Knowledge-Based Programs as Plans

Generating Knowledge-Based Plans

Jérbme Lang Bruno Zanuttini Anaélle Wilczynski

Leiden, August 2015

Jérébme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 1/13

Syntax

Input

» set of propositional variables X = {xi,
» set of actions

» ontic actions
> epistemic actions

Knowledge-based program 7:
> action, or

> sequence 71 7o, ... Ty, OF

..., Xn} (unobservable)

» branching If ® then 7 else 7, where ® is a purely subjective S5
formula (Boolean combination of epistemic atoms K); or

» loop While ® do 71, where ® is a purely subjective S5 formula.

Jérébme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 2/13

Progression

Executing an action at a current knowledge state

Ontic action:
» progression of M* by ¥
» Mt = {X1X2X3¢)_<1>_<2>_(3}
» progression by switch(x;) :
Mt+1 = {)_<1X2X3.X1>_(2)_<3}
» progression by reinit(x) :
Mt+2 = {X1X2X3,)_<1X2X3, X1)_<2>_<3.)_<1>_<2)_<3}

Epistemic action:

» progression of M! by observation w received

» action test(x; A x2), observation —(x; A x2) :
M3 = {1 x0x3, X1 %03, X1 X2%3 }

Jérébme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans

3/13

Regression

Determining which states could lead to a current knowledge state if we
progress them by a specified action

Ontic action:
» Reg(K(v — u),switch(u)) = K(v — —u)
» Reg(K(u A v), repair(u)) = Kv

Epistemic action:

> states from which the progression by any possible observation w leads
to the current state

» Reg(Kv Vv K-v, test(u A v))
=KvVK(v—=u)VK(-uAv)VKav
=KvVK(v—u)

Jérébme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 4/13

Knowledge-based planning problems

» initial knowedge state initial V/° :
» possibly KT
» must contain the true initial state

» goal knowledge state G

» 7 valid plan if
> terminates

» for every possible sequence of states s” « V0 .. slinal o pyfinal
we have V1l = G

Jérébme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 5/13

Case-of KBPs

stop < false
REPEAT
CASE
Koo
Kps @ an

Kom:am

END
UNTIL Kstop

» fully expressive: if there is a valid KBP of depth k there is also a
Case-of KBP of depth k

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 6/13

Generate a KBP

Two characteristics for the generating algorithms:

» Direction used to find a plan

» Progression: from the initial state to the goal
> Regression: from the goal to the initial state

» Treatment of actions

» Synchronously: all the actions are treated in parallel
— Width first search

» Asynchronously: we go further by choosing an action to treat one by
one
— Depth first search

— Goal in DKS formula: G =Ky V-V Ky,
— Returned plan: Case-of KBP

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 7/13

Generation by synchronous regression

G =KvVvK-v =T

A = {a = test(u A v); f = test(u <> v);y = switch(u)}

Cases: c
» Kv : stop
» K-v : stop

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 8/13

Generation by synchronous regression

G =KvVvK-v =T

A = {a = test(u A v); f = test(u <> v);y = switch(u)}

Cases: c
» Kv : stop
» K-v : stop
Kv Vv K-v

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 8/13

Generation by synchronous regression

G =KvVvK-v =T

A = {a = test(u A v); f = test(u <> v);y = switch(u)}

Cases: c
» Kv : stop @
> K-v : stop P
» K(v—=u):«a K(v—=u)|V KvVvK-v

Jérébme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans

8/13

Generation by synchronous regression

G =KvVvK-v =T

A = {a = test(u A v); f = test(u <> v);y = switch(u)}

Cases:

» Kv : stop

» K-v : stop

» K(v—u):«
> K-u:f

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 8/13

Generation by synchronous regression

G =KvVvK-v =T

A = {a = test(u A v); f = test(u <> v);y = switch(u)}

Cases:

» Kv : stop
K-v : stop

K-u:

v

v

v

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 8/13

Generation by synchronous regression

G =KvVvK-v =T

A = {a = test(u A v); f = test(u <> v);y = switch(u)}

Cases:

» Kv : stop
» K-v : stop

> K-u:f
K(v — u) VKvV K-y

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 8/13

Generation by synchronous regression

G =KvVvK-v =T

A = {a = test(u A v); f = test(u <> v);y = switch(u)}

Cases:

» Kv : stop

K-v : stop

oo KoKk
a

K-u:
K(u—) a K(u—v)|Vv K(v—u)VvKevK=au

v

v

v

v

Jérébme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans

8/13

Generation by synchronous regression

G =KvVvK-v =T

A = {a = test(u A v); f = test(u <> v);y = switch(u)}

Cases:

» Kv : stop
» K—v : stop

«Q Y

» K-u: f
K(u—v)|Vv K(v—u)vVKevK=u V| K(v — —u)
» K(u—v):«
» K(v — —wu) :y
Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 8/13

Generation by synchronous regression

G =KvVvK-v =T

A = {a = test(u A v); f = test(u <> v);y = switch(u)}

Cases:

» Kv : stop

» K-v : stop

» K(v—u):«

> K-u:f

- K(w =)

» K(v — —wu) iy

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 8/13

Generation by synchronous regression

G =KvVvK-v =T

A = {a = test(u A v); f = test(u <> v);y = switch(u)}

Cases: c
» Kv : stop
» K—v : stop

o)
» K-u: f
» K(u—v):«

» K(v — —wu) iy K(u— v)VK(v = u) VK(v = —u)

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 8/13

Generation by synchronous regression

G =KvVvK-v =T

A = {a = test(u A v); f = test(u <> v);y = switch(u)}

Cases:

» Kv : stop

» K—v : stop
» K(v—=u):«
» K-u: f

» K(u—v):«

» K(v — —wu) iy \/K(u—>v)\/K(v—>u)\/K(V—>ﬂU)
» KT«

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 8/13

Generation by asynchronous regression

G =KvVK-v I=T

A = {a = test(u A v); f = test(u <+ v);y = switch(u)}

Cases:
» Kv : stop
» K-v : stop

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 9/13

Generation by asynchronous regression

G =KvVK-v I=T

A = {a = test(u A v); f = test(u <+ v);y = switch(u)}

Cases:
» Kv : stop
> K=v : stop Kv Vv K-v

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 9/13

Generation by asynchronous regression

A = {a = test(u A v); f = test(u <+ v);y = switch(u)}

Cases:
» Kv : stop
» K-v : stop
» K(v—u):«

G =KvVK-v I=T

K(v — u)

Jérébme Lang, Bruno Zanuttini, Anaélle Wilczynski

Knowledge-Based Programs as Plans

9/13

Generation by asynchronous regression

G =KvVK-v I=T

A = {a = test(u A v); f = test(u <+ v);y = switch(u)}

» Kv : stop

» K(v—u):«

Jérébme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans

9/13

Generation by asynchronous regression

G =KvVK-v I=T

A = {a = test(u A v); f = test(u <+ v);y = switch(u)}

» Kv : stop

» K(v—u):«
K(v — u) VKv

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 9/13

Generation by asynchronous regression

G =KvVK-v I=T

A = {a = test(u A v); f = test(u <+ v);y = switch(u)}

» Kv : stop

K(v—u):« .

K(v — —u)| VK(v— u) VvV Ky

v

v

v

K(v — —u) iy

Jérébme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans

9/13

Generation by asynchronous regression

G =KvVK-v I=T

A = {a = test(u A v); f = test(u <+ v);y = switch(u)}

» Kv : stop

K-v : stop
K(v—u):«
K(v = ~u) 5

v

v

v

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 9/13

Generation by asynchronous regression

G =KvVK-v I=T

A = {a = test(u A v); f = test(u <+ v);y = switch(u)}

» Kv : stop

K-v : stop
K(v—u):«
K(v = ~u) 5

K(v — u) VKv Vv K(v = —u)

v

v

v

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 9/13

Generation by asynchronous regression

G =KvVK-v I=T

A = {a = test(u A v); f = test(u <+ v);y = switch(u)}

Cases:

» Kv : stop

v

K-v : stop

v

K(v—u):«

v

K(v — —u) iy
KT: g

v

VvV K(v — u) VKv VvV K(v = —u)

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 9/13

Heuristic functions

Choice of the action to regress (or progress) with
— Choose the most "informative” action

» hi: be closer to the initial state
— optimal in the number of epistemic actions
MO® = {uv, uv, Giv, av} current state I = Kv V K—v
Reg(l', o) = K(v — u) = hi(a) =1
Reg(l,3) = KuV K-u = hi(8) =2

> hy: be closer to the initial state and go away as much as possible
from the current state
— arg max hy C arg min hy
M® = {uv, uv, tiv, iv} current state I = K(v — u) V Kv
Reg(l',3) = K(u — v) = hi(B) =1 and hy(B) =1
Reg(l',v) = K(v — —u) = hi(y) =1 and ha(y) =2

Jérébme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 10/13

Results

v

Until now, only small instances can be handled
» Progression clearly faster than regression

» More succintness in Case-of KBPs generated by progression

v

Depth first search: faster even if the synchronous
progression /regression algorithm is optimal in the depth of the plan

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 11/13

Conclusion

v

Regression: useful in order to characterize all the possible previous
states but costly...

» Progression: faster but classical in planning

still far from the most known classical planners (Contingent-FF,
HSP)...

> ... but permits a more expressive formulation

v

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 12/13

Future work

» Properties of Case-of KBPs

v

Improve the efficiency of generating KBPs by regression: find more
efficient heuristics, improve implementation

» More comparisons with classical planning algorithms

v

Probabilistic and multi-agent cases

Jéréme Lang, Bruno Zanuttini, Anaélle Wilczynski Knowledge-Based Programs as Plans 13/13

