Relating paths in transition systems: the fall of the modal mu-calculus

> Sophie Pinchinat IRISA, Université de Rennes 1

joint work with Catalin Dima and Bastien Maubert

Lorentz Center TBA Workshop August 2015 In the full observation setting: Consider the ATL property $\langle \langle \text{Eloise} \rangle \rangle$ Fg for "Eloise has a plan to reach goal g" that you want to model-check (and at the same time synthesize the plan, if any). In the full observation setting: Consider the ATL property $\langle \langle \text{Eloise} \rangle \rangle$ Fg for "Eloise has a plan to reach goal g" that you want to model-check (and at the same time synthesize the plan, if any).

A nice setting is to use the following roadmap:

ATL \longrightarrow MSO \longleftrightarrow $L_{\mu} \longleftrightarrow$ PT Automata [EJ91] "Tree automata, mu-calculus and determinacy" [Janin-Walukiewicz96]

> "On the expressive completeness of the propositional mucalculus with respect to monadic second order logic"

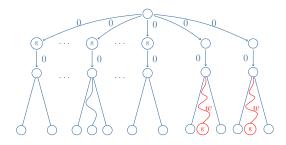
In the partial observation setting: Consider the ATL property

 $\langle\langle \mathrm{Eloise}\rangle\rangle\mathrm{Fg}$ for "Eloise has a plan to reach goal g"

that you want to model-check (and at the same time synthesize the plan, if any).

Notice that Eloise's plan has to be uniform!

 $\mathcal{A}ct = \{0, 1\}$ and $w \in \mathcal{A}ct^*$



The plan 0.w is winning

In the partial observation setting: Consider the ATL property

 $\langle \langle \mathrm{Eloise} \rangle \rangle \mathrm{Fg}$ for "Eloise has a plan to reach goal g"

that you want to model-check (and at the same time synthesize the plan, if any). Notice that Eloise's plan has to be uniform!

What would the roadmap look like?

$$\operatorname{ATL} \longrightarrow \operatorname{MSO} \longleftrightarrow \operatorname{PTAutomata}_{?} \operatorname{Constant}_{?} \operatorname{PTAutomata}_{?} \operatorname{PTAutomata$$

Part I : The full observation setting

- ▶ Monadic Second Order Logic MSO and the μ -calculus L_{μ}
- ► Expressive Completeness of Janin and Walukiewicz 1996 (tree automata)

ATL \longrightarrow MSO \longleftrightarrow $L_{\mu} \longleftrightarrow$ Automata

- ▶ Transition systems with binary relations between paths
- ► Monadic Second Order Logic with path relations MSO[¬]
- The jumping μ -calculus $\mathsf{L}^{\triangleleft}_{\mu}$
- ► Jumping (Tree) Automata for L_{μ}^{\triangleleft}

- ▶ Transition systems with binary relations between paths
- ► Monadic Second Order Logic with path relations MSO[¬]
- ► The jumping μ -calculus $\mathsf{L}_{\mu}^{\triangleleft}$
- ▶ Jumping (Tree) Automata for L_{μ}^{\triangleleft}
- ► Expressive completeness for recognizable relations (e.g. finite memory of agents)

- ▶ Transition systems with binary relations between paths
- ► Monadic Second Order Logic with path relations MSO[¬]
- The jumping μ -calculus $\mathsf{L}^{\triangleleft}_{\mu}$
- ► Jumping (Tree) Automata for L_{μ}^{\checkmark}
- Expressive completeness for recognizable relations (e.g. finite memory of agents)
- ► NON Expressive completeness for regular relations (e.g. synchronous perfect recall)

- ▶ Transition systems with binary relations between paths
- ► Monadic Second Order Logic with path relations MSO[¬]
- The jumping μ -calculus $\mathsf{L}^{\triangleleft}_{\mu}$
- ► Jumping (Tree) Automata for L_{μ}^{\triangleleft}
- Expressive completeness for recognizable relations (e.g. finite memory of agents)
- ► NON Expressive completeness for regular relations (e.g. synchronous perfect recall)
 - ► L[¬]_µ-definability of 2-player imperfect information reachability games where Eloise has a wining strategy