Protocol Design via Epistemic Analysis

Dedication

This talk is dedicated to the memory of Jaakko Hintikka 1929 – 2015

Protocol Design via Epistemic Analysis

Workshop: Synthesizing Epistemic Protocols (DEL)

This talk: Using Epistemics for Protocol Design (in the runs & systems model)

- Motivating knowledge in distributed computing by example
- Modeling knowledge in distributed computing
- Relating Knowledge and Action: Knowledge of Preconditions (KoP)
- Using KoP to derive an efficient protocol

Example: Computing the Maximum (CTM)

- Each node *i* has an initial value *v_i*
- Agent 1 must print the maximal value
- After receiving " $v_2 = 100$," can 1 act?
- No she may lack the necessary knowledge

Collecting Values

- Collecting all values is not necessary
- Collecting all values is not sufficient
- Alice may not know how many they are

What is ${\rm CTM}$ about if not collecting values?

Knowing that Max = c is a necessary condition necessary and sufficient for printing c.

This knowledge depends on various parameters:

- The agents' protocol
- The possible initial values
- The network topology
- Timing guarantees re: communication, synchrony, activation
- Reliability, . . .

Needing to know the maximum is an instance of a general principle:

The Knowledge of Preconditions Principle (KoP)

A Theory of Knowledge in Distributed Systems

A three decades old theory of knowledge is based on

- Halpern and M. [1984]
- Parikh and Ramanujam [1985]
- Chandy and Misra [1986]

• Fagin et al. [1995], Reasoning about Knowledge

The Runs & Systems Model [Fagin et al. 1995]

- A global state is a "snapshot" of the whole system at an instant. *G* is the application-dependent set of global states.
- A run is a sequence $r : \mathbb{N} \to \mathcal{G}$ of global states.
- A system is a set *R* of runs.

Modeling: A System

The role of "possible worlds" is played by points $(r, t) \in R \times \mathbb{N} \triangleq Pts(R)$.

A Logic of Knowledge

Starting from a set Φ of primitive propositions, define $\mathcal{L}_n^{\mathcal{K}} = \mathcal{L}_n^{\mathcal{K}}(\Phi)$ by

$$\varphi := \boldsymbol{p} \in \boldsymbol{\Phi} \mid \neg \varphi \mid \varphi \land \varphi \mid \boldsymbol{K_1} \varphi \mid \cdots \mid \boldsymbol{K_n} \varphi$$

Given an interpretation $\pi : \Phi \times Pts(R) \rightarrow {True, False}$

$$(R, r, t) \vDash p$$
, for $p \in \Phi$, iff $\pi(p, r, t) =$ True.
 $(R, r, t) \vDash \neg \varphi$ iff $(R, r, t) \notin \varphi$
 $(R, r, t) \vDash \varphi \land \psi$ iff both $(R, r, t) \vDash \varphi$ and $(R, r, t) \vDash \psi$.

Defining Knowledge

Assumption:

Each global state r(t) determines a *local state* $r_i(t)$ for every agent *i*.

$$(R, r, t) \models K_i \psi$$
 iff $(R, r', t') \models \psi$ for all points (r', t') of R
such that $r_i(t) = r'_i(t')$.

Comments:

An agent's information is identified with its local state.

 $K_i\psi$ holds if ψ is guaranteed to hold in R given i's local state.

The knowledge operator K_i is an **S5** modal operator.

Knowing the Maximum

• $(R, r, 1) \models K_1(Max \ge 100)$, but

•
$$(R, r, 1) \models \neg K_1(Max = 100)$$
, because
 $(R, r', 1) \models Max \neq 100$ and $r_1(1) = r'_1(1)$

Protocol + Context = System

In applications, systems have the form $R = R(P, \gamma)$:

$$R(P, \gamma) = \{r | r \text{ is a run of protocol } P \text{ in context } \gamma\}$$

where

•
$$P = (P_1, \ldots, P_n)$$
 is a protocol for the agents

- The context $\gamma = (\mathcal{G}_0, P_e, \tau, \Psi)$ describes the model:
 - \mathcal{G}_0 is a set if initial states;
 - P_e is a protocol for the environment;
 - τ is a transition function;
 - Ψ determines reliability and fairness conditions.

Necessary Conditions for Actions (aka "preconditions")

Max = c is a necessary condition for $print_1(c)$ in CTM.

Definition

 ψ is a necessary condition for $\operatorname{does}_i(\alpha)$ in R if

 $(R, r, t) \vDash \operatorname{does}_i(\alpha) \Rightarrow \psi \quad \text{ for all } (r, t) \in \operatorname{Pts}(R).$

Specifications impose necessary conditions:

- Dispensing cash at an ATM requires "customer has credit"
- Entering the critical section in Mutual Exclusion requires "critical section is empty"
- Deciding 1 in Consensus requires "no correct process will ever decide 0 in this run"

Knowledge of Preconditions

Definition

 α is a *conscious action* for *i* in *R* if

 $(R, r, t) \models \operatorname{does}_{i}(\alpha) \& r'_{i}(t') = r_{i}(t) \text{ implies } (R, r', t') \models \operatorname{does}_{i}(\alpha)$

Theorem (KoP)

Suppose that α is a conscious action for *i* in the system *R*.

If φ is a necessary condition for $\operatorname{does}_i(\alpha)$ in R, then

 $K_i \varphi$ is a necessary condition for $does_i(\alpha)$ in R.

Proof of KoP

 α is a conscious action for *i*

 φ is a necessary condition for does_i(α)

KoP Converts Specs into Epistemic Specs

Specifications induce epistemic conditions:

- CTM: $K_1(Max = c)$
- Dispensing cash at the ATM: K_{atm}(customer has credit)
- Mutual Exclusion: K_i (critical section is empty)
- Consensus: K_i (no correct process will ever decide 0)
- Betting on Camelot in the Royal Ascot requires K_i (Camelot will win).

An Application: Distributed Consensus

We consider

- a complete communication graph with *n* nodes
- each starts with a binary initial value $v_i \in \{0, 1\}$
- a discrete global clock
- synchronous round-based message passing
- up to t < n crash failures

The scheduler chooses

- the initial values a vector in $\{0,1\}^*$
- the failure pattern who crashes, when, and in what form.

We call this choice an adversary $\beta = (\vec{v}, fp)$.

Consensus

A consensus protocol must guarantee:

Decision: Every correct process decides on some value

Validity: If $v_i = c$ for all *i* then nobody decides 1 - c, for $c \in \{0, 1\}$

Agreement: All correct processes decide on the same value

A process is correct in a run if it does not crash.

t + 1 round Lower Bound

Theorem (Dolev-Strong '82, Fischer-Lynch '82)

Every consensus protocol in this model requires at least t + 1 rounds to decide in its worst-case run.

Consensus Protocols I

We focus on full-information protocols (fip's): Each non-crashed process broadcasts its state in every round.

Protocol P_1 (for undecided process *i*):

if $time = t + 1$ &	K _i ∃0	then decide _i (0)
---------------------	-------------------	---------------------------------------

elseif time = t + 1 & $\neg K_i \exists 0$ then decide_i(1)

Optimal: All decisions at time t + 1

Consensus Protocols II

A better protocol:

Protocol *P*₂ (for undecided process *i*):

if $K_i \exists 0$ then decide_i(0) elseif time = t + 1 & $\neg K_i \exists 0$ then decide_i(1)

Optimal: All decisions by time t + 1

Consensus Protocols III

Even better (Dolev, Reischuck, Strong '83) "early stopping":

Protocol P_3 (for undecided process *i*):

if $K_i \exists 0$ then decide_i(0) elseif sender_set_repeats for *i* then decide_i(1)

Optimal: All decisions by time $f + 1 \le t + 1$

for f = # actual failures

On Being Better

 P_3 strictly improves on P_2 , which strictly improves on P_1 ;

Can every consensus protocol be strictly improved upon?

A Knowledge-based Analysis: Deciding on 0

- By **Validity**, $\exists 0$ is a necessary condition for decide_i(0).
- By the **K** $_{o}$ **P**, $K_{i} \exists 0$ is a necessary condition for decide_i(0).

Both P_2 and P_3 decide on 0 using the rule:

if $K_i \exists 0$ then decide_i(0)

No consensus protocol can decide on 0 any faster than that!

A Knowledge-based Analysis: Deciding on 1

Suppose the rule for deciding 0 is $K_j \exists 0 \Leftrightarrow \text{decide}_j(0)$. When can decide_i(1) be performed?

- By Agreement, "no currently active process has decided 0" is a necessary condition for decide_i(1); so
- ψ = "K_j∃0 holds for no active process" is a necessary condition for decide_i(1);
- By the **K** $_{o}$ **P**, $K_{i}\psi$ is a necessary condition for decide_i(1).

An Unbeatable Protocol

[Castanèda, Gonczarowski & M. '14]

Protocol *OPT*₀ (for undecided process *i*):

if $K_i \exists 0$ then decide_i(0) elseif K_i (nobody_knows(0)) then decide_i(1)

Theorem (CGM)

- OPT_0 strictly dominates P_3 , in some cases by O(t) rounds;
- *OPT*⁰ *is the first unbeatable consensus protocol;*
- OPT₀ can be implemented very efficiently.

Conclusions

- Knowledge is inherent in distributed and multi-agent protocols
- KoP relates knowledge and action in a new way
- KoP applies in all models of distributed and multi-agent systems
- Knowledge-based analysis and KoP facilitate structured design of efficient protocols
- Diverse applications including VLSI, Biology, real-time coordination and more