
DEL-based Epistemic Planning for Human-Robot Collaboration:
Theory and Implementation

Thomas Bolander , Lasse Dissing , Nicolai Herrmann
Technical University of Denmark

{tobo, ldiha}@dtu.dk, nicolai@herrmann.dk

Abstract
Epistemic planning based on Dynamic Epistemic Logic
(DEL) allows agents to reason and plan from the perspec-
tive of other agents. The framework of DEL-based epistemic
planning thereby has the potential to represent significant as-
pects of Theory of Mind in autonomous robots, and to pro-
vide a foundation for human-robot collaboration in which co-
ordination is achieved implicitly through perspective shifts.
In this paper, we build on previous work in epistemic plan-
ning with implicit coordination. We introduce a new notion of
indistinguishability between epistemic states based on bisim-
ulation, and provide a novel partition refinement algorithm
for computing unique representatives of sets of indistinguish-
able states. We provide an algorithm for computing implic-
itly coordinated plans using these new constructs, embed it in
a perceive-plan-act agent loop, and implement it on a robot.
The planning algorithm is benchmarked against an existing
epistemic planning algorithm, and the robotic implementa-
tion is demonstrated on human-robot collaboration scenarios
requiring implicit coordination.

1 Introduction
One important application of epistemic planning is Human-
Robot Collaboration, that is, multiple robots and humans
collaboratively working towards a joint goal. The inclusion
of human collaborators greatly increases the complexity, due
to the difficulties of human-robot communication (Thomaz,
Hoffman, and Cakmak 2016). It is therefore desirable to
build systems capable of implicit coordination, i.e., coordi-
nation based upon shared information about the world and
the ability to take the perspective of the others.

Consider a scenario with a human and a service robot,
where the human says: “I am looking for my glasses. Can
you help me find them?”. Assuming the robot adopts the
goal to help, it becomes a joint goal between the human
and the robot to locate the glasses. It is an epistemic goal:
the goal is for the human to know where the glasses are.
The robot might come up with the following sequential
plan: findLocationOfGlasses, announceLocationOfGlasses.
While this plan works correctly in the nominal case, it could
lead to socially awkward behaviour if the human finds the
glasses herself first. The robot, detecting the glasses in her
hands, might then announce: “I found your glasses! They are
in your hands!”. This could happen if the robot is not able to
take her perspective and understand that if she picks up the

glasses herself, it must imply that she already knows where
they are (and hence that the goal has been reached).

In this paper, we develop a planning algorithm capa-
ble of taking the perspective of humans and reason about
their knowledge and uncertainty, hence avoiding this kind
of social awkwardness. The typical approach used by prior
human-robot collaboration planners is to maintain a dis-
tinct knowledge base for each agent in the scenario (Ta-
lamadupula et al. 2014; Buisan and Alami 2021). How-
ever, such first-order representations are not expressive
enough to handle more complex scenarios involving nested
perspective-taking (Lemaignan and Dillenbourg 2015).

For this reason, we instead approach this problem through
the theoretical framework of epistemic planning with im-
plicit coordination proposed by Engesser et al. (2017) and
further detailed by Bolander et al. (2018). Using Dynamic
Epistemic Logic (DEL), they represent communication and
other epistemic actions in the same action representation
language as regular ontic actions. Furthermore, they sug-
gest finding policies (mapping states to actions) instead of
sequential plans in order to handle non-deterministic ex-
ecution and uncertainty about the plans chosen by other
agents. Planners built upon this framework have been de-
scribed in several prior works. The original paper by En-
gesser et al. (2017) briefly describes an implementation us-
ing a breadth-first search over an AND-OR graph. Engesser
and Miller (2020) describe a planner which compiles a de-
cidable fragment of epistemic planning into fully observable
nondeterministic planning. Reifsteck et al. (2019) describe
an algorithm and implementation capable of finding epis-
temic planning policies using a Monte-Carlo Tree Search
over epistemic states.

We continue this line of work by making theoretical im-
provements to the framework (Section 3–4): an improved
notion of indistinguishability based on bisimulation and a
novel partition refinement algorithm for computing unique
representatives of indistinguishable states. Furthermore, we
describe in detail an AND-OR graph search algorithm for
finding implicitly coordinated policies (Section 6). Addi-
tionally, we implement a planner based upon the algorithm,
and benchmark it against prior work (Section 7). We also
integrate the planner with a robotics system, and test it on
human-robot collaboration scenarios (Section 7). The Sup-
plementary Material referred to in the paper can be found at

https://github.com/Zeltex/Implicit Coordination.

2 Dynamic Epistemic Logic
The version of DEL used in this paper is the version
used by Bolander et al. (2018), which is essentially clas-
sic DEL (Baltag, Moss, and Solecki 1998) extended to
allow postconditions and multi-pointed models. Hence all
definitions in this section can also be found in Bolander
et al. (2018), except with minor differences in the nota-
tional and syntactic conventions. Additionally, for techni-
cal simplicity, in epistemic states and actions, we require
all worlds and events to be reachable from the designated
worlds and events. We take our propositional atoms to be
a set P (c1, . . . , cn) of ground atoms of first-order predicate
logic (Bolander 2017; Dissing and Bolander 2020). Let Ψ
be a set of predicates of first-order logic, O a finite set of
objects, and A a finite set of agents. Our epistemic lan-
guage L(Ψ,O,A), often abbreviated L, is then given by
φ ::= > | ⊥ | P (c1, . . . , cn) | ¬φ | φ∧φ | Kiφ | Cφ, where
i ∈ A, P ∈ Ψ is a predicate of arity n ∈ N and ci ∈ O ∪ A
for all i. The set of atoms of the form P (c1, . . . , cn) is de-
noted Atm(Ψ,O,A), often abbreviated Atm. Kiφ is read
as “agent i knows φ” and Cφ as “it is common knowledge
that φ”. Formulas of the form Cφ are called common knowl-
edge formulas.
Definition 1. An (epistemic) state is s = (W,R,L,Wd),
where W is a non-empty finite set of worlds, R : A →
P(W×W) assigns to each agent i ∈ A an equivalence rela-
tion Ri called an accessibility relation; L : W → P(Atm)
assigns to each world w a labelling (the set of atoms true
in w); and Wd ⊆ W is the set of designated worlds. We
will require that all worlds are reachable from the set of des-
ignated worlds, i.e., for each w ∈ W there is a wd ∈ Wd

such that (wd, w) ∈ (∪i∈ARi)
∗. When Wd = {wd} for

some wd ∈ W , the state is called global and we then often
write (W,R,L,wd) for (W,R,L, {wd}). In this case, wd is
called the actual world. For any state s = (W,R,L,Wd),
let Globals(s) = {(W,R,L,w) | w ∈ Wd}. A state s that
is not global can be considered as a compact representation
of Globals(s), the set of global states it contains.

The truth of L-formulas in epistemic states is defined as
follows, with standard semantics for the propositional cases:

(W,R,L,Wd) � φ iff for all w ∈Wd, (W,R,L,w) � φ
(W,R,L,w) � p iff p ∈ L(w) where p ∈ Atm
(W,R,L,w) �Kiφ iff for all v ∈W, if (w, v) ∈ Ri

then (W,R,L,v) � φ
(W,R,L,w) �Cφ iff for all v ∈W,

if (w, v)∈(
⋃

i∈ARi)
∗ then (W,R,L,v) � φ

Given a global state s = (W,R,L,wd) and an agent i, the
accessibility relation Ri models the run-time uncertainty of
agent i. In s, agent i cannot distinguish any of the worlds v
with (wd, v) ∈ Ri from the actual world wd, i.e., the knowl-
edge of i is given by what is true in all of those worlds v.
Higher-order knowledge is represented via sequences of re-
lations, e.g. “agent i knows that agent j knows φ” is true in s
iff s |= KiKjφ, which holds when φ is true in all worlds ac-
cessible from wd by the composite relation Ri;Rj . We use

w1: In(glasses, box1) w2: In(glasses, box2)

r, h
s0

Figure 1: The initial state s0 = (M, {w1, w2}) of Example 1. The
worlds are represented as nodes, the accessibility relations as la-
belled edges (reflexive loops omitted) and an interior dot marks
designated worlds.

the setWd of worlds to model plan-time uncertainty (Bolan-
der and Andersen 2011), that is, uncertainty caused by non-
deterministic actions, such as a coin toss, where the exact
outcome is not revealed until the action is performed at run-
time. A state (W,R,L,Wd) is a local state for agent i
if Wd is closed under Ri. The perspective shift of a state
s = (W,R,L,Wd) with respect to an agent i is defined
as si = (W,R,L, {v | (w, v) ∈ Ri and w ∈ Wd}). The
perspective-shifted state si represents the plan-time uncer-
tainty of agent i in state s. If s is a global state, si is the view
(or perspective) of i on state s. The state (si)j , for some
agent j, is then j’s perspective on i’s perspective on the state
s, and it encodes what j knows about what i knows about
s (Engesser et al. 2017).
Example 1. Consider a version of the “missing glasses” sce-
nario from the introduction with A = {r, h}, where r is
the robot and h the human. We assume that initially both
of them know that the glasses are in one of two boxes,
box 1 or box 2, but they do not know which, modelled by
s0 of Figure 1 which is local to both agents. World wj ,
j = 1, 2, represents the possibility that the glasses are in
boxj . The relations encode that both agents consider both
worlds possible: each i ∈ A knows the glasses are in one of
the boxes, s0 � Ki(In(glasses, box1)∨In(glasses, box2)),
but does not know which, s0 � ¬KiIn(glasses, box1) ∧
¬KiIn(glasses, box2).
Definition 2. An (epistemic) action of agent i is an expres-
sion of the form i:awith a = (E,Q, pre, post, Ed) whereE
is a non-empty finite set of events; Q : A →P(E × E) as-
signs to each agent j ∈ A an equivalence relation Qj called
an accessibility relation; pre : E → L assigns a precondi-
tion to each event; post : E → L assigns a postcondition to
each event with the restriction that for all e ∈ E, post(e)
is a conjunction of literals (atoms and their negations) with
each atom occurring at most once; and Ed ⊆ E is a subset
of designated events. We will require thatEd is closed under
Qi.

An epistemic action i:a is an action executed by
agent i (we can read i:a as “i does a”). When a =
(E,Q, pre, post, Ed), Ed represents the plan-time uncer-
tainty of agent i concerning which event will occur. Since we
require Ed to be closed under Qi, it means an action i:a is
not only executed by i, but also seen from the perspective of
i. An action with |Ed| > 1 is thus seen as non-deterministic
from the perspective of agent i. Applying an action to a state
is achieved through the product update defined next.
Definition 3. Let s = (W,R,L,Wd) be a local epistemic
state for agent i and i:a = i:(E,Q, pre, post, Ed) an epis-

https://github.com/Zeltex/Implicit_Coordination

e1 : 〈φ,>〉 e2 : 〈¬φ,>〉
A − {i}

i:perceive(φ)

e1 : 〈ψ, φ〉
i:ontic(ψ, φ)

e1 : 〈φ,>〉
i:announce(φ)

Figure 2: The generic actions used in the “missing glasses”
scenario. Each event e ∈ E is labelled by 〈pre(e), post(e)〉.
i:perceive(φ) models that agent i semi-privately observes whether
φ holds. i:announce(φ) models a public announcement of φ and
i:ontic(ψ, φ) models a public ontic action with ψ as precondition
and φ as effect, e.g. h:ontic(In(cube, box1),¬In(cube, box1) ∧
In(cube, box2)) represents agent h moving the cube from box 1
to box 2.

(w1,e1) : In(glasses, box1) (w2,e2) : In(glasses, box2)

h
s1

Figure 3: The state s1 resulting from the product update of s0 from
Figure 1 with r:perceive(In(glasses, box1)).

temic action of i. The product update of s with i:a is defined
as the epistemic state s⊗ i:a = (W ′, R′, L′,W ′d) where
• W ′d = {(w, e) ∈Wd × Ed | (W,R,L,w) � pre(e)}
• R′j = {((w, e), (v, f)) | (w, v) ∈ Rj and (e, f) ∈ Qj}
• W ′ = {(v, f) ∈ W × E | (W,R,L, v) � pre(f) and

((w, e), (v, f)) ∈ (∪i∈AR′i)∗ for some (w, e) ∈W ′d}
• L′((w, e)) = {p ∈ Atm | either post(e) �
p or both (W,R,L,w) � p and post(e) 2 ¬p}

Furthermore, i:a is said to be applicable in s if for all w ∈
Wd there exists an event e ∈ Ed s.t. (W,R,L,w) |= pre(e).

Note that as a consequence of our conventions, the prod-
uct update s⊗ i:a will always be a local state for agent i.
Example 2. Extending Example 1, for each agent i and
formula φ we can define an action i:perceive(φ), pro-
vided in Figure 2, modelling that agent i semi-privately
senses whether φ holds, e.g. if φ = In(glasses, box1)
and i = r, it models that the robot r checks whether the
glasses are in box1. Note that all agents except i will not
get to know whether φ was true or not, so in the exam-
ple with φ = In(glasses, box1), it corresponds to agent
i peeking into box1 in the presence of the other agents
but without the other agents seeing what i sees. Letting
s0 be the state from Figure 1, we can compute the result
s1 = s0 ⊗ r:perceive(In(glasses, box 1)) as seen in Fig-
ure 3. r no longer has any (run-time) uncertainty regarding
the location of the glasses, i.e. s1 � KrIn(glasses, box 1) ∨
KrIn(glasses, box 2). h still doesn’t know their location,
but h now knows that r knows their location, s1 �
Kh(KrIn(glasses, box 1) ∨KrIn(glasses, box 2)).

3 Uniformity and Bisimulations
In general in automated planning and game theory, a pol-
icy (or strategy) is a mapping from states to actions. In our

case, each agent i has its own policy, which is then a map-
ping from states into actions of agent i. In planning under
partial observability and in games with imperfect informa-
tion, agent i might not be able to distinguish certain states.
We thus assume we are given an indistinguishability rela-
tion ∼i for agent i on the set of states. Given ∼i for agent i,
a policy πi for agent i is called uniform if whenever s ∼i s

′

we have πi(s) = πi(s
′). Thus an agent must make the same

choice in states it can’t distinguish between. This is essen-
tial for a policy to make sense from the subjective perspec-
tive of the planning agent (Jamroga and Aagotnes 2007).
What is the relevant notion of indistinguishability on epis-
temic states? Well, if two local states of agent i are modally
equivalent (satisfy the same formulas), then necessarily they
must be indistinguishable to that agent (the agent has exactly
the same knowledge in the two states). So in our setting, the
uniformity condition reduces to this: if s and s′ are modally
equivalent local states for agent i then πi(s) = πi(s

′). In
order to ensure uniformity of our policies, we hence need a
method to check pairs of states for modal equivalence. For
standard single-pointed epistemic states (global states), it is
well-known that modal equivalence coincides with bisimi-
larity (Blackburn and van Benthem 2007). For multi-pointed
epistemic states as we consider here, a notion of bisimula-
tion was defined by Bolander and Andersen (2011), however
that definition does not ensure that modal equivalence coin-
cides with bisimilarity (the condition on how the designated
worlds are related by the bisimulation relation is too weak).
We here fix the definition and prove that it gives the expected
correspondence. Nothing in this section is going to rely on
the accessibility relations Ri being equivalence relations, so
the proofs will also go through for multi-pointed K models
(epistemic logic with arbitrary accessibility relations).
Definition 4. A bisimulation between epistemic states s =
(W,R,L,Wd) and t = (W ′, R′, L′,W ′d) is a binary relation
Z ⊆W ×W ′ satisfying:
[atom] If (w,w′) ∈ Z, then L(w) = L′(w′).
[forth] If (w,w′) ∈ Z and (w, v) ∈ Ri, then there exists v′

such that (v, v′) ∈ Z and (w′, v′) ∈ R′i.
[back] If (w,w′) ∈ Z and (w′, v′) ∈ R′i, then there exists v

such that (v, v′) ∈ Z and (w, v) ∈ Ri.
[designated] If w ∈ Wd, then there exists a w′ ∈ W ′d with

(w,w′) ∈ Z, and vice versa.
Two epistemic states s and t are called bisimilar iff there
exists a bisimulation between them, and we then write s↔t.
Proposition 1. Two epistemic states are bisimilar iff they
are modally equivalent (satisfy the same set of formulas).

Proof sketch. The trick is to replace multi-pointed models
by single-pointed models as follows: The set of designated
worlds of the original model is replaced by a single fresh
actual world, and all the old designated worlds are made ac-
cessible from this new actual world by the accessilibity rela-
tion of a fresh agent. By thus translating multi-pointed mod-
els into single-pointed models, we can rely on the standard
proof of the correspondence between bisimilarity and modal
equivalence (Blackburn, de Rijke, and Venema 2001). See
Supplementary Material for the full proof.

w1 : p

w2 : p

w3 : p w4 : q

i

i, j

i

k

j

W1 W2 W3

Figure 4: An epistemic state and a partition (W1,W2,W3) of its
worlds.

Given the result above, we can guarantee uniformity of a
policy by checking that it returns the same set of actions
on any pair of bisimilar states. We can accomplish this,
and at the same time keep the policies minimal, by defin-
ing unique representatives of each class of indistinguish-
able states and then only define the policy on these rep-
resentatives. There already exists a notion of bisimulation
contraction of an epistemic state (Blackburn and van Ben-
them 2007), which can be computed using a partition re-
finement algorithm (Aceto, Ingólfsdóttir, and Srba 2012).
However, using partition refinement to contract a set of
bisimilar states does not guarantee a unique representative,
but may produce any state from a set of isomorphic states,
i.e., a set of states which are identical except for the world
names. We will define our own partition refinement algo-
rithm called OrderedPartitionRefinement which indeed
guarantees finding a unique representative of each class of
modally equivalent/bisimilar states. It does so by simply
assuming a total order on all the relevant syntactical con-
structs, and using it to determine the order of the individ-
ual steps of the algorithm as well as the order of the blocks
within a partition. This ensures that for bisimilar states, the
same steps are taken in the same order, resulting in the
same worlds in the same order. To our knowledge, this is
the first such algorithm guaranteeing unique representatives,
and may hence be of independent interest within epistemic
logic and labelled transition systems.

4 Ordered Partition Refinement
An ordered partition of a set W is a tuple (W1, . . . ,Wn)
with W1 ∪ · · · ∪Wn = W and all Wi being non-empty and
pairwise disjoint. The elementsWi of the partition are called
blocks and n is called the length of the partition. The index
of an element w ∈ W in a partition (W1, . . . ,Wn) is the
unique i for which w ∈ Wi. From now on we will assume
that W is the set of worlds of some epistemic state. Figure 4
shows an epistemic state together with an ordered partition
P = (W1,W2,W3) of length 3. The signature of a world w
wrt. a partition (W1, . . . ,Wn) is the set σ(W1,...,Wn)(w) =
L(w) ∪ {(i, k) ∈ A × N | for some v, (w, v) ∈ Ri and v ∈
Wk}, e.g. the signature of w2 in Figure 4 wrt. the partition
(W1,W2,W3) is {p, (i, 1), (i, 2), (j, 3)}. Given a partition
P , we say that a signature σ occurs in or is contained in a
set of worlds W ′ if there exists w ∈ W ′ with σP (w) = σ.
From now on, we will assume a fixed total ordering on sig-
natures (e.g. induced by the alphabet used for naming pred-

Algorithm 1: OrderedPartitionRefinement

Input: An epistemic state s = (W,R,L,Wd)
Output: A contracted state s′ = (W ′, R′, L′,W ′d)

1 (σ1, . . . , σk)← the signatures of the worlds in W wrt.
the trivial partition (W)—listed in increasing order

2 for i← 1 to k do /* initial partition */
3 Wi ← {w ∈W | σ(w) = σi}
4 newlength← k
5 repeat /* begin refinement step */
6 oldlength← newlength
7 for i← 1 to oldlength do
8 (σ1, . . . , σl)← the unique signatures in Wi wrt.

the partition (W1, . . . ,Wnewlength)—listed in
increasing order

9 for j ← 2 to l do
/* we split block Wi by moving
its σj worlds to a new block */

10 Wnewlength+1 ← {w ∈Wi | σ(w) = σj}
11 Wi ←Wi − {w | σ(w) = σj}
12 newlength← newlength+ 1
13 until newlength = oldlength
14 W ′ ← {1, . . . , newlength}
15 for each i ∈ A do
16 R′i ← {(m,n) | (w, v) ∈ Ri, w ∈Wm, v ∈Wn}
17 for j ← 1 to newlength do
18 L′(j)← L(w) for any w ∈Wj

19 W ′d ← {m |Wm ∩Wd 6= ∅}
20 return (W ′, R′, L′,W ′d)

icates, objects and agents). Our ordered partition refinement
algorithm is presented as Algorithm 1.

Let’s consider how the algorithm would work on the epis-
temic state of Figure 4. The signatures of the trivial parti-
tion P = (W) are σP (w1) = σP (w2) = {p, (i, 1), (j, 1)},
σP (w3) = {p, (i, 1), (j, 1), (k, 1)} and σP (w4) =
{q, (j, 1), (k, 1)}. So the initial partition constructed in lines
1–3 will be P ′ = ({w1, w2}, {w3}, {w4}) = (W1,W2,W3)
(or one of its permutations, depending on the total order on
the signatures). In the first iteration (i = 1) of the for-loop in
lines 7–12, we will get (σ1, σ2) = (σP ′(w1), σP ′(w2)) =
({p, (i, 1), (i, 2), (j, 2)}, {p, (i, 1), (i, 2), (j, 3)}) (or in op-
posite order). This means that in lines 10–12 we split the
block W1 into two blocks: A reduced W1 block containing
only the worlds with signature σ1 and a new block W4 con-
taining the worlds with signature σ2. I.e. we getW1 = {w1}
and W4 = {w2}. The next two iterations of the for-loop
will not change anything, as W2 and W3 are already sin-
gletons. Since this refinement step increased the length of
the partition, the repeat-until loop will go through another
iteration. In this iteration nothing gets split, and the algo-
rithm will finally return the contracted model with worlds
W ′ = {1, . . . , 4} based on the final partition. In the con-
tracted model, the world named 2 is constructed from the
second blockW2 = {w3} of the final partition. Hence world
2 represents w3 of the original model and inherits the prop-
erties of w3 (its label and outgoing edges). Note that in this
particular example, no worlds become identified (put into

the same block in the final partition). The algorithm will sim-
ply end up reshuffling the order of the worlds. This happens
since none of the four worlds are bisimilar.

Lemma 1. LetZ be a bisimulation between epistemic states
s = (W,R,L,Wd) and t = (W ′, R′, L′,W ′d). Suppose that
we concurrently execute OrderedPartitionRefinement on
both s and t. The following invariant holds at the beginning
of each iteration of the repeat-until loop: If (w,w′) ∈ Z then
w and w′ have the same index in their respective partitions.

Proof. The proof is by induction on the number of iterations
of the repeat-until loop. We will use P = (W1, . . . ,Wn) to
denote the current partition of s at the beginning of the rel-
evant iteration of the loop, and P ′ = (W ′1, . . . ,W

′
n′) to de-

note the corresponding partition of t. The base case is at the
beginning of the first iteration, i.e., after having constructed
the initial partition. Suppose (w,w′) ∈ Z. It follows from
the definition of bisimulations that w and w′ have the same
labels (by [atom]) and the same agent names on their outgo-
ing edges (by [back] and [forth]). Hence they must have the
same signature wrt. the trivial partitions ((W) and (W ′), re-
spectively). By the construction in lines 1–3, it follows that
w and w′ have the same index in the initial partitions.

For the induction step, suppose the invariant holds at the
beginning of the N th iteration of the repeat-until loop. We
then show it still holds at the end of this iteration.

Claim 1: For any world w ∈W there is a world w′ ∈W ′
with (w,w′) ∈ Z and vice versa. Proof: Suppose w ∈ W .
Since s and t are bisimilar and have all worlds reachable
from a designated world (Definition 1), it follows from [des-
ignated], [forth] and [back] that there must exist w′ ∈ W ′

such that (w,w′) ∈ Z. The other direction is symmetric.
Claim 2: At the beginning of the N th iteration, if

(w,w′) ∈ Z then w and w′ have the same signatures wrt.
the current partitions. We want to show σP (w) = σP ′(w′).
We do this by showing that each element of σP (w) is also
an element of σP ′(w′) (the other direction being symmet-
ric). For the elements of L(w) this holds by [atom], since
(w,w′) ∈ Z. Consider then an element (i, k) ∈ σP (w). This
means there exists a world v ∈ Wk such that (w, v) ∈ Ri.
By [forth], there must exist a world v′ such that (v, v′) ∈ Z
and (w′, v′) ∈ R′i. Now applying the induction hypothesis,
we get v′ ∈W ′k, and hence (i, k) ∈ σP ′(w′), as required.

Claim 3: At the beginning of the N th iteration, block Wi

and W ′i contain the same signatures wrt. the current parti-
tions. Proof: It suffices to prove that any signature occurring
in Wi also occurs in W ′i (the other direction being symmet-
ric). Consider any signature σP (w) with w ∈Wi. By Claim
1, there exists a w′ ∈ W ′ with (w,w′) ∈ Z. By the induc-
tion hypothesis, w′ ∈ W ′i . By Claim 2, σP ′(w′) = σP (w),
showing that σP (w) also occurs in W ′i .

We need to show that if (w,w′) ∈ Z, then w and w′ end
up in the same block after the N th iteration of the repeat-
until loop. Consulting lines 6–12 of the algorithm, it follows
from Claim 3 that the N th iteration will lead to the same
splits for s and t and with the same signatures moved to the
same new blocks. From Claim 2, we know that w and w′
have the same signatures, and hence will be moved to the
same new blocks (or stay where they are), as required.

Theorem 1. Suppose s↔t. The contracted states returned
by running OrderedPartitionRefinement on s and t are
identical.

Proof. Suppose s = (W,R,L,Wd) and s′ =
(W ′, R′, L′,W ′d) is the contraction of s (the output of
running OrderedPartitionRefinement on s). Similarly,
suppose t = (V,Q,K, Vd) and t′ = (V ′, Q′,K ′, V ′d) is the
contraction of t. By Claim 3 of the proof of Lemma 1, we
know that the final partitions at the end of the repeat-until
loop will have the same length and pairwise contain the same
signatures for both runs of OrderedPartitionRefinement .
Let P = (W1, . . . ,Wk) denote the final partition of s
and P ′ = (V1, . . . , Vk) the final partition of t. Both s′

and t′ will then have the same set of worlds {1, . . . , k}.
Since the blocks have pairwise identical signatures, each
world m will have the same label in both s′ and t′. Also,
world m will have the same outgoing edges in both s′

and t′: (m,n) ∈ R′i ⇔ there exists w, v ∈ W such that
(w, v) ∈ Ri, w ∈ Wm and v ∈ Wn ⇔ (i, n) is an element
of a signature occurring in Wm wrt. partition P ⇔ (i, n) is
an element of a signature occurring in Vm wrt. partition P ′
⇔ there exists w′, v′ ∈ V such that (w′, v′) ∈ Qi, w′ ∈ Vm
and v′ ∈ Vn ⇔ (m,n) ∈ Q′i. Finally, suppose m ∈ W ′d.
We then need to prove m ∈ V ′d (the other direction being
symmetric). Since m ∈ W ′d, block Wm must contain a
world w ∈ Wd. Then since s↔t, by [designated] we get
the existence of a w′ ∈ Vd with (w,w′) ∈ Z. It then
follows from Lemma 1 that w′ must be in block Vm. Hence
Vm ∩ Vd 6= ∅, so m ∈ V ′d , as required.

5 Planning Tasks and Policies
With epistemic states and actions defined, we can now de-
scribe how these concepts can be used for planning. We fol-
low the approaches of Engesser et al. (2017) and Bolander et
al. (2018), but describe a number of modifications and addi-
tions to make policies more intuitively sensible and to make
the computation of policies more efficient.

Definition 5. A planning task for an agent i ∈ A is a tuple
Π = (s0, A, γ), where s0 is a local state for agent i called
the initial (epistemic) state, A is a finite set of epistemic ac-
tions called the action library and γ is a common knowledge
formula called the goal formula. For each j ∈ A, we use Aj

to denote the subset of A that consists only of the actions of
agent j.

The reason we require goal formulas to be common
knowledge formulas (formulas of the form Cφ) is that we
are considering implicitly coordinated policies where no
policy is agreed on between the agents in advance. If the
goal formula is not a common knowledge formula, it could
then happen that some agent keeps acting after another agent
already ensured the goal to be satisfied. If we include pub-
lic announcements in our action libraries, agents knowing to
have reached the goal can publicly announce this and hence
it will become common knowledge.

Example 3. We can now finalise the formalisation of the
scenario described in the introduction, as the planning task

Π = (s0, A, γ) for r where s0 is the state described in Exam-
ple 1, γ = C(KhIn(glasses, box 1)∨KhIn(glasses, box 2))
and A is the action library consisting of the i:perceive(φ)
and i:announce(φ) actions from Figure 2 for i = r, h and
φ = In(glasses, box 1), In(glasses, box 2).

A solution to a planning task Π = (s0, A, γ) is a pol-
icy. Engesser et al. (2017) define two types of policies, joint
policies and global policies. A joint policy is a collection of
single-agent policies, one for each agent. Each single-agent
policy maps local states of the relevant agent into actions.
A global policy is a single multi-agent policy specifying in
each global state the actions taken by any agent in that state.
As shown by Engesser et al. (2017), the two types of poli-
cies are equivalent in terms of expressive power. In this pa-
per, we have decided to work with joint policies rather than
global policies. One of our motivations for using joint poli-
cies is that the policy definition becomes simpler, e.g. we
don’t need to add an extra condition to ensure uniformity.1

As earlier argued, we need our policies to be uniform, i.e.,
map indistinguishable states into the same actions. We also
argued that the natural notion of indistinguishability on epis-
temic states is bisimilarity. As shown by Theorem 1, each
class of bisimilar states has a unique representative that can
be computed using OrderedPartitionRefinement . Hence
by defining policies to be mappings from such unique rep-
resentatives into actions, the uniformity condition will au-
tomatically be satisfied. We use Smin

i to denote the set of
contracted (by OrderedPartitionRefinement) local states
for agent i in which Wd is a minimal set closed under Ri.

Definition 6. Let Π = (s0, A, γ) be a planning task. A
(joint) policy π = (πj)j∈A for Π consists of partial map-
pings πj :Smin

j → Aj satisfying that whenever πj(s) is de-
fined, it is an action applicable in s.

The definition above is a revised version of the one
by Engesser et al. (2017). In our version we make sure
that policies are uniform with respect to indistinguishabil-
ity based on modal equivalence, which was not guaranteed
by the definitions of Engesser et al. We now turn to de-
fine executions of policies and solutions to planning tasks.
Bolander et al. (2018) already provided such definitions for
global policies, but we need to adapt them to the case of
joint policies and our new notion of indistinguishability. We
use bsc to denote the bisimulation contraction of s using
OrderedPartitionRefinement .

Definition 7. Let Π = (s0, A, γ) be a planning task and
π = (πj)j∈A a policy for Π. An execution of π is a maximal
sequence (s0, (g0, j0:a0), s1, (g1, j1:a1), . . .) satisfying, for
all m ≥ 0,

1. gm ∈ Globals(sm) (the execution picks a global state gm
from the current local state sm)

1Another original motivation was that we managed to prove that
joint policies can be up to quadratically smaller than their corre-
sponding global policies, potentially giving them a computational
advantage. However, there might be ways to represent global poli-
cies more compactly, so it would require a deeper investigation to
prove that joint policies are necessarily computationally advanta-
geous.

2. πjm(bgjmm c) = jm:am (the execution picks an agent jm
to perform the next action, computes the contracted lo-
cal state bgjmm c for that agent, and finds the action jm:am
specified by the policy for that agent)

3. sm+1 = bgjmm ⊗jm:amc (the next local state of the execu-
tion is the contracted result of executing the chosen action
in the chosen state)

An execution is called successful if it is finite and its last
element satisfies γ. The policy π is implicitly coordinated
for Π if every execution is successful.

The policies are called implicitly coordinated since we not
only require all objectively possible executions to be suc-
cessful, but also all subjectively possible executions, i.e. the
executions in which we always replace the current global
state by its perspective shift to the next agent who will act
(see conditions 2 and 3 above). This implies that policies
will always be verified from the local perspective of the
agent acting next. For a more thorough explanation and dis-
cussion of these issues, consult Engesser et al. (2017) and
Bolander et al. (2018).

6 Algorithm
We will now present our planning algorithm for computing
implicitly coordinated policies with optimal worst-case exe-
cution length. The algorithm is a Breadth-First Search (BFS)
variant of the classical AND-OR search (Nilsson 1971) on
a rooted graph. We use a modified version of PrAO (Prun-
ing AND-OR search) first proposed by To et al. (2011) and
further detailed by To (2012), with the same definitions for
solved and dead nodes, but using explicit and-nodes and de-
laying the policy extraction until after the search. Distinct
nodes in the graph will represent distinct non-bisimilar states
(it is a graph search, not a tree search). Therefore state and
node will be used interchangeably in the following. When
expanding a node s, the algorithm applies the following
node expansion rule: If s is an or-node, create a child and-
node for every action j:a ∈ A applicable in sj . Otherwise,
create a child or-node for every global state contained in s.
When branching on an action j:a from an or-node s, the al-
gorithm calculates the product update s′ = sj⊗j:a, and then
applies ordered partition refinement to contract it, producing
a unique minimal state for each set of bisimilar states.

The pseudocode of our planning algorithm is provided in
Algorithm 2. Line 1 has been contracted due to space limita-
tions. It performs some bookkeeping by creating a root node
from s0, and adding it to the graph as an and-node. It then
essentially runs lines 10-17 where s′ is replaced by the root.
Thus the root becomes solved if all of its globals become
solved. Lines 2-5 iterate the frontier starting at the globals
of the root, s0, and check for all actions j:a ∈ A if they
are applicable from the perspective of j. Since the search is
breadth-first, we use a queue for the frontier. Lines 6-9 per-
form the perspective shift, product update and contraction.
If the same contracted state exists anywhere in the graph,
it will be set as a child of the current node s. Otherwise, a
new node is created and added to the graph as a child of s.
Note that to prevent a global state t from matching its child
t′, i.e. when Globals(t) = {t′}, we only compare nodes of

Algorithm 2: Plan
Input: A planning task Π = (s0, A, γ) for agent i ∈ A
Output: Policy π for Π, or failure

1 initialize(i, s0)
2 while not frontier .empty() do
3 s← frontier .dequeue()
4 for each j:a ∈ A do
5 if not sj .applicable(j:a) then continue
6 s′ ← sj ⊗ j:a
7 s′ ← OrderedPartitionRefinement(s′)
8 if s′ ∈ Sand then continue
9 Sand ← Sand ∪ {s′}

10 for each s′′ ∈ Globals(s′) do
11 s′′ ← OrderedPartitionRefinement(s′′)
12 if s′′ ∈ Sor then continue
13 Sor ← Sor ∪ {s′′}
14 if s′′ |= γ then
15 update solved dead(s′′)
16 else
17 frontier .enqueue(s′′)
18 update solved dead(s)
19 if solved(root) then return extract policy()
20 if dead(root) then return failure
21 return failure

the same type (and-/or-nodes). Lines 10-17 iterate the global
states of s′ and repeat the previously described check for if
the contracted state s′′ already exists in the graph. Since s′′
is an or-node, it is checked whether it fulfills the goal for-
mula γ, in which case it is set to solved, and propagated,
otherwise it is added to the frontier for further expansion.

Lines 15 and 18 check (after each found goal and com-
pleted node expansion, respectively) if a given node t is
solved, dead or undetermined (status not yet known), up-
dates a flag on the node accordingly, and propagates this up
the graph in case the node is solved or dead. The propagation
recursively updates the status of all parents if the status of the
updated node changes (i.e., if a parent t′ of t changes from
undetermined to solved or dead, then the parents of t′ are up-
dated as well). The intuition is that a node is solved if it (for
or-nodes) is a goal state or has an action which necessarily
leads to a goal state, or (for and-nodes) all its global states
necessarily lead to a goal state. A node is called expanded if
all its children have been generated. Formally, solved(t) and
dead(t) are recursively defined for expanded nodes by:

• And-node: solved(t) is true iff all children of t are solved.
• Or-node: solved(t) is true iff t � γ or t has a solved child.
• And-node: dead(t) is true iff t has a dead child.
• Or-node: dead(t) is true iff all children of t are dead and
t 2 γ.

An undetermined node is one which is neither solved nor
dead. Lines 19 and 20 check for termination. If dead(root)
then no policy exists, else if solved(root) the policy is ex-
tracted and returned. The policy extraction performs two
graph traversals, only visiting solved nodes. The first is a

Figure 5: The Pepper robot used in our experiments. On the left
we see part of the setup for the cubes and boxes domain. On the
right we see a MAPF/DU problem instance where the barricade
tape marks the grid.

bottom-up iterative traversal, where we start by marking all
solved leaf nodes with a cost of 0 and all other nodes with
a special undefined cost. Then in the i’th iteration, we per-
form the following check for all parents of nodes with cost
i − 1: if the parent has an undefined cost and is an or-node,
we mark it with cost i; if the parent is an and-node and all
its children have defined costs, we mark it with the maxi-
mal cost of its children. We continue this until the root node
is reached. The second traversal is top-down, starting at the
root, visiting (for or-nodes) the child with the lowest cost,
and (for and-nodes) all children. At an or-node with state t,
and the action j:a to the lowest cost child, the policy πj is
extended with the assignment btjc → j:a. See Supplemen-
tary Material for a concrete example of the policy extraction.
Note that even though the graph may contain cycles, the ex-
tracted policy doesn’t. When traversing from the root to a
leaf node, always choosing the lowest cost child at an or-
node, the cost will always decrease by at least one per step.
If two copies of the same state existed on a traversed path
from root to leaf, the cost must have had a non-decreasing
change at some step, which is contradictory.

Soundness and completeness of Algorithm 2 can be
shown by adopting the standard soundness and complete-
ness proofs for AND-OR search, cf. e.g. Theorem 10 of
To (2012). The proof of Theorem 10 would have to be
adopted to our slight variant of the algorithm (explicit and-
nodes and policy extraction after ended search), the use of
epistemic states and contractions, and the fact that our state
spaces can be potentially infinite (Bolander and Andersen
2011) (hence termination for unsolvable planning tasks is
not guaranteed in our case).

7 Experiments and Results
We have implemented a planning system, using Algorithms
1 and 2, in the C++ programming language. The planner has
been tested and evaluated using three domains which will be
described in the following. We integrated the planner with a
robot platform, and tested it on two of the domains involv-
ing human-robot collaboration. Source code for the planner
and video of robot experiments is available at https://
github.com/Zeltex/Implicit_Coordination.

https://github.com/Zeltex/Implicit_Coordination
https://github.com/Zeltex/Implicit_Coordination

Cubes and Boxes is an extended version of the domain de-
scribed by Dissing and Bolander (2020). The domain con-
tains two types of objects, cubes and boxes (See Figure 5
left). The cubes can be inside boxes, represented by the
predicate In(cube, box). The agents can perform the three
types of generic actions described in Figure 2. In particular,
we study a more generic version of the “missing glasses”
scenario described in the introduction, where two agents, a
robot r and a human h, are each looking for their missing
cube. The setup consists of four boxes box1, . . . , box4 and
four cubes initially distributed into the four closed boxes.
The robot wants to know the location of cuber, the hu-
man the location of cubeh. The boxes are placed such that
two are accessible to the human and the other two to the
robot. The goal is γ = C((∨4i=1KrIn(cuber, box i)) ∧
(∨4j=1KhIn(cubeh, box j))). When applying the planner to
this problem with the robot as the planning agent, the plan-
ner finds a policy in which the robot looks into each of its
accessible boxes and announces if it has found the human’s
cube. Note that the speech act of announcing a cube location
is treated as any other atomic action by the planner, since our
planner is epistemic and therefore naturally able to incorpo-
rate information sharing in the planning process (note that
the robot policy only informs the human about cubeh; if it
discovers any other cube, it will not say anything).
Multi-Agent Pathfinding with Destination Uncertainty
Task (MAPF/DU) was introduced by Bolander et al. (2018)
and explored further by Nebel et al. (2019). Here a set of
agents must collaboratively manoeuvre through a grid world
(or, more generally, a graph) with the joint goal of each
reaching its assigned destination. E.g. in the instance shown
in Figure 5 right, the goal is for the human to get to the
grid cell to the far right, and the robot the cell at the top. The
problem is complicated by each grid cell only fitting a single
agent and each agent only knowing its own destination (each
agent only knows that the destination of the other agent is
one among a set of possible destinations). The agents can’t
communicate, and thus need implicit coordination to ensure
they both reach their final destinations. See Supplementary
Material for a full formalisation of this example.
Coin flip is a simple demonstration of how bisimulation
contraction can significantly reduce the amount of mem-
ory required. In the domain, two agents take turns flipping
a coin, where the outcome of the coin flip is private to the
acting agent. In brief, this causes the number of worlds in
each state to grow exponentially in the number of actions
performed, however since at any point in time the current
outcome is either heads or tails, it is possible to contract the
state down to two worlds. A detailed description of the do-
main can be found in the Supplementary Material.

Benchmarking All experiments were performed on a ma-
chine with dual Intel Xeon Gold 6126 CPUs, 256 GB of
RAM reserved and a 48 hours timeout. We compare our
planner with: 1) a baseline version which skips the parti-
tion refinement on lines 7 and 11 of Algorithm 2; and 2) the
planner developed by Engesser et al. (2017). The main dif-
ferences between our planner and the Engesser planner is: 1)

4 6 8 10 12 14 16 18 20 22
100

101

102

103

104

105

106

107

108

Grid size

R
un

tim
e

(m
s)

OPR
Baseline
Engesser

4 agents
3 agents
2 agents

Figure 6: MAPF/DU benchmark comparing our planner without
partition refinement (Baseline), our planner with ordered parti-
tion refinement (OPR), and the planner developed in Engesser et
al. (2017). MAPF/DU instances are parameterised by grid size (to-
tal number of positions the agents can be in) and number of agents.
Our planner with ordered partition refinement finishes the largest
problem 19 times faster than the Engesser planner. The planner by
Engesser timed out on the three largest problems.

They use comparison-based logarithmic-time state lookups
while our unique state representatives allows constant-time
lookups using hashing; 2) They use a dense bitset (1 bit per
possible proposition) to represent sets of propositions where
we use a sparse set of proposition ids; 3) They use simpli-
fied, partial contractions that, unlike ours, don’t guarantee
all bisimilar states to be identified.

The MAPF/DU results are shown in Figure 6. We use the
same problem instances as Engesser and Miller (2020) (grid
sizes 4-14) as well as larger instances following the same
corridor pattern (grid sizes 16-22). The planner by Engesser
is initially faster, but is overtaken by the baseline planner
when reaching instances with ≥ 3 agents and ≥ 10 grid
cells. This is partly due to the state hashing resulting in some
overhead for the small problems, but much better scaling for
the large problems, completing the instance with 4 agents
and 16 grid cells around 43 times faster than the Engesser
planner. All actions in this domain have a single event which
results in no two states being bisimilar without also being
identical. This means that the bisimulation contraction had
no effect on the amount of hashes generated, and it therefore
was strictly worse than the baseline due to the additional
computation needed for ordered partition refinement. How-
ever, the numbers in the figure indicate that ordered partition
refinement only adds a constant factor overhead.

The results for the coin flip domain can be found in Fig-
ure 7. Ordered partition refinement contracts the generated
state such that it has exactly 2 worlds at all plan depths, mak-
ing it scale more or less linearly with the plan depth. The
baseline, and the simplified contraction in the planner by En-
gesser is not able to contract the state which doubles in size

2 4 6 8 10 12 14 16 18 20
10−2

100

102

104

106

108

Plan depth

R
un

tim
e

(m
s)

OPR
Baseline
Engesser

Figure 7: Coin flip benchmark comparing our planner (OPR) with
the baseline and the planner of Engesser et al. (2017).

(amount of worlds) after each action, making the planning
time scale at least exponentially with the plan depth. It can
be seen that our planner has some overhead due to ordered
partition refinement, but it is quickly outweighed by the ex-
ponential scaling of the baseline and planner by Engesser.

In conclusion we see that in domains that generate large
contractable states like the coin flip domain, ordered par-
tition refinement is highly useful. In contrast, in domains
which do not benefit from bisimulation contraction like
MAPF/DU, ordered partition refinement adds a manageable
constant factor overhead.

Robotic Integration The planner has furthermore been
integrated with an extended version of the robotic plat-
form described by Dissing and Bolander (2020), and used to
solve robotic variants of “Cubes and Boxes” and MAPF/DU
with two agents. In brief, video from two Intel RealSense
RGB+D cameras is sent to a number of detectors, each of
which recognise some specific feature such as faces, object
markers and body poses. Each detector produces a stream of
percepts containing the recognised features and their spatial
positions. These percepts are linked to agents and objects
in the internal world model through an anchoring process
(Coradeschi and Saffiotti 2000; Williams et al. 2009). Ac-
tions performed by the observed agents are detected by con-
tinuously monitoring for changes in the world model. The
perception pipeline interfaces with the planner through the
perceive-plan-act agent loop described in Algorithm 3.

Given a planning task the agent loop first computes an
initial policy and repeats the following procedure until ei-
ther a goal state is reached or no successful policy can be
found: First, update the current epistemic state by apply-
ing all actions detected by the perception pipeline since the
last iteration (including those performed by the robot itself).
Next, if the policy defines an action for the robot in this new
state, it is immediately executed. Otherwise, if in all global
states, there is some agent from whose perspective the policy
defines an action, the robot just continues observing, wait-
ing for some other agent to act. Finally, if neither condition
holds for the current state, e.g. due to some agent having
performed an unexpected action, the agent loop replans from
this unexpected state. A limitation of the formalism is the as-

Algorithm 3: AgentLoop for the robotic agent i
Input: A planning task Π = (s0, A, γ) for agent i ∈ A

1 s← s0
2 π ← Plan(Π) /* call Algorithm 2 */
3 while s 2 γ ∧ π 6= failure do
4 for each j:a, ρ in perceived actions() do
5 s← perception update(s⊗ j:a, ρ)
6 switch s do
7 case s ∈ Dom(πi) do execute(πi(s))
8 case ∀g∈Globals(s),∃j∈A s.t. bgjc∈Dom(πj)

do continue
9 otherwise do π ← Plan((s,A, γ))

10 if s � γ then return success else return failure

sumption of sequential action execution, i.e., when an agent
performs an action, all other agents must remain stationary
for the duration of the action in order to ensure that the per-
cepts are generated in the correct order. We use the LEDs on
the robot to communicate this to the human agent, e.g. green
lights means it is okay for the human to move. Extending the
formalism to concurrent actions is important future work.

Updating a state s based on an observed action j:a con-
sists of two steps: 1) the product update s⊗ j:a predicts the
possible outcomes of executing the action in s and 2) the
perception update function filters out all outcomes not con-
sistent with actual observations (the action j:a is not nec-
essarily among the actions in the action library A of the
planning problem: It is the local perspective of agent i on
the action executed by j). More precisely, the perception
pipeline produces a percept formula ρ of what was actu-
ally observed by the robot during the execution of an ac-
tion and perception update then produces the correct lo-
cal state by removing all designated worlds from s ⊗ j:a
which do not satisfy ρ. E.g. suppose the robot performed
r:perceive(In(glasses, box1)) in s0 from Figure 1. First
the agent loop predicts the possible outcomes by computing
the product update resulting in state s1 from Figure 3, with
two outcomes distinguishable by the robot. While the robot
executes the physical action, the perception system either
produces In(glasses, box1) or ¬In(glasses, box1) based
upon the observation, which then allows perception update
to correctly select the actual outcome.

8 Current Limitations
A significant limitation of our current approach is the re-
striction to reasoning with S5 logic and thereby the inabil-
ity to reason about the (possibly incorrect) beliefs of other
agents. A second limitation is that the current algorithm is
not yet capable of finding cyclic policies, which might be
required in some planning tasks with non-deterministic ac-
tions. A third limitation is in the explicit representation of
uncertainty as the set of all possible worlds, where more
compact representations might scale significantly better, e.g.
using symbolic knowledge structures as presented by van
Benthem et al. (2018) with perspective shifts as recently de-
veloped by Gattinger (2020).

References
Aceto, L.; Ingólfsdóttir, A.; and Srba, J. 2012. The algo-
rithmics of bisimilarity. In Advanced Topics in Bisimulation
and Coinduction, volume 52 of Cambridge tracts in theo-
retical computer science. Cambridge, England: Cambridge
University Press. 100–172.
Baltag, A.; Moss, L. S.; and Solecki, S. 1998. The logic of
public announcements and common knowledge and private
suspicions. In Proceedings of the 7th Conference on The-
oretical Aspects of Rationality and Knowledge (TARK-98),
43–56. Evanston, IL, USA: Morgan Kaufmann.
Blackburn, P., and van Benthem, J. 2007. Modal logic: A se-
mantic perspective. In Handbook of Modal Logic, volume 3
of Studies in logic and practical reasoning. North-Holland.
1–84.
Blackburn, P.; de Rijke, M.; and Venema, Y. 2001. Modal
Logic, volume 53 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge, UK: Cambridge University
Press.
Bolander, T., and Andersen, M. B. 2011. Epistemic planning
for single- and multi-agent systems. Journal of Applied Non-
Classical Logics 21:9–34.
Bolander, T.; Engesser, T.; Mattmüller, R.; and Nebel, B.
2018. Better eager than lazy? How agent types impact the
successfulness of implicit coordination. In Sixteenth Inter-
national Conference on Principles of Knowledge Represen-
tation and Reasoning. Tempe, Arizona, USA: AAAI Press.
Bolander, T. 2017. A gentle introduction to epistemic plan-
ning: The DEL approach. In Proceedings of the Ninth Work-
shop on Methods for Modalities, volume 243 of EPTCS, 1–
22.
Buisan, G., and Alami, R. 2021. A human-aware task plan-
ner explicitly reasoning about human and robot decision, ac-
tion and reaction. In Bethel, C. L.; Paiva, A.; Broadbent, E.;
Feil-Seifer, D.; and Szafir, D., eds., Companion of the 2021
ACM/IEEE International Conference on Human-Robot In-
teraction, HRI 2021, Boulder, CO, USA, March 8-11, 2021,
544–548. ACM.
Coradeschi, S., and Saffiotti, A. 2000. Anchoring symbols to
sensor data: Preliminary report. In Kautz, H. A., and Porter,
B. W., eds., Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence and Twelfth Conference on
on Innovative Applications of Artificial Intelligence, July 30
- August 3, 2000, Austin, Texas, USA, 129–135. AAAI Press
/ The MIT Press.
Dissing, L., and Bolander, T. 2020. Implementing theory of
mind on a robot using Dynamic Epistemic Logic. In Pro-
ceedings of the 29th International Joint Conference on Arti-
ficial Intelligence, 1615–1621. Yokohama, Japan: IJCAI.
Engesser, T., and Miller, T. 2020. Implicit coordination us-
ing FOND planning. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, 7151–7159. New York, NY, USA:
AAAI Press.
Engesser, T.; Bolander, T.; Mattmüller, R.; and Nebel, B.
2017. Cooperative epistemic multi-agent planning for im-
plicit coordination. In Proceedings of Methods for Modal-

ities, volume 243 of Electronic Proceedings in Theoretical
Computer Science, 75–90.
Gattinger, M. 2020. Towards symbolic and succinct
perspective shifts. Epistemic Planning workshop at the
30th International Conference on Automated Planning and
Scheduling.
Jamroga, W., and Aagotnes, T. 2007. Constructive knowl-
edge: What agents can achieve under imperfect information.
Journal of Applied Non-Classical Logics 17(4):423–475.
Lemaignan, S., and Dillenbourg, P. 2015. Mutual modelling
in robotics: Inspirations for the next steps. In Adams, J. A.;
Smart, W. D.; Mutlu, B.; and Takayama, L., eds., Proceed-
ings of the Tenth Annual ACM/IEEE International Confer-
ence on Human-Robot Interaction, HRI 2015, Portland, OR,
USA, March 2-5, 2015, 303–310. ACM.
Nebel, B.; Bolander, T.; Engesser, T.; and Mattmüller, R.
2019. Implicitly coordinated multi-agent path finding un-
der destination uncertainty: Success guarantees and compu-
tational complexity. Journal of Artificial Intelligence Re-
search 64:497–527.
Nilsson, N. J. 1971. Problem-solving Methods in Artificial
Intelligence. McGraw-Hill computer science series. New
York, NY, USA: McGraw-Hill.
Reifsteck, D.; Engesser, T.; Mattmüller, R.; and Nebel, B.
2019. Epistemic multi-agent planning using Monte-Carlo
Tree Search. In KI 2019: Advances in Artificial Intelligence
- 42nd German Conference on AI, 277–289. Kassel, Ger-
many: Springer.
Talamadupula, K.; Briggs, G.; Chakraborti, T.; Scheutz, M.;
and Kambhampati, S. 2014. Coordination in human-robot
teams using mental modeling and plan recognition. In 2014
IEEE/RSJ International Conference on Intelligent Robots
and Systems, Chicago, IL, USA, September 14-18, 2014,
2957–2962. IEEE.
Thomaz, A.; Hoffman, G.; and Cakmak, M. 2016. Compu-
tational human-robot interaction. Foundations and Trends in
Robotics 4(2-3):105–223.
To, S.; Son, T.; and Pontelli, E. 2011. Contingent planning
as and/or forward search with disjunctive representation. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 21.
To, S. T. 2012. A new approach to contingent planning using
a disjunctive representation in and/or forward search with
novel pruning techniques. Journal of Artificial Intelligence
Research.
van Benthem, J.; van Eijck, J.; Gattinger, M.; and Su, K.
2018. Symbolic model checking for dynamic epistemic
logic - S5 and beyond. Journal of Logic and Computation
28(2):367–402.
Williams, M.-A.; McCarthy, J.; Gärdenfors, P.; Stanton,
C. J.; and Karol, A. 2009. A grounding framework. Au-
ton. Agents Multi Agent Syst. 19(3):272–296.

	Introduction
	Dynamic Epistemic Logic
	Uniformity and Bisimulations
	Ordered Partition Refinement
	Planning Tasks and Policies
	Algorithm
	Experiments and Results
	Current Limitations

