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Epistemic planning =
automated planning (Al) + epistemic reasoning (epistemic logic)

Aim: To compute plans that can take the mental states of other agents
into account.

Essentially: (Decentralised) multi-agent planning in environments with
(potentially higher-order) information asymmetry.

Goal

Start

Automated planning

Epistemic reasoning about
the mental states of others



Classical automated planning:
single agent, full observability

Level: MARegEXAZ Client: Croissant State: 2.067 of 345 State time: 0.005 s

ink to movie (clickable):

.dtu.dk/~tobo/SARegEXAZ. |



http://www2.compute.dtu.dk/~tobo/SARegExAZ_croissants.mov

Classical automated planning: state space search
and domain descriptions

On(C, table) A\
On(B, table) A\
On(A, table)

Put(B,table)
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On(B, A)A . On(B, A)A On(B, C)A . On(B, C)A
On(A, table) On(A, table) On(A, table) On(A, B)

Action schema describing the Put(x,y) action for put object x on top
of object y:

ACTION : Put(x,y) pre:  On(x,z)A---
PRECONDITION : On(x,z) A - - - ost - On(x,y):=T
EFFECT : On(x,y) A =On(x, z) post: On(x,z):=1

[Ghallab et al., 2004, Baltag et al., 1998, van Ditmarsch and Kooi, 2008]



Amazon warehouse robots

Link to movie:

http://www2. compute dtu.dk/~ tobo/amazon kiva.mov,~*
# =



http://www2.compute.dtu.dk/~tobo/amazon_kiva.mov

Level: MARegEXAZ Client: DeePurple State: 0.000 State time:

Link to movie (clickable):

bute . dtu. dk/~tobo/MARegExAZ_02285_level_ver



http://www2.compute.dtu.dk/~tobo/MARegExAZ_02285_level_vert.mov

Multiagent case: States as S5 Kripke models

Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: O (those considered possible by planning agent).

Agent b: "Which letter does the middle block have?"
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Dynamic epistemic logic (DEL) by example:
product update

So = ' —locked = o % locked

wy w2

) . pre:  —locked a2, a3 pre:  locked
aj.open =
post: open:=T post :
€1 success failure €
an
Sp ® aj:open = —locked, open locked
wy w2

[Baltag et al., 1998, van Ditmarsch and Kooi, 2008]
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] .
Link to movie (clickable):

http://www2.compute.dtu.dk/~tobo/sally_anne_trimmed.mp4
r



http://www2.compute.dtu.dk/~tobo/sally_anne_trimmed.mp4
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http://www2.compute.dtu.dk/~tobo/komdigital_pepper_video.mov
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Planning based on DEL: epistemic planning tasks

Definition. An (epistemic) planning task T = (sp, A, ¢g) consists of
e A multipointed Kripke model sy called the initial state.
® A finite set of multipointed event models A called actions.
® A goal formula ¢, of epistemic logic.
Definition. A (sequential) solution to a planning task T = (so, A, @) is
a sequence of actions «q, ap, ..., a, from A such that for all 1 < < n,
«; is applicable in s ® a1 ® - -+ ® a;_1 and

SR R @ -+ R ey ':gog.
Defining ()¢ := ()T A [a]ep, this can be reformulated as
so = (1) (@2) - - (an))pe-

Definition. A solution ij:aq,. .. ip:a, (using notation i:« for agent i
performing action «) is implicitly coordinated if it furthermore holds
that :

so = Ky (h:en) Ky, (i2:02)) - - - Ki, (in:ctn)) g -
[Bolander and Andersen, 2011, Engesser et al., 2017, Bolander et al., 2020]



Implicit coordination:
multi-agent pathfinding with destination uncertainty
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http://www2.compute.dtu.dk/~tobo/scenario2_double.mp4
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But...

Room

Person Person

My prompt to GPT-4: “Please make a tikz illustration of the elephant in
the room.”




Suppose you're controlling a robot in a grid world. The robot can in each move move one cell
north, east, west or south. The grid cells are labelled by coordinates with (1,1) in the lower left
corner. Assume you want to move the robot from (1,1) to (5,1) and assume there are walls in cell
(3,1) and (3,2). The robot can't move through wall cells. Please devise a plan for the robot, i.e., a
sequence of moves that brings it from the initial state, (1,1), to the goal state, (5,1).

One possible solution could be:

Move the robot east to (2,1).
Move the robot east to (3,1).
Move the robot north to (3,2).
Move the robot west to (2,2).
Move the robot south to (2,1).
Move the robot east to (3,1).

N o o~ w N =

Repeat steps 4 to 6 until the robot reaches (5,1).
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ABSTRACT

Intrigued by the claims of emergent reasoning capabilities in LLMs
in this paper, we set out to investigate their planning capabilities.
LLMs are by themselves in generating and validating simple plans f
(of the type that humans are generally quite good at) and (2) how g
heuristic guidance for other agents-either AI planners or human plan}
investigate these questions in a systematic rather than anecdotal mq
benchmark suite based on the kinds of domains employed in the Intef
On this benchmark, we evaluate LLMs in three modes: autonomous,
Our results show that LLM’s ability to autonomously generate exs
averaging only about 3% success rate. The heuristic and human-inf
more promise. In addition to these results, we also make our benchmaf
to support investigations by research community.
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Abstract

The escalating debate on AI’s capabilities war-
rants developing reliable metrics to assess ma-
chine “intelligence.” Recently, many anecdo-
tal examples were used to suggest that newer
large language models (LLMs) like ChatGPT
and GPT-4 exhibit Neural Theory-of-Mind (N-
ToM); however, prior work reached conflicting
conclusions regarding those abilities. We in-
vestigate the extent of LLMs’ N-ToM through
an extensive evaluation on 6 tasks and find that
while LLMs exhibit certain N-ToM abilities,
this behavior is far from being robust. We
further examine the factors impacting perfor-
‘mance on N-ToM tasks and discover that LLMs
struggle with adversarial examples, indicating
reliance on shallow heuristics rather than ro-
bust ToM abilities. We caution against drawing
conclusions from anecdotal examples, limited
testing, and using h d
psychological tests to evaluate models.

Two recent papers addressed whether Large Lan-
guage Models (LLMs; Brown et al., 2020; Bom-
‘masani et al., 2021; Zhao et al., 2023) have a ToM,
and came to opposite conclusions: Sap et al. (2022)
shows they lack this ability and Kosinski (2023)
claims this ability has emerged in the newer mod-
els spontaneously. The latter was criticized for
its flawed methodology (Marcus and Davis, 2023).
Ullman (2023) further showed that simple changes
to the ToM questions break LLMs. But to para-
phrase the saying, hype gets halfway around the
world before rigorous experiments put on their
boots; other researchers continue to spread the
word about N-ToM, claiming that GPT-4 “has a
very advanced level of theory of mind” based on a
few anecdotal examples (Bubeck et al., 2023).

Do LLMs have robust N-ToM?  This paper aims
to address the discrepancy and limited scope of pre-

vinne wark (that each tastad 7 tacke) hv nerfarming
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Plan existence problem
Definition. 7 (m, n) is the class of epistemic planning tasks where all
actions have
® Preconditions of modal depth < m

® Postconditions of modal depth < n.

We use n = —1 to denote the case without postconditions.
Examples.
in 7(0,0) in 7(2,-1) in 7(1,1)
pre p/.\_qJ_ pre:  KpKzO0n(C,B) pre:  Kip
post : [r):T post : post: p:=Kaoqg

Definition. PlanEx-7(m, n) is the following decision problem: Given a
planning task T € T(m, n), does T have a solution?

[Bolander et al., 2020]



The border between decidability and undecidability

Theorem 1. PlanEx-T(m, n) <P PlanEx-T(m+ k,n+ 1).
Theorem 2. PlanEx-T(m, n) <P PlanEx-T(0,1).
Theorem 3. PlanEx-T(m, n) <P PlanEx-T(1,0).

; ; Th./
Th. 2
—_—
Th. 11. -7 \ /
.- PlanEx-T (1, —-1) -~
OPEN PROBLEM! -* \\
“~-Th. 4
[ : undecidable

[ : decidable
—: reductions through Ths. 1-3

[Bolander et al., 2020]
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k-bisimilarity, < : Models satisfying back and forth conditions of
bisimilarity up to depth k. Gives modal equivalence to modal depth k.

Theorem. Suppose s and s’ are k-bisimilar and « is an action of
T(m,n). Thens® « and s’ ®  are (k — max{m, n})-bisimilar.

p
. ?
°
action from 7(1,1)
o
p
—q pre:  Kip
) st q=Kr
[Bolander and Lequen, 2023]

Theorem. PlanEx-T(0,0) is decidable. (Orig. proof [Yu et al., 2013])




Depth-bounded epistemic planning (w. in progress)

Planning algorithm SEARCH( T, k) with depth-bound k:
® Take k-bisimulation contraction of initial state sg.
® After each product update, do /-bisimulation contraction for largest
possible / (by partition refinement, using a new approach).
® If | < modal-depth(yg), terminate the current search path.

Parameters of planning task T (we study parameterised complexity).

a: # agents p: # propositional variables
o: modal depth of goal formula u: maximal length of plan
c: max. modal depth of action preconditions

Soundness and completeness. If SEARCH(T, k) returns 7, then 7 is a
solution to T. If T has a solution, it will be found by SEARCH(T, k)
whenever k > cu + o.

Complexity. SEARCH( T, k) runs in time expé‘*’1 max{a, p}.

For any proper subset of the paramaters acopu, even plan verification is
fixed-parameter intractable. [Bolander and Lequen, 2023]



Some open questions in epistemic planning

(Un)decidability of PlanEx-7(1, —1).
Other natural restrictions in epistemic planning, e.g. structure on

formulas (suggested by Johan van Benthem).

Theory of Mind with other notions than belief, knowledge and
observability: attention, goals/intentions, etc.

Implicit coordination done right (with forward induction, allowing for
goal recognition).

Heuristics in epistemic planning.
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