

Planning Over Multi-Agent Epistemic States: A Classical Planning Approach

Christian Muise*, Vaishak Belle[†], Paolo Felli*, Sheila McIlraith[†] Tim Miller*, Adrian R. Pearce*, Liz Sonenberg*

*Department of Computing and Information Systems, University of Melbourne [†]Department of Computer Science, University of Toronto *{christian.muise,paolo.felli,tmiller,adrianrp,l.sonenberg}@unimelb.edu.au, [†]{vaishak,sheila}@cs.toronto.edu

Contribution

We formally characterize a notion of multi-agent epistemic planning, and demonstrate how to solve a rich subclass of these problems using classical planning techniques.

General Approach

Example: Grapevine

Conditioned Mutual Awareness

Idea: Given a condition μ_i for agent i to witness an action, add the conditional effects for us to update our belief about agent i

Examples for μ_i :

• in_room_i: Agent i observes the effect if they are in the room (i.e., physically present).

- Model how the actions update both the state of the world and the agents' belief of that state
- Assume a single nesting of belief is a fluent and convert to a classical planning problem
- **3** Reformulate the problem to maintain desired properties
- "Project" and reason *as if* we were another agent

Classical Planning

Planning Problem $\langle F, G, I, O \rangle$ where,

F: set of fluent atoms

G: set of fluents describing the goal condition I: setting of the fluents describing the initial state O: set of operators of the form $\langle Pre, eff^+, eff^- \rangle$ Pre: set of fluents for the precondition eff^+ : set of conditional effects that add a fluent eff^- : set of conditional effects that delete a fluent

Agents each have their own secret to (possibly) share with one another and start knowing only their own secret. They can move freely between a pair of rooms, and broadcast any secret they currently believe to everyone in the room.

Actions: $share(i, secret_j, room_k)$ (i and j may differ), move_left(i), and move_right(i)

Goal: Misconception – one agent believes another does not know their secret, when in fact they do.

Solution: Consider a goal of $\{B_a secret_b, \neg B_b B_a secret_b\}$ $[move_right(a), share(b, secret_b, 1),$ move_right(c), share(c, secret_b, 2)]

Example Effect

E.g., Consider the action $share(c, secret_b, room_1)$ **Precondition**: { $at_c_{room_1}$, $B_csecret_b$ } **One effect**: If a is in the room, they will learn the secret: $(\langle \{at_a_room_1\}, \emptyset \rangle \rightarrow B_asecret_b) \in eff^+$

- True: Agent i always observes the effect
- False: Agent i never observes the effect

E.g., $(\langle \emptyset, \{\neg at_a_room_1\} \rangle \rightarrow \neg B_a secret_b) \in eff^ \Rightarrow (\langle \{\neg B_c \neg at_a_room_1\}, \emptyset \rangle \rightarrow \neg B_c \neg B_a secret_b) \in eff^+$

Agent Projection

Idea: Project our beliefs about the world and action effects to reason *as if* we were another agent.

- Can be repeated to depths greater than 1
- Represents our view of how another will reason
- Works in concert with Conditioned Mutual Awareness

Proj(s, Ag): Projecting state s for agent sequence Ag: $\begin{cases} \{ \phi | B_i \phi \in s \} & \text{if } \vec{Ag} = [i] \\ Proj(Proj(s, [i]), \vec{Ag'}) & \text{if } \vec{Ag} = [i] + \vec{Ag'} \end{cases}$

Projecting effects for agent i works in a similar fashion, but can only be done if the effect is *uniform in* i: $\mathcal{C}^- = \emptyset$ and all RMLs in the effect begin with B_i .

 $(\langle \mathcal{C}^+, \mathcal{C}^- \rangle \to 1)$: conditional effect that fires when \mathcal{C}^+ holds and \mathcal{C}^- does not hold

E.g., PICKUPBLOCK

- If the agent is strong and the block is not slippery, then the agent holds the block: eff^+ contains $(\langle \{\text{strong}\}, \{\text{slippery}\} \rangle \rightarrow \text{holding_block})$
- If the block is big, then the agent's hand will no longer be free (i.e., we should delete the hand_free fluent): eff^- contains ($\langle \{big_block\}, \emptyset \rangle \rightarrow hand_free \}$)

Note: We distinguish between C^+/C^- and $eff^+/eff^$ so that our encoding is more legible

Multi-Agent Epistemic Planning

- State represents our belief about the world
- Our belief includes the nested belief of others
- Action precondition / effects can mention belief

Ancillary Conditional Effects

Idea: Compile new conditional effects from existing ones in order to ensure certain properties hold

Negation Removal

Delete the negation of any added RML

 $(\langle \mathcal{C}^+, \mathcal{C}^- \rangle \to \mathfrak{l}) \in eff^+$ $\Rightarrow (\langle \mathcal{C}^+, \mathcal{C}^- \rangle \rightarrow \neg l) \in eff^-$

E.g., $(\langle \{at_a_room_1\}, \emptyset \rangle \rightarrow B_asecret_b) \in eff^+$ \Rightarrow ($\langle \{at_a_room_1\}, \emptyset \rangle \rightarrow \neg B_a secret_b \rangle \in eff^-$

Uncertain Firing

If we are uncertain if an effect fires, we should be uncertain about the original outcome of the effect

E.g., $(\langle \{at_a_room_1\}, \emptyset \rangle \rightarrow B_asecret_b) \in eff^+$

Preliminary Evaluation

Problem	Ag	d	F	$ \vec{o} $	Time (s)	
					Plan	Total
Corridor	3	1	70	5	0.01	0.11
	7	1	150	5	0.01	0.21
	3	3	2590	5	0.05	6.85
Grapevine	4	1	216	10	0.04	0.27
	3	2	774	4	0.09	1.84
	4	2	1752	4	0.70	6.61

Table: Results for various Corridor and Grapevine problems. Ag: agents, d: max depth, F: compiled fluents, and \vec{o} : found plan. Plan time is the time spent solving the encoded problem, while Total time additionally includes the encoding and parsing phases.

Encoded fluents are Restricted Modal Literals (RMLs):

 $\phi ::= p \mid B_{aq} \phi \mid \neg \phi$

• $ag \in Ag$: A particular agent • $p \in \mathcal{P}$: An original fluent without belief

• E.g., B_{Sue}raining: "Sue believes it is raining"

Key Issue: How do we maintain properties on the state of the world, such as believing logical deductions or never believing contradictory information? Additional effects

 $\Rightarrow (\langle \emptyset, \{\neg at_a_room_1\} \rangle \rightarrow \neg B_a secret_b) \in eff^-$

KD45_n **Closure**

The agent's belief should remain deductively closed under the logic of KD45_n (e.g., $B_i p \vdash_{KD45} \neg B_i \neg p$)

E.g., $(\langle \{at_a_room_1\}, \emptyset \rangle \rightarrow B_asecret_b) \in eff^+$ \Rightarrow ($\langle \{at_a_room_1\}, \emptyset \rangle \rightarrow \neg B_a \neg secret_b \rangle \in eff^+$

Summary

 Multi-agent planning settings often require us to model the nested belief of agents

• We leveraged a tractable fragment of epistemic reasoning to maintain consistency of agents' belief

 Realized an automated planning system that deals with the nested belief in a multi-agent setting

www.haz.ca/research/pdkb Paper · Slides · Code · Demo