know anything
- There seems to be a paradox in trying to identify what is wrong in a network observation—from the network observation itself !

There are two possible scenarios when in comes to solving the paradox

Scenario 1: We don't have a clue about what the network should look like, or where does it come from (mechanistically or statistically):

→ We cannot do anything

- Scenario 2: We do have some ideas about the structure of the network:
 - → We can formalize these ideas into a set of models
 - We can use the models to assess what is likely to be missing/wrong

The "reliability formalism"

- The assume our network is the outcome of an undetermined model M from a (potentially infinite) collection of models \mathcal{M}
- We observe a network A^{O}
- → Given my observation A^o , what is the probability that a property X takes the value X=x if we generate a new network (with the same model)?

$$p(X = x | A^O) = \int_{\mathcal{M}} dM \, p(X = x | M) \, p(M | A^O)$$
$$= \frac{\int_{\mathcal{M}} dM \, p(X = x | M) \, p(A^O | M) \, p(M)}{\int_{\mathcal{M}} dM \, p(A^O | M) \, p(M)}$$

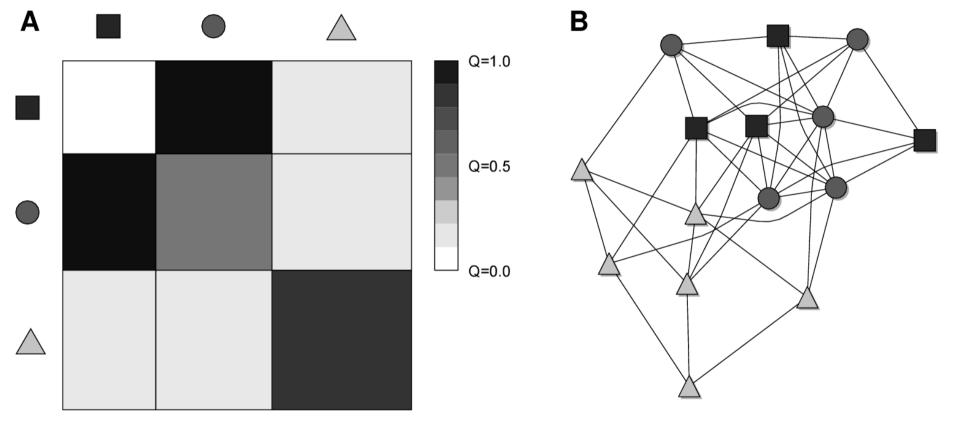
→ We call $p(X=x|A^{O})$ the reliability of the X=x measurement

In particular, one can use the formalism to infer missing and spurious interactions

$$p(A_{ij} = 1|A^O) = \frac{\int_{\mathcal{M}} dM \, p(A_{ij} = 1|M) \, p(A^O|M) \, p(M)}{\int_{\mathcal{M}} dM \, p(A^O|M) \, p(M)}$$

- What property of networks is general enough that applies to all complex networks?
 - Broad (scale-free) connectivity distribution? No
 - Small world property? Yes—but no realistic/tractable model
 - Modularity? Group structure? YES

Stochastic block models (SBM) are *general*, *empirically grounded* and analytically *tractable*



A stochastic block model is fully determined by a partition of the nodes into groups and the probabilities Q that a node in a group is connected to a node in any other group

White, Boorman, Breiger, AJS (1976)

Holland, Laskey, Leinhardt, Soc. Networks (1983)

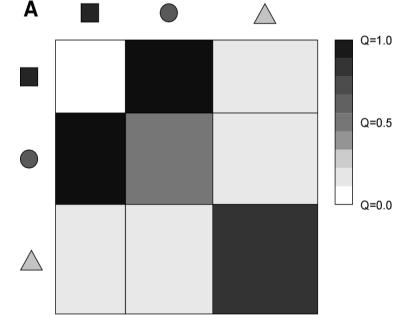
Nowicki, Snijders, JASA (2001)

Stochastic block models (SBM) are *general*, *empirically grounded* and analytically *tractable*

$$p(A_{ij} = 1|A^O) = \frac{\int_{\mathcal{M}} dM \, p(A_{ij} = 1|M) \, p(A^O|M) \, p(M)}{\int_{\mathcal{M}} dM \, p(A^O|M) \, p(M)}$$
$$p(A_{ij} = 1|M) = Q_{\sigma_i \sigma_j}$$
$$p(A^O|M) = \prod_{\alpha \le \beta} Q_{\alpha\beta}^{n_{\alpha\beta}^1} (1 - Q_{\alpha\beta})^{n_{\alpha\beta}^0} \qquad \textbf{A} \qquad \textbf{A}$$

p(M) = constant

$$\int_{\mathcal{M}} dM \to \sum_{P \in \mathcal{P}} \prod_{\alpha \le \beta} \left(\int_0^1 dQ_{\alpha\beta} \right)$$



The link reliability is an ensemble average over all possible partitions of the nodes into groups

➔ In the end, the reliability of a link is

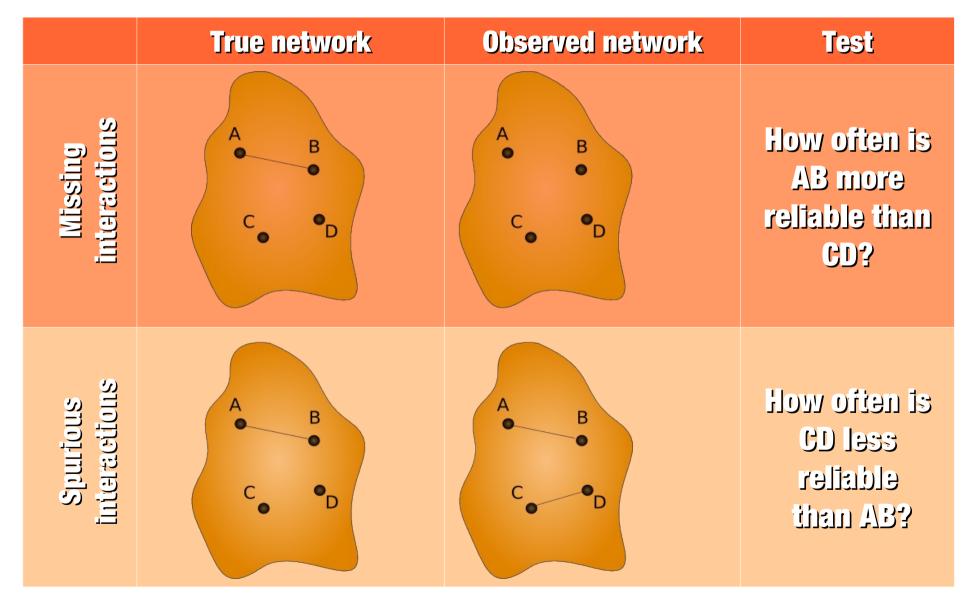
$$p(A_{ij} = 1 | A^O) = \frac{1}{Z} \sum_{P \in \mathcal{P}} \left(\frac{n_{\sigma_i \sigma_j}^1 + 1}{n_{\sigma_i \sigma_j}^0 + n_{\sigma_i \sigma_j}^1 + 2} \right) \exp[-\mathcal{H}(\mathcal{P})]$$

→ Where:

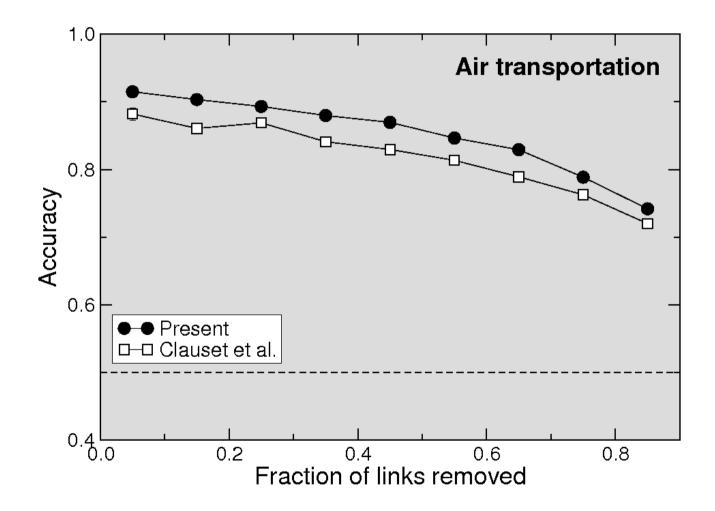
$$\mathcal{H}(\mathcal{P}) = \sum_{\alpha \le \beta} \left[\ln(n_{\alpha\beta} + 1)! - \ln(n_{\alpha\beta}^0)! - \ln(n_{\alpha\beta}^1)! \right]$$

Guimera, Sales-Pardo, PNAS (2009)

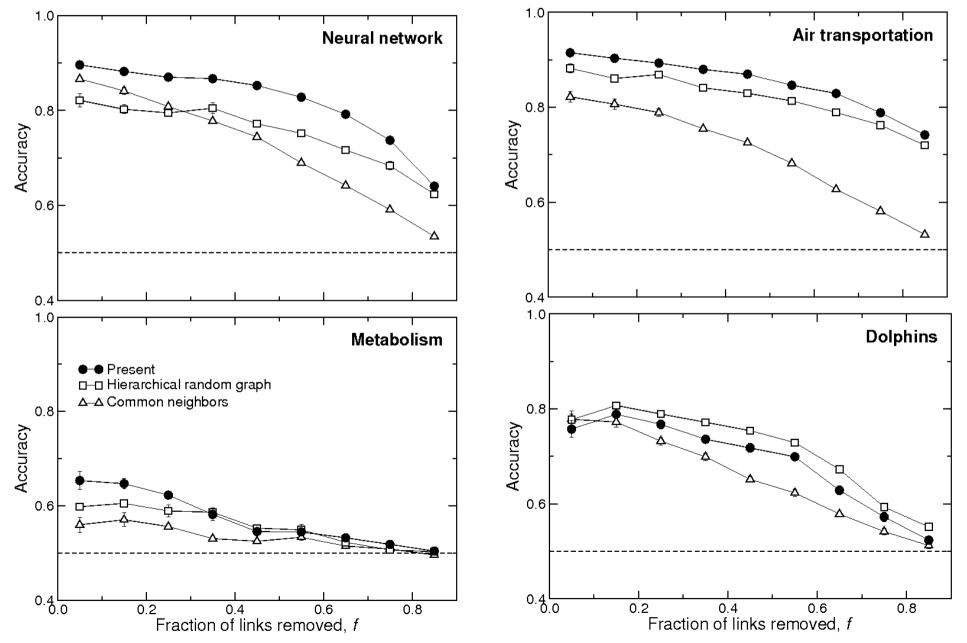
We test our algorithm to see if it can identify missing and spurious interactions in real networks



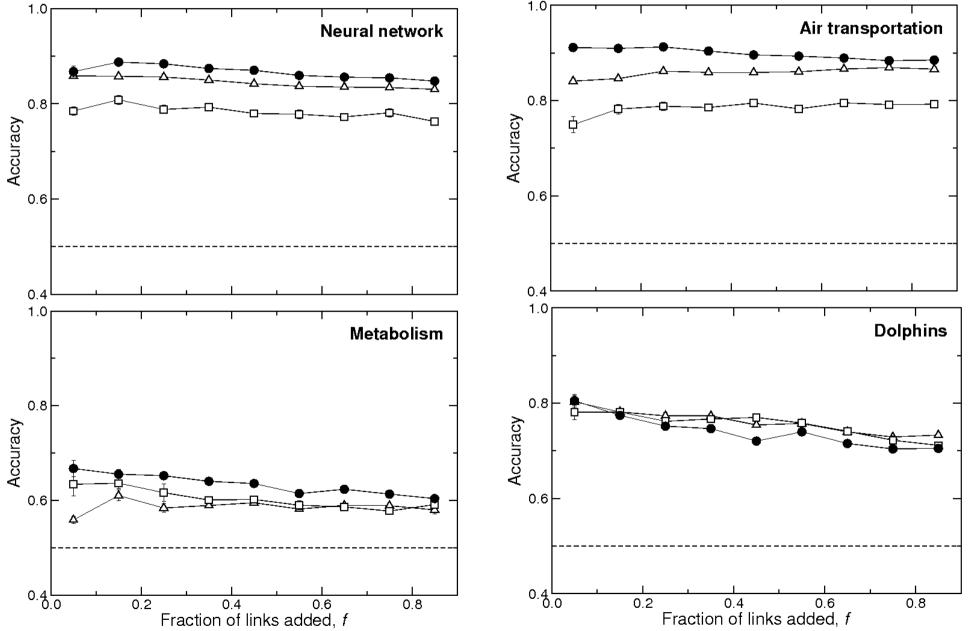
Our approach accurately recovers missing interactions



Our approach accurately recovers missing interactions



Our approach accurately recovers spurious interactions



Wonkish interlude I: H, module identification, maximum likelihood block models and all that

$$p(A_{ij} = 1 | A^O) = \frac{1}{Z} \sum_{P \in \mathcal{P}} \left(\frac{n_{\sigma_i \sigma_j}^1 + 1}{n_{\sigma_i \sigma_j}^0 + n_{\sigma_i \sigma_j}^1 + 2} \right) \exp[-\mathcal{H}(\mathcal{P})]$$

→ What is this "energy"?

$$\mathcal{H}(P) = -\ln p(P|A^O)$$

- Therefore, the partition that minimizes this energy is the most likely given the data (except for priors, degree correction of the block model...):
 - → More appropriate "modularity" function
 - ➔ No need to play with the number of groups
 - ➔ No over-fitting

Wonkish interlude II

Unipartatite unweighted: $\mathcal{H}(\mathcal{P}) = \sum_{\alpha \leq \beta} \left[\ln(n_{\alpha\beta} + 1)! - \ln(n_{\alpha\beta}^{0})! - \ln(n_{\alpha\beta}^{1})! \right]$ Unipartite weighted: $\mathcal{H}(\mathcal{P}) = \sum_{\alpha \leq \beta} \left[\ln(n_{\alpha\beta} + K - 1)! - \sum_{k=1}^{K} \ln(n_{\alpha\beta}^{k})! \right]$ Bipartite weighted: $\mathcal{H}(\mathcal{P}_{\mathcal{U}}, \mathcal{P}_{\mathcal{I}}) = \sum_{\alpha, \beta} \left[\ln(n_{\alpha\beta} + K - 1)! - \sum_{k=1}^{K} \ln(n_{\alpha\beta}^{k})! \right]$

> Guimera, Sales-Pardo, *PNAS* (2009) Guimera, Sales-Pardo, *PLOS ONE* (2011) Guimera, Llorente, Moro, Sales-Pardo, *PLOS ONE* (2012) Rovira-Asenjo, Gumi, Sales-Pardo, Guimera, *in press* (2013)

Reconstructing a network is more complicated than just adding missing interactions and removing spurious interactions

- → Challenges:
 - ➔ We don't know how many links need to be added and removed
 - ➔ Links cannot be added and removed independently of each other

We define a network reliability

➔ The reliability of a network is

$$p(A|A^O) = \frac{1}{Z} \sum_{P \in \mathcal{P}} f(A; A^O, P) \exp[-\mathcal{H}(\mathcal{P})]$$

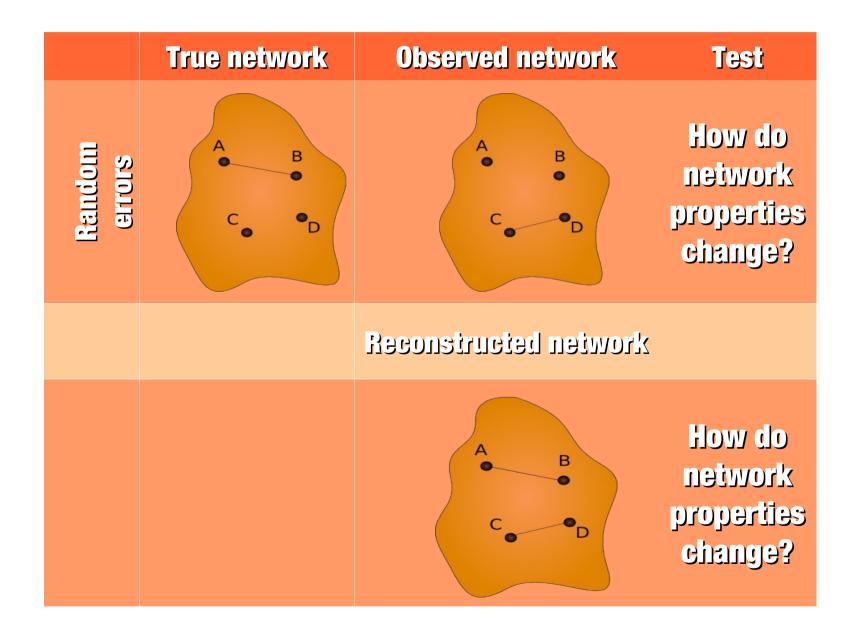
The *network reconstruction* is the most reliable network

➔ The reliability of a network is

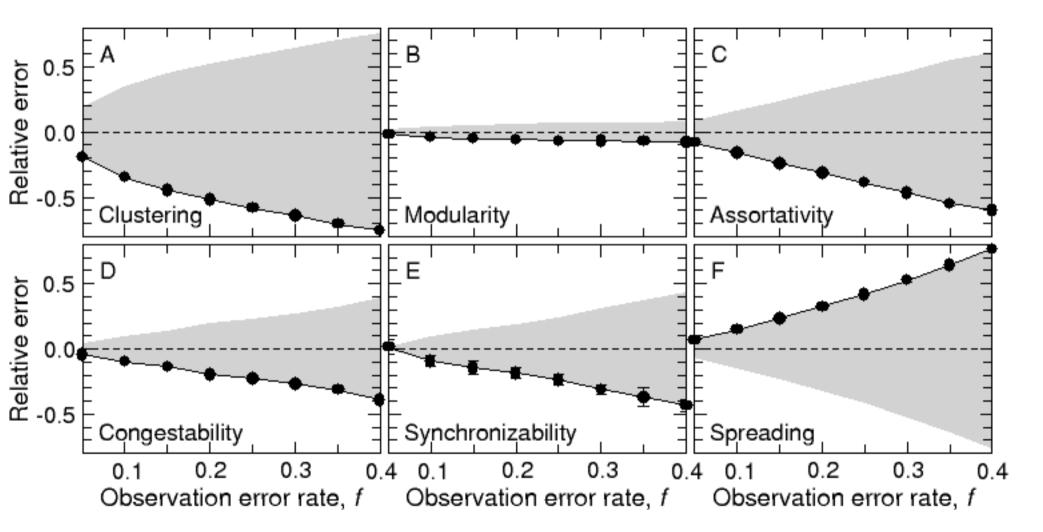
$$p(A|A^O) = \frac{1}{Z} \sum_{P \in \mathcal{P}} f(A; A^O, P) \exp[-\mathcal{H}(\mathcal{P})]$$

- ➔ The reconstruction A^R is the network that maximizes this probability
- → We obtain A^R using uphill search

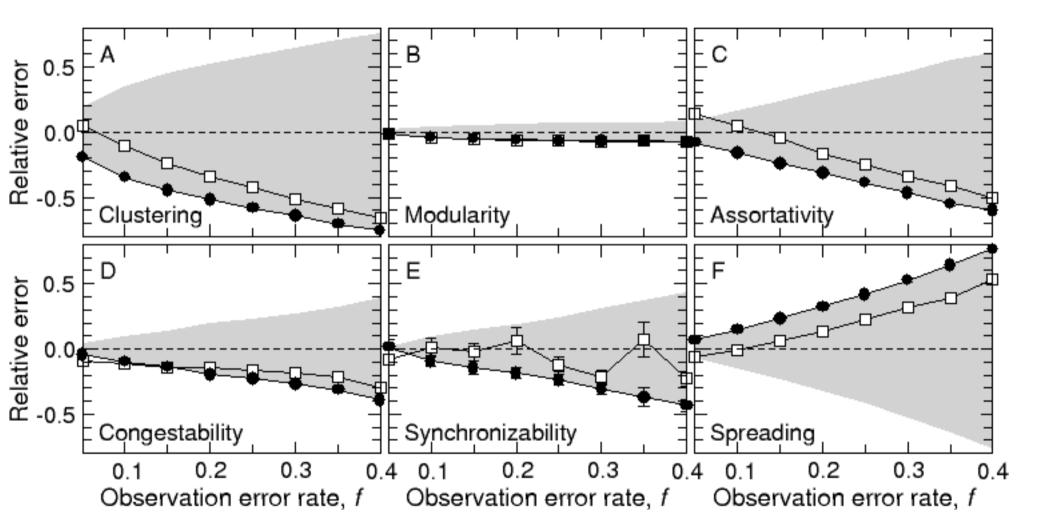
We can test what is the effect of random errors in our network observations

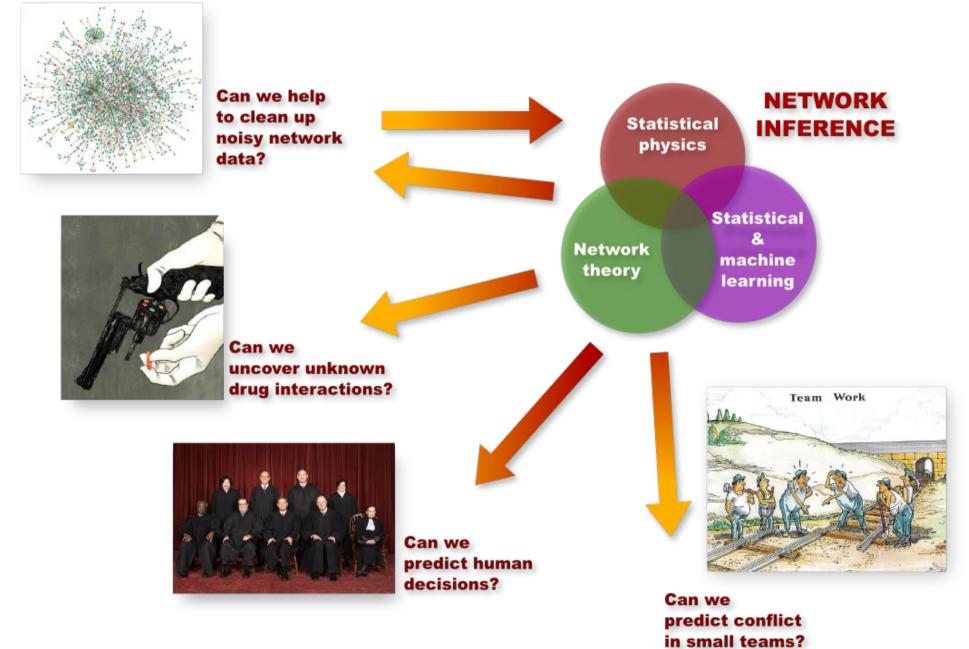


Network reconstructions provide better estimates of global network properties than the observations themselves



Network reconstructions provide better estimates of global network properties than the observations themselves





The challenge of discovering novel drug-drug interactions

- Twenty-nine percent [of U.S. population aged 57-85] used at least 5 prescription medications concurrently.
- Overall, 4% of individuals were potentially at risk of having a major drugdrug interaction.

Can we predict which severe drug interactions will be dded to / removed from a database?

Currently displaying 5 drugs known to have a major interaction with Paracetamol (acetaminophen).

See also: The most common drugs checked in combination with this medicine

Medications known to interact with Paracetamol (acetaminophen)

Show me: Major interactions (5) ▼ ✓ Generic only Go

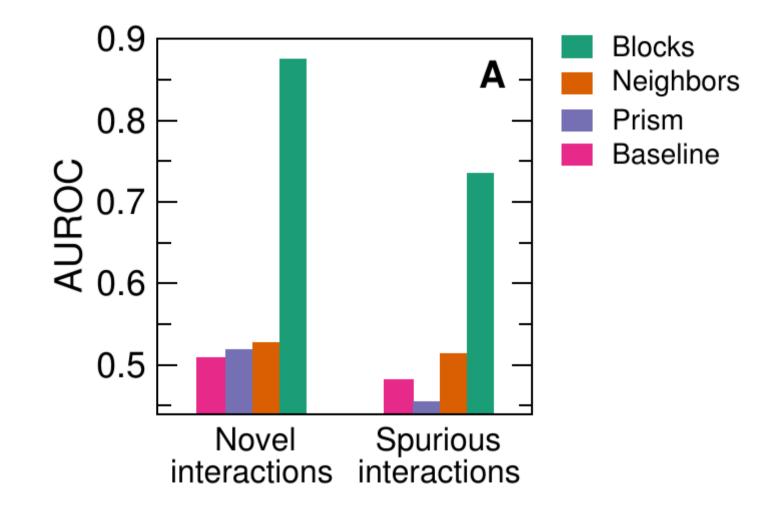
Browse Index:E L

Ε ethanol L

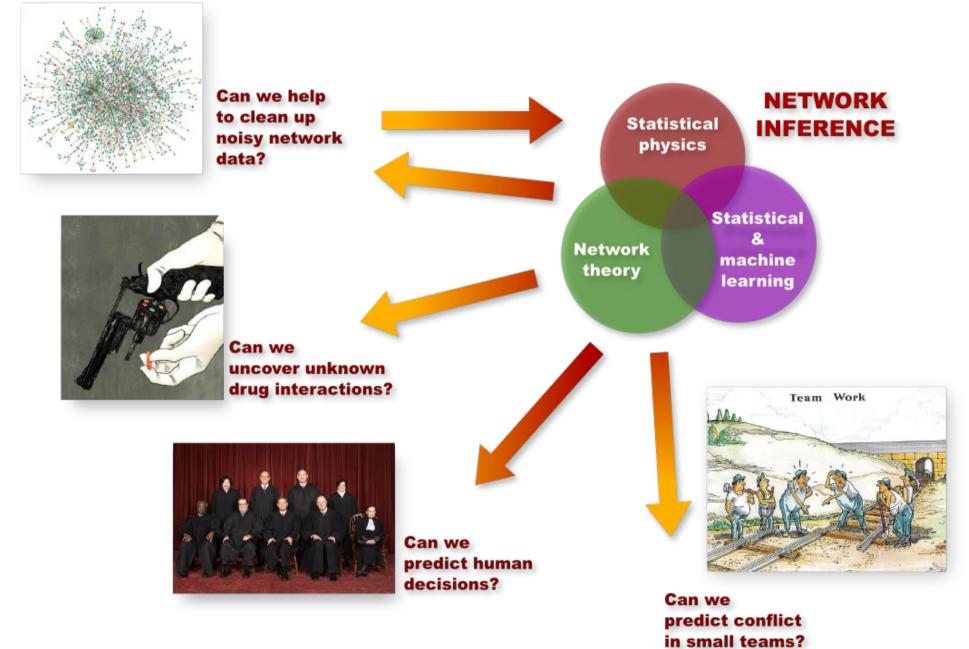
Ieflunomide

- → Two snapshots of the druginteraction database available at drugs.com:
 - May 10th, 2010
 - February 22nd, 2012
- → Between the snapshots:
 - 1349 interactions added
 - 165 interactions removed

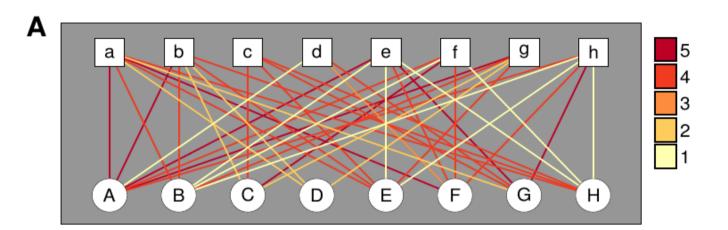
We can predict which severe drug interactions will be removed from and added to a database

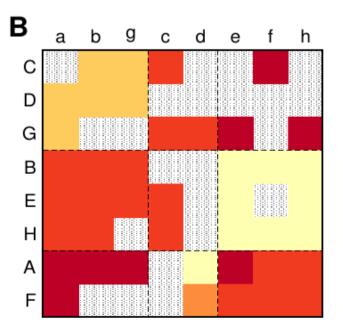


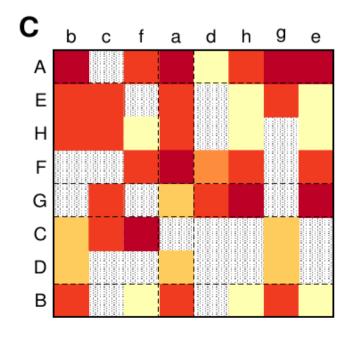
Guimera, Sales-Pardo, submitted (2013)



Predicting human preferences can be reformulated as a problem of network inference







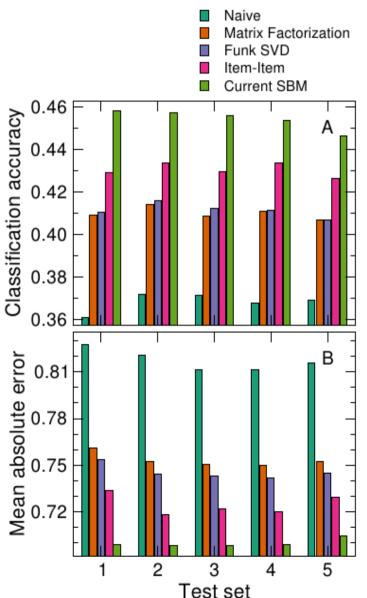
Our approach predicts human preferences better than state-of-the-art collaborative filtering algorithms

- MovieLens set: 100,000
 real 1-5 movie ratings by ~1,000 users
- ➔ 5 independent splits of the data into 80,000 observed ratings and 20,000 validation ratings

Guimera, Llorente, Moro, Sales-Pardo (PLOS ONE 2012)

Our approach predicts human preferences better than state-of-the-art collaborative filtering algorithms

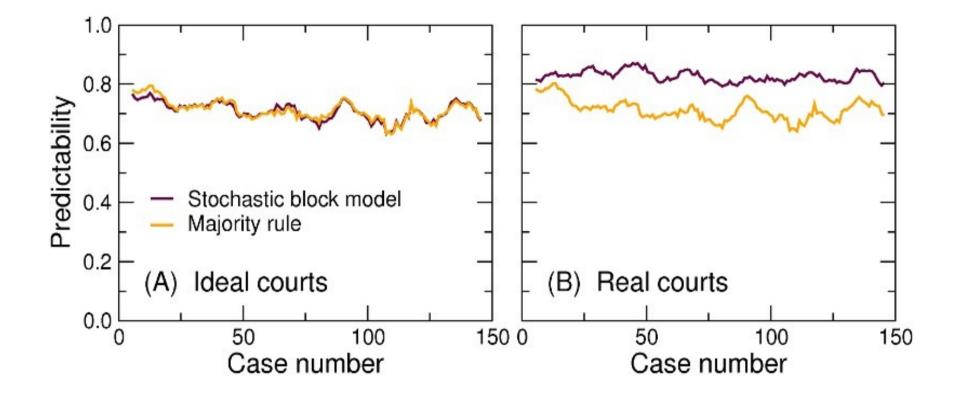
- MovieLens set: 100,000 real 1-5 movie ratings by ~1,000 users
- ➔ 5 independent splits of the data into 80,000 observed ratings and 20,000 validation ratings



Guimera, Llorente, Moro, Sales-Pardo (*PLOS ONE* 2012)

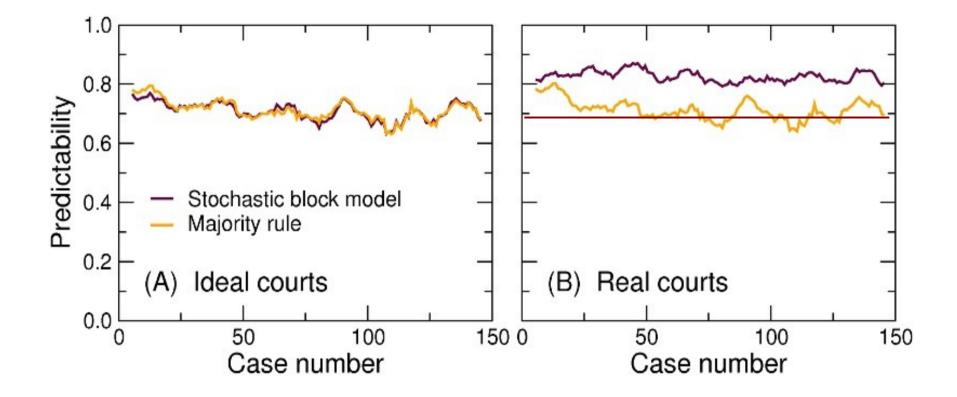
Can we predict what a US Supreme Court justice votes based on what the others did?

Supreme Court votes are more predictable than expected from ideal courts

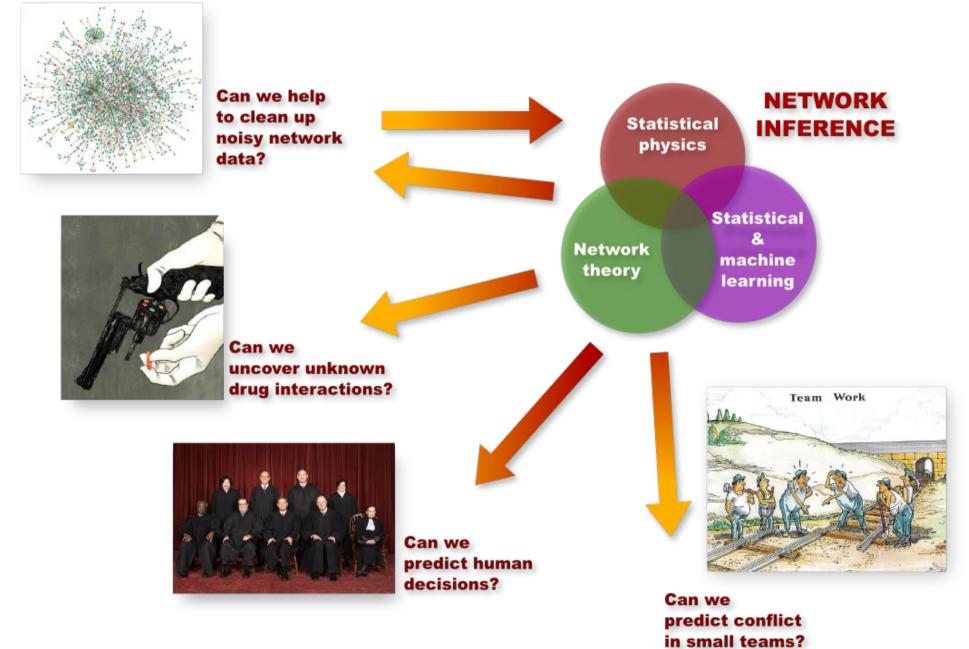


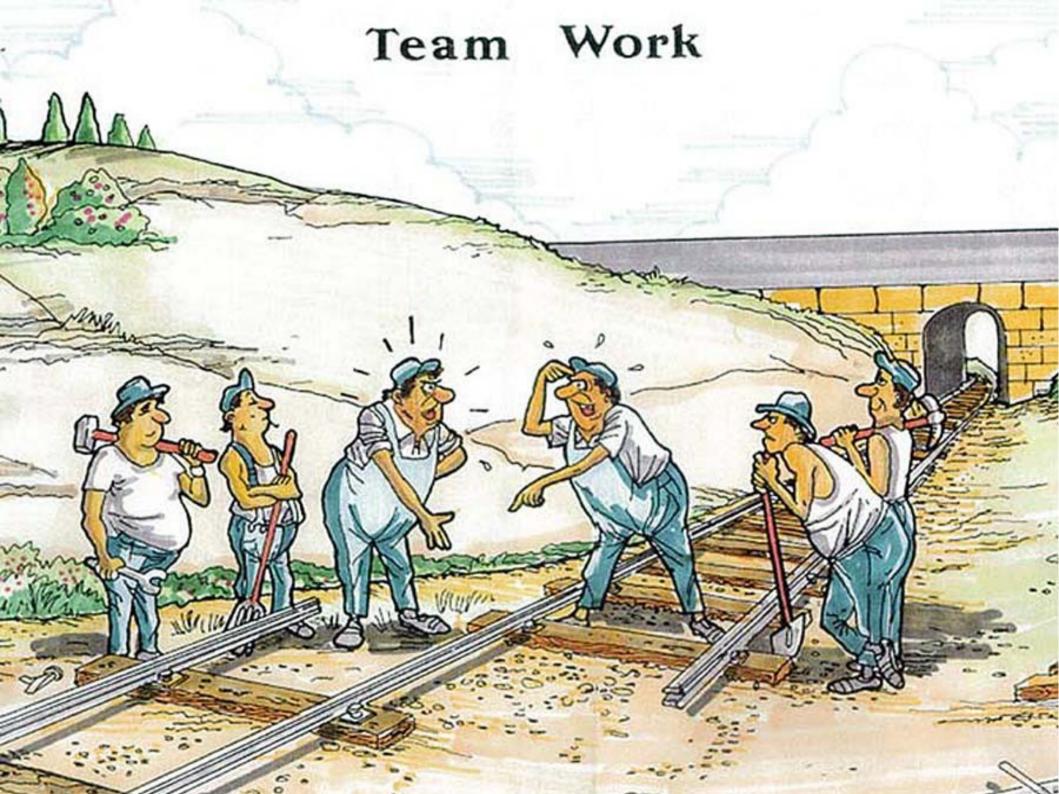
Guimera, Sales-Pardo, PLOS ONE (2011)

Supreme Court votes are more predictable than expected from ideal courts



Guimera, Sales-Pardo, PLOS ONE (2011)

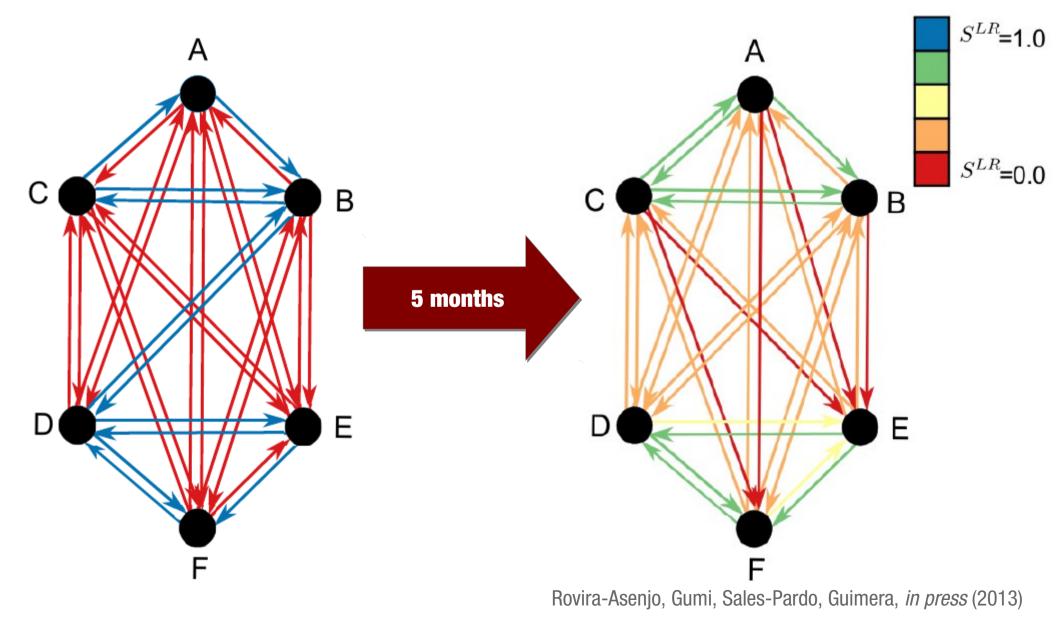




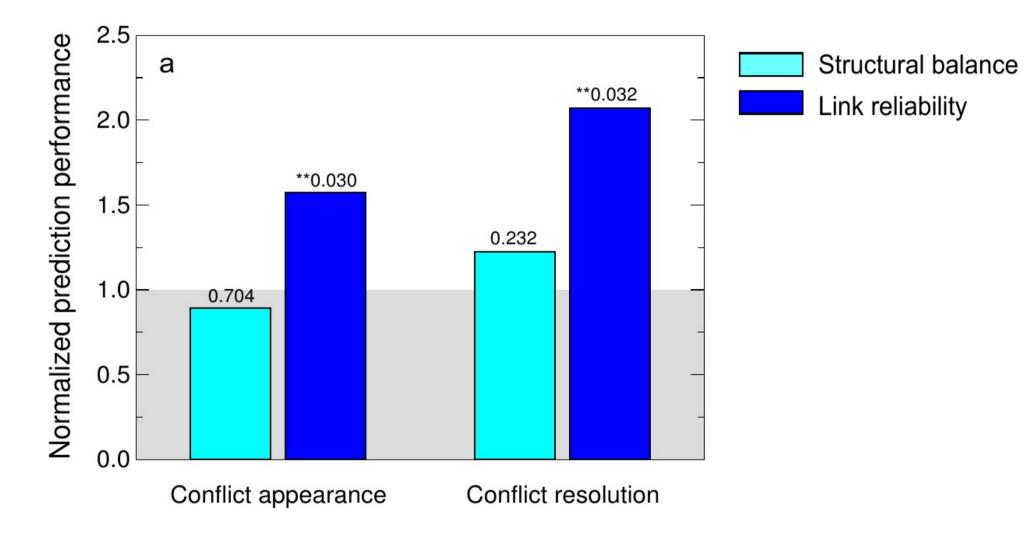
Tracking team conflict in the real world

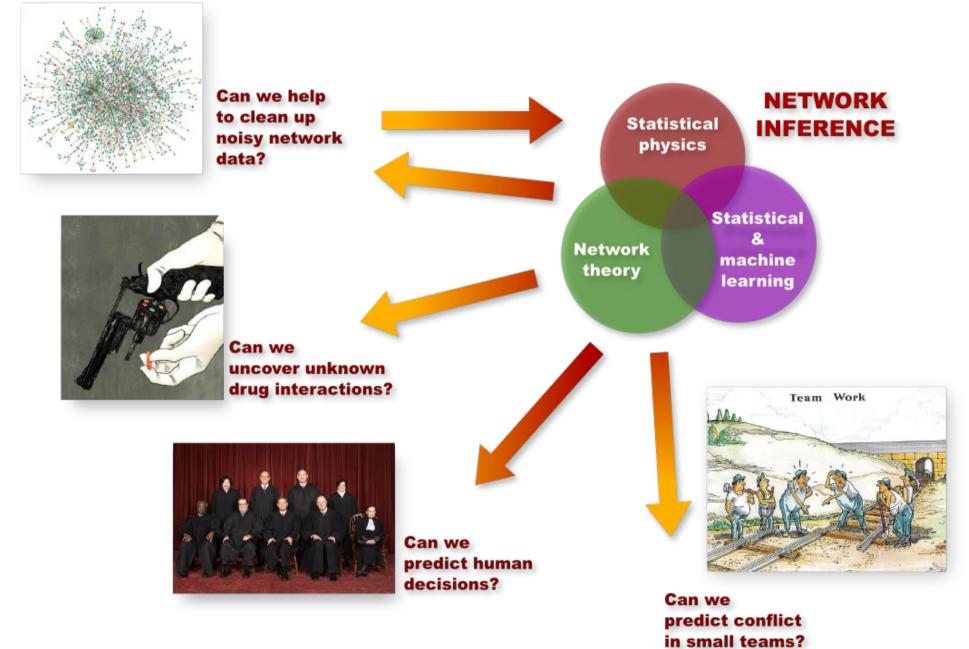
- → 16 teams with ~6 people, working on a real project during 9 months
- → We administer 2 surveys:
 - → First: After 4 months working together
 - → Second: At the end of the project
- "Would you like to work with this person again in the future"

Can we predict where conflict is going to arise and where it is going to resolve?



Our approach predicts conflict appearance and conflict resolution whereas structural balance does not





Thank you

- T. Gumí, A. Llorente, E. Moro, N. Rovira-Asenjo, M. Sales-Pardo
- → Funding

James S. McDonnell Foundation

➔ More information:

- http://seeslab.info
- @sees_lab