Knowledge-Based Programs as Plans

Generating Knowledge-Based Plans

Jérôme Lang Bruno Zanuttini Anaëlle Wilczynski Leiden, August 2015

Syntax

Input

- ▶ set of propositional variables $X = \{x_1, ..., x_n\}$ (unobservable)
- set of actions
 - ontic actions
 - epistemic actions

Knowledge-based program π :

- action, or
- ▶ sequence π_1 ; π_2 ; . . . ; π_n , or
- ▶ branching If Φ then π_1 else π_2 , where Φ is a purely subjective S5 formula (Boolean combination of epistemic atoms $K\varphi$); or
- ▶ loop While Φ do π_1 , where Φ is a purely subjective S5 formula.

Progression

Executing an action at a current knowledge state

Ontic action:

- ▶ progression of M^t by Σ
- $M^t = \{x_1x_2x_3, \bar{x}_1\bar{x}_2\bar{x}_3\}$
- ▶ progression by switch(x_1) : $M^{t+1} = \{\bar{x}_1 x_2 x_3, x_1 \bar{x}_2 \bar{x}_3\}$
- progression by reinit(x_1):

$$M^{t+2} = \{x_1 x_2 x_3, \bar{x}_1 x_2 x_3, x_1 \bar{x}_2 \bar{x}_3, \bar{x}_1 \bar{x}_2 \bar{x}_3\}$$

Epistemic action:

- progression of M^t by observation ω received
- ▶ action test($x_1 \land x_2$), observation $\neg (x_1 \land x_2)$: $M^{t+3} = \{\bar{x}_1 x_2 x_3, x_1 \bar{x}_2 \bar{x}_3, \bar{x}_1 \bar{x}_2 \bar{x}_3\}$

Regression

Determining which states could lead to a current knowledge state if we progress them by a specified action

Ontic action:

- ► $Reg(\mathbf{K}(v \rightarrow u), switch(u)) = \mathbf{K}(v \rightarrow \neg u)$
- $ightharpoonup Reg(\mathbf{K}(u \wedge v), repair(u)) = \mathbf{K}v$

Epistemic action:

- ightharpoonup states from which the progression by any possible observation ω leads to the current state
- ► $Reg(\mathbf{K}v \lor \mathbf{K} \neg v, test(u \land v))$ = $\mathbf{K}v \lor \mathbf{K}(v \rightarrow u) \lor \mathbf{K}(\neg u \land v) \lor \mathbf{K} \neg v$ = $\mathbf{K}v \lor \mathbf{K}(v \rightarrow u)$

Knowledge-based planning problems

- ▶ initial knowedge state initial M^0 :
 - ▶ possibly K⊤
 - must contain the true initial state
- ▶ goal knowledge state G
- $\blacktriangleright \pi$ valid plan if
 - terminates
 - ▶ for every possible sequence of states $s^0 \in M^0 \dots s^{\text{final}} \in M^{\text{final}}$ we have $M^{\text{final}} \models G$

Case-of KBPs

```
stop \leftarrow false
REPEAT
           CASE
                     \mathbf{K}\varphi_1:\alpha_1
                     \mathbf{K}\varphi_2:\alpha_2
                     \mathbf{K}\varphi_{m}:\alpha_{m}
           END
UNTIL Kstop
```

▶ fully expressive: if there is a valid KBP of depth k there is also a Case-of KBP of depth k

Generate a KBP

Two characteristics for the generating algorithms:

- Direction used to find a plan
 - Progression: from the initial state to the goal
 - Regression: from the goal to the initial state
- Treatment of actions
 - Synchronously: all the actions are treated in parallel
 - \rightarrow Width first search
 - Asynchronously: we go further by choosing an action to treat one by one
 - \rightarrow Depth first search
- \rightarrow Goal in DKS formula: $G = \mathbf{K}\varphi_1 \lor \cdots \lor \mathbf{K}\varphi_n$
- \rightarrow Returned plan: Case-of KBP

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v} \qquad I = \top$$
$$A = \{\alpha = test(u \wedge \mathbf{v}); \beta = test(u \leftrightarrow \mathbf{v}); \gamma = switch(u)\}$$

Cases:

► **K**v : stop

ightharpoonup **K** $\neg v$: stop

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v} \qquad I = \top$$
$$A = \{\alpha = test(u \wedge \mathbf{v}); \beta = test(u \leftrightarrow \mathbf{v}); \gamma = switch(u)\}$$

Cases:

► K*v* : *stop*

ightharpoonup **K** $\neg v$: stop

$$\mathbf{K}_{V} \vee \mathbf{K}_{\neg V}$$

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v}$$
 $I = \top$
 $A = \{\alpha = test(u \wedge \mathbf{v}); \beta = test(u \leftrightarrow \mathbf{v}); \gamma = switch(u)\}$

Cases:

► Kv : stop

ightharpoonup **K** $\neg v$: stop

• $\mathbf{K}(\mathbf{v} \rightarrow \mathbf{u}) : \alpha$

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v}$$
 $I = \top$
 $A = \{\alpha = test(u \wedge v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

Cases:

► K*v* : *stop*

K¬*v* : *stop*

• $\mathbf{K}(\mathbf{v} \to \mathbf{u}) : \alpha$

► K¬*u* : β

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v} \qquad I = \top$$
$$A = \{\alpha = test(u \wedge \mathbf{v}); \beta = test(u \leftrightarrow \mathbf{v}); \gamma = switch(u)\}$$

Cases:

► K*v* : *stop*

ightharpoonup **K** $\neg v$: stop

• $\mathbf{K}(\mathbf{v} \to \mathbf{u}) : \alpha$

► K¬*u* : β

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v}$$
 $I = \top$
 $A = \{\alpha = test(u \wedge v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

Cases:

► K*v* : *stop*

► K¬*v* : *stop*

 \blacktriangleright **K**($v \rightarrow u$) : α

► K¬*u* : β

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v} \qquad I = \top$$
$$A = \{\alpha = test(u \wedge \mathbf{v}); \beta = test(u \leftrightarrow \mathbf{v}); \gamma = switch(u)\}$$

Cases:

► K*v* : *stop*

ightharpoonup **K** $\neg v$: stop

• $\mathbf{K}(\mathbf{v} \rightarrow \mathbf{u}) : \alpha$

► K¬*u* : β

• $\mathbf{K}(u \rightarrow v) : \alpha$

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v} \qquad I = \top$$
$$A = \{\alpha = test(u \wedge \mathbf{v}); \beta = test(u \leftrightarrow \mathbf{v}); \gamma = switch(u)\}$$

- **► K***v* : *stop*
- ightharpoonup **K** $\neg v$: stop
- \blacktriangleright **K**($v \rightarrow u$) : α
- **► K**¬*u* : β
- $\mathbf{K}(u \rightarrow v) : \alpha$
- \blacktriangleright **K**($v \rightarrow \neg u$) : γ

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v} \qquad I = \top$$
$$A = \{\alpha = test(u \wedge \mathbf{v}); \beta = test(u \leftrightarrow \mathbf{v}); \gamma = switch(u)\}$$

- **► K***v* : *stop*
- **► K**¬*v* : *stop*
- \blacktriangleright **K**($v \rightarrow u$) : α
- **K**¬*u* : β
- \blacktriangleright **K**($u \rightarrow v$) : α
- \blacktriangleright **K**($v \rightarrow \neg u$) : γ

$$G = \mathbf{K} v \vee \mathbf{K} \neg v \qquad I = \top$$
$$A = \{\alpha = test(u \wedge v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$$

- **► K***v* : *stop*
- ightharpoonup **K** $\neg v$: stop
- \blacktriangleright **K**($v \rightarrow u$) : α
- **K**¬*u* : β
- \blacktriangleright **K**($u \rightarrow v$) : α
- \blacktriangleright **K**($v \rightarrow \neg u$) : γ

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v}$$
 $I = \top$
 $A = \{\alpha = test(u \wedge v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

- **► K***v* : *stop*
- ightharpoonup **K** $\neg v$: stop
- \blacktriangleright **K**($v \rightarrow u$) : α
- **► K**¬*u* : β
- $\mathbf{K}(u \rightarrow v) : \alpha$
- ightharpoonup K($v
 ightarrow \neg u$) : γ
- **K**⊤ : α

$$G = \mathbf{K} \mathbf{v} \lor \mathbf{K} \neg \mathbf{v}$$
 $I = \top$
 $A = \{\alpha = test(u \land v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

Cases:

G $K_V \lor K_{\neg V}$

► Kv : stop

 \blacktriangleright **K** \neg *v* : *stop*

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v}$$
 $I = \top$ $A = \{\alpha = test(u \wedge v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

Cases:

▶ **K**v : stop

ightharpoonup **K** $\neg v$: stop

 $\mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v}$

$$G = \mathbf{K} \mathbf{v} \lor \mathbf{K} \neg \mathbf{v}$$
 $I = \top$ $A = \{\alpha = test(u \land v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

Cases:

► Kv : stop

ightharpoonup **K** $\neg v$: stop

• $\mathbf{K}(\mathbf{v} \to \mathbf{u}) : \alpha$

$$G = \mathbf{K} \mathbf{v} \lor \mathbf{K} \neg \mathbf{v}$$
 $I = \top$ $A = \{\alpha = test(u \land v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

Cases:

► **K**v : stop

ightharpoonup **K** $\neg v$: stop

 \blacktriangleright **K**($v \rightarrow u$) : α

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v}$$
 $I = \top$ $A = \{\alpha = test(u \wedge v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

Cases:

► Kv : stop

ightharpoonup **K** $\neg v$: stop

• $\mathbf{K}(\mathbf{v} \to \mathbf{u}) : \alpha$

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v}$$
 $I = \top$ $A = \{\alpha = test(u \wedge v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v}$$
 $I = \top$ $A = \{\alpha = test(u \wedge v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

- ► Kv : stop
- ightharpoonup **K** $\neg v$: stop
- ightharpoonup **K**($v \rightarrow u$) : α
- $\mathbf{K}(v \rightarrow \neg u) : \gamma$

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v}$$
 $I = \top$ $A = \{\alpha = test(u \wedge v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

- ► Kv : stop
- K¬v : stop
- \blacktriangleright **K**($v \rightarrow u$) : α

$$G = \mathbf{K} \mathbf{v} \vee \mathbf{K} \neg \mathbf{v}$$
 $I = \top$ $A = \{\alpha = test(u \wedge v); \beta = test(u \leftrightarrow v); \gamma = switch(u)\}$

- ► Kv : stop
- ightharpoonup **K** $\neg v$: stop
- \blacktriangleright **K**($v \rightarrow u$) : α
- \blacktriangleright **K** $(v \rightarrow \neg u) : \gamma$
- **► K**⊤ : β

Heuristic functions

Choice of the action to regress (or progress) with

- → Choose the most "informative" action
 - \blacktriangleright h_1 : be closer to the initial state
 - \rightarrow optimal in the number of epistemic actions

$$\begin{array}{ll} \mathit{M}^0 = \{\mathit{uv}, \mathit{u}\bar{\mathit{v}}, \bar{\mathit{u}}\mathit{v}, \bar{\mathit{u}}\bar{\mathit{v}}\} & \text{current state } \Gamma = \mathsf{K}\mathit{v} \vee \mathsf{K} \neg \mathit{v} \\ \mathit{Reg}(\Gamma, \alpha) = \mathsf{K}(\mathit{v} \rightarrow \mathit{u}) \Rightarrow \mathit{h}_1(\alpha) = 1 \\ \mathit{Reg}(\Gamma, \beta) = \mathsf{K}\mathit{u} \vee \mathsf{K} \neg \mathit{u} \Rightarrow \mathit{h}_1(\beta) = 2 \end{array}$$

▶ h₂: be closer to the initial state and go away as much as possible from the current state

```
ightarrow arg max h_2 \subseteq \arg \min h_1

M^0 = \{uv, u\bar{v}, \bar{u}v, \bar{u}\bar{v}\} current state \Gamma = \mathbf{K}(v \to u) \lor \mathbf{K}v

Reg(\Gamma, \beta) = \mathbf{K}(u \to v) \Rightarrow h_1(\beta) = 1 and h_2(\beta) = 1

Reg(\Gamma, \gamma) = \mathbf{K}(v \to \neg u) \Rightarrow h_1(\gamma) = 1 and h_2(\gamma) = 2
```

Results

- ▶ Until now, only small instances can be handled
- ▶ Progression clearly faster than regression
- More succintness in Case-of KBPs generated by progression
- ▶ Depth first search: faster even if the synchronous progression/regression algorithm is optimal in the depth of the plan

Conclusion

- Regression: useful in order to characterize all the possible previous states but costly...
- Progression: faster but classical in planning
- still far from the most known classical planners (Contingent-FF, HSP)...
- but permits a more expressive formulation

Future work

- ► Properties of Case-of KBPs
- ▶ Improve the efficiency of generating KBPs by regression: find more efficient heuristics, improve implementation
- More comparisons with classical planning algorithms
- Probabilistic and multi-agent cases