Cooperative Epistemic Multi-Agent Planning With Implicit Coordination

Albert-Ludwigs-Universität Freiburg

Robert Mattmüller¹ (joint work with Thorsten Engesser¹, Thomas Bolander², and Bernhard Nebel¹) ¹University of Freiburg, Germany ²Technical University of Denmark, Copenhagen, Denmark August 20, 2015

Classical planning on one slide:

- Given:
 - Initial world state
 - Goal description
 - Available actions
- Wanted:

Plan leading from initial state to goal state

Assumptions:

- Single agent
- Full observability
- Deterministic actions
- Static and discrete environment
- Reachability goal

. . .

Motivation

From Classical to Epistemic Planning

Example: Application Scenario

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Classical

BURG

S.

Classical, FOND

BURG

S.

Classical, FOND, POND

UNI FREIBURG

Application Scenario

Motivation

From Classical to Epistemic Planning

Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Classical, FOND, POND, epistemic planning, ...

Motivation

From Classical to Epistemic Planning Example:

Application Scenario

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Classical, FOND, POND, epistemic planning, ...

BURG

Motivation

From Classical to Epistemic Planning Example: Application Scenario

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Algorithmic techniques successful in (satisficing) classical planning:

Mainly state-space search

- guided by goal-distance heuristics
- based on delete relaxation,
- abstractions, and
 - landmarks,
 - enhanced with pruning techniques
 - (helpful actions, commutativity, symmetry),
 - as well as invariants, causal relationships, decoupling techniques, ...

DRD

Motivation

From Classical to Epistemic Planning

Example: Application Scenario

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Conclusion

Question: How well do they serve us in epistemic planning?

Attempt at answer:

- Start with simple state-space search.
- Later try to add in other techniques step by step.
- Contrast: Compilation to classical planning (cf. Muise, Belle, McIlraith, et al.).

Motivation

2

From Classical to Epistemic Planning

Example: Application Scenario

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Example: Robot Collaborating with Human

Motivation

From Classical to Epistemic Planning

Example: Application Scenario

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Example: Robot Collaborating with Human

Motivation

From Classical to Epistemic Planning

Example: Application Scenario

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Conclusion

Epistemic planning useful if we want the agents to coordinate implicitly

Cooperative Epistemic Planning

Cooperative epistemic planning:

- Task: Collaboratively reach joint goal
- Challenge: Required knowledge and capabilities distributed among agents
- Idea: Communication / coordination as part of the plan

FREIBU

DRG

Motivation

From Classical to Epistemic Planning

Example: Application Scenario

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Cooperative Epistemic Planning

Cooperative epistemic planning:

- Task: Collaboratively reach joint goal
- Challenge: Required knowledge and capabilities distributed among agents
- Idea: Communication / coordination as part of the plan

This talk:

- Cooperative epistemic planning: the problem
- Some solution concepts and their properties

5**E**

Motivation

From Classical to Epistemic Planning

Example: Application Scenario

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Reasoning about knowledge:

 $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid K_i \varphi \mid C \varphi$

• $K_i \varphi$: Agent *i* knows φ

Motivation

Theoretical Background

Epistemic Language Epistemic States Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Reasoning about knowledge and actions:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid K_i \varphi \mid C \varphi \mid (a) \varphi$$

- $K_i \varphi$: Agent *i* knows φ
- (*a*) φ : *a* is applicable, leads to a state where φ holds

Motivation

Theoretical Background

Epistemic Language Epistemic States Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Reasoning about knowledge and actions:

$$\boldsymbol{\varphi} ::= p \mid \neg \boldsymbol{\varphi} \mid \boldsymbol{\varphi} \land \boldsymbol{\varphi} \mid K_i \boldsymbol{\varphi} \mid C \boldsymbol{\varphi} \mid ((a)) \boldsymbol{\varphi}$$

- **K**_i φ : Agent *i* knows φ
- $((a))\phi$: *a* is applicable, leads to a state where ϕ holds

Epistemic formulas without $((\cdot))$ interpreted over standard **S5**_{*n*} Kripke models $\mathcal{M} = \langle W, R_1, \dots, R_n, V \rangle$.

Motivation

Theoretical Background

Epistemic Language Epistemic States Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Reasoning about knowledge and actions:

$$\boldsymbol{\varphi} ::= p \mid \neg \boldsymbol{\varphi} \mid \boldsymbol{\varphi} \land \boldsymbol{\varphi} \mid K_i \boldsymbol{\varphi} \mid C \boldsymbol{\varphi} \mid ((a)) \boldsymbol{\varphi}$$

- $K_i \varphi$: Agent *i* knows φ
- (*a*) φ : *a* is applicable, leads to a state where φ holds

Epistemic formulas without $((\cdot))$ interpreted over standard **S5***_n* Kripke models $\mathcal{M} = \langle W, R_1, \dots, R_n, V \rangle$.

$$\mathcal{M} = \underbrace{\bullet}_{w_1: p} \underbrace{1, 2}_{w_2: \neg p} \bullet$$

Motivation

Theoretical Background

Epistemic Language Epistemic States Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Reasoning about knowledge and actions:

$$\boldsymbol{\varphi} ::= p \mid \neg \boldsymbol{\varphi} \mid \boldsymbol{\varphi} \land \boldsymbol{\varphi} \mid K_i \boldsymbol{\varphi} \mid C \boldsymbol{\varphi} \mid ((a)) \boldsymbol{\varphi}$$

- $K_i \varphi$: Agent *i* knows φ
- (*a*) φ : *a* is applicable, leads to a state where φ holds

Epistemic formulas without $((\cdot))$ interpreted over standard **S5***_n* Kripke models $\mathcal{M} = \langle W, R_1, \dots, R_n, V \rangle$.

$$\mathcal{M} = \underbrace{\bullet}_{w_1 : p} \underbrace{1, 2}_{w_2 : \neg p} \quad \blacksquare \quad \mathcal{M}, w_1 \models p \quad \text{and} \quad \mathcal{M}, w_2 \models \neg p$$

Motivation

Theoretical Background

Epistemic Language Epistemic States Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Reasoning about knowledge and actions:

$$\boldsymbol{\varphi} ::= p \mid \neg \boldsymbol{\varphi} \mid \boldsymbol{\varphi} \land \boldsymbol{\varphi} \mid K_i \boldsymbol{\varphi} \mid C \boldsymbol{\varphi} \mid ((a)) \boldsymbol{\varphi}$$

- $K_i \varphi$: Agent *i* knows φ
- $((a))\phi$: *a* is applicable, leads to a state where ϕ holds

Epistemic formulas without $((\cdot))$ interpreted over standard **S5***_n* Kripke models $\mathcal{M} = \langle W, R_1, \dots, R_n, V \rangle$.

$$\mathcal{M} = \underbrace{\bullet}_{w_1:p} \underbrace{1,2}_{w_2:\neg p} \qquad \blacksquare \quad \mathcal{M}, w_1 \models p \quad \text{and} \quad \mathcal{M}, w_2 \models \neg p$$
$$\blacksquare \quad \mathcal{M}, w_1 \models \neg K_1 p \land \neg K_1 \neg p$$

Motivation

Theoretical Background

Epistemic Language Epistemic States Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Epistemic States

Motivation

Theoretical Background

Epistemic Language

Epistemic States Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Epistemic States

Global epistemic state $s = (\mathcal{M}, \{w\})$:

- Epistemic model \mathcal{M}
- World w designates actual world

Motivation

Theoretical Background

Epistemic Language

Epistemic States Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Epistemic States

UNI FREIBURG

$$\mathcal{M}, \{w_1, w_2\}) = \bigotimes_{w_1: p} \frac{1, 2}{w_2: \neg p}$$

Global epistemic state $s = (\mathcal{M}, \{w\})$:

- $\blacksquare \ {\sf Epistemic \ model} \ {\cal M}$
- World w designates actual world

Local epistemic state $s = (\mathcal{M}, W_d)$ for agent *i*:

 $\blacksquare \ {\sf Epistemic} \ {\sf model} \ {\cal M}$

■ Worlds $W_d \subseteq W$ considered possible by agent *i*

$$\blacksquare \ (\mathcal{M}, W_d) \models \varphi \quad \text{ iff } \quad \mathcal{M}, w \models \varphi \text{ for all } w \in W_d$$

Theoretical Background

Epistemic Language

Epistemic States Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Event models $\langle E, Q_1, \dots, Q_n, \text{pre}, \text{post} \rangle$ are **S5***^{<i>n*} Kripke frames with additional

- precondition function pre and
- postcondition function post

assigning formulas to events $e \in E$.

Motivation

DRG

2

Theoretical Background

Epistemic Language

Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Event models $\langle E, Q_1, \dots, Q_n, \text{pre}, \text{post} \rangle$ are **S5***^{<i>n*} Kripke frames with additional

- precondition function pre and
- postcondition function post

assigning formulas to events $e \in E$.

An epistemic action (\mathcal{E}, E_d) consists of an event model \mathcal{E} and a set $E_d \subseteq E$ of designated events.

Motivation

D^RC

Theoretical Background

Epistemic Language

Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Event models $\langle E, Q_1, \dots, Q_n, \text{pre}, \text{post} \rangle$ are **S5***^{<i>n*} Kripke frames with additional

- precondition function pre and
- postcondition function post

assigning formulas to events $e \in E$.

An epistemic action (\mathcal{E}, E_d) consists of an event model \mathcal{E} and a set $E_d \subseteq E$ of designated events.

E.g. partially observable / sensing / nondeterministic actions

Motivation

D^RC

Theoretical Background

Epistemic Language

Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Action application and successor states defined using product update.

For epistemic state *s* and epistemic action *a*, the product update $s \otimes a$ is the product of the two Kripke structures, with

- world-event pairs (w, e) eliminated if the precondition of e is violated in w and
- the valuation function updated according to the postcondition function.

Motivation

DRG

Theoretical Background

Epistemic Language

Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Semantics

UNI FREIBURG

Motivation

Theoretical Background

Epistemic Language Epistemic States

Epistemic States

Episternic Ghange

Cooperative Epistemic Planning

Agent Types and Plan Executions

Semantics

Motivation

BURG

S.

Theoretical Background

Epistemic Language Epistemic States

Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Semantics

Motivation

URG

REIBU

Theoretical Background

Epistemic Language Epistemic States

Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Semantics

URG

REIBL

Theoretical Background

Epistemic Language Epistemic States

Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Semantics

URG

REIBL

Theoretical Background

Epistemic Language Epistemic States

Epistemic Change

Episternic Griange

Cooperative Epistemic Planning

Agent Types and Plan Executions

Semantics

Action (\mathcal{E}, E_d) is applicable in (\mathcal{M}, W_d) iff for all possible situations $w \in W_d$ an outcome is defined, i.e., there is $e \in E_d$ such that $\mathcal{M}, w \models \operatorname{pre}(e)$.

FREIBU

Motivation

Theoretical Background

Epistemic Language

Epistemic Change

Cooperative Epistemic Planning

Agent Types and Plan Executions

Semantics

Action (\mathcal{E}, E_d) is applicable in (\mathcal{M}, W_d) iff for all possible situations $w \in W_d$ an outcome is defined, i.e., there is $e \in E_d$ such that $\mathcal{M}, w \models \operatorname{pre}(e)$.

 $s \models ((a)) \varphi$ iff *a* is applicable in *s* and $s \otimes a \models \varphi$

August 20, 2015

Motivation

Theoretical

Epistemic Change

Planning Agent Types and Plan Executions

Cooperative Epistemic Planning Problem

A cooperative epistemic planning problem $\Pi = \langle s_0, A, \omega, \gamma \rangle$ consists of

- **an initial epistemic state** s_0 ,
- a finite, set A of epistemic actions,
- an owner function ω assigning agents to actions, and
- **a goal formula** γ such that

each action *a* is local for $\omega(a)$.

The action set is common knowledge among all agents.

Motivation

Dal

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning Conditional Planning

Agent Types and Plan Executions

A centralized plan $\pi = a_1, a_2, ..., a_n$ for Π with goal γ is a sequence of actions such that

 $s_0 \models ((a_1))((a_2)) \dots ((a_n))\gamma$.

[Bolander and Andersen, 2011]

Motivation

BURG

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

A centralized plan $\pi = a_1, a_2, ..., a_n$ for Π with goal γ is a sequence of actions such that

 $s_0 \models ((a_1))((a_2)) \dots ((a_n))\gamma$.

[Bolander and Andersen, 2011]

Issue with centralized plans: Agent whose turn it is to act may not even know that the supposed action is applicable!

BURG

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Sequential Planning

Centralized Plans

Example: Agents 1,2, propositions p,q,r, goal $\gamma = r$, initial state $s_0 = \bigoplus_{w_1:}$, and these actions:

action owner pre post observability	ability
-------------------------------------	---------

UNI FREIBURG

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Example: Agents 1,2, propositions p,q,r, goal $\gamma = r$, initial state $s_0 = \bigoplus_{w_1 : v_2 : w_1 : v_2 :$

action	owner	pre	post	observability
setP	1	T	р	Indistinguishable by agent 2
setQ	1	T	q	at execution time

UNI FREIBURG

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Example: Agents 1,2, propositions p,q,r, goal $\gamma = r$, initial state $s_0 = \bigotimes_{w_1:}^{\bullet}$, and these actions:

action	owner	pre	post	observability
setP	1	T	р	set $P = \bigcirc \frac{2}{2} \bullet$
setQ	1	T	q	$e_1:\langle op, p angle$ $e_2:\langle op, q angle$

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Example: Agents 1,2, propositions p,q,r, goal $\gamma = r$, initial state $s_0 = \bigotimes_{w_1:}^{\bullet}$, and these actions:

action	owner	pre	post	observability
setP	1	T	p	set $Q = -\frac{2}{2}$
setQ	1	T	q	$e_1:\langle op,p angle e_2:\langle op,q angle$

Motivation

BURG

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Example: Agents 1,2, propositions p,q,r, goal $\gamma = r$, initial state $s_0 = \bigotimes_{w_1:}^{\bullet}$, and these actions:

action	owner	pre	post	observability
setP	1	T	p	set $P = \bigcirc \frac{2}{2} \bullet$
setQ	1	T	q	$e_1:\langle op, p angle$ $e_2:\langle op, q angle$
setR	2	p	r	$setR = \bigcirc e_1 : \langle p, r \rangle$

Motivation

BURG

22

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Example: Agents 1,2, propositions p,q,r, goal $\gamma = r$, initial state $s_0 = \bigotimes_{w_1:}^{\bullet}$, and these actions:

action	owner	pre	post	observability
setP	1	T	p	set $P = \bigcirc \frac{2}{2} \bullet$
setQ	1	T	q	$e_1:\langle op, p angle$ $e_2:\langle op, q angle$
setR	2	p	r	$setR = \textcircled{e}_1: \langle p, r \rangle$

Let
$$s_1 = s_0 \otimes setP$$
 and $s_2 = s_1 \otimes setR$. Then

state	remark
	1

FREIBURG

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Example: Agents 1,2, propositions p,q,r, goal $\gamma = r$, initial state $s_0 = \bigotimes_{w_1:}^{\bullet}$, and these actions:

action	owner	pre	post	observability
setP	1	T	p	set $P = \bigcirc \frac{2}{2} \bullet$
setQ	1	T	q	$e_1:\langle op, p angle$ $e_2:\langle op, q angle$
setR	2	p	r	$setR = \bigcirc e_1 : \langle p, r \rangle$

Let
$$s_1 = s_0 \otimes setP$$
 and $s_2 = s_1 \otimes setR$. Then

state	remark
$s_1 = \underbrace{\bigcirc}_{(w_1, e_1): p} \underbrace{2}_{(w_1, e_2): q} \bullet$	$s_1 \models p$, but $s_1 \not\models K_2 p$. 2 does not know he can apply <i>setR</i> .

Motivation

BURG

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Example: Agents 1,2, propositions p,q,r, goal $\gamma = r$, initial state $s_0 = \bigotimes_{w_1:}^{\bullet}$, and these actions:

action	owner	pre	post	observability
setP	1	T	p	set $P = \bigcirc \frac{2}{2} \bullet$
setQ	1	T	q	$e_1:\langle op, p angle$ $e_2:\langle op, q angle$
setR	2	p	r	$setR = \bigcirc e_1 : \langle p, r \rangle$

Let
$$s_1 = s_0 \otimes setP$$
 and $s_2 = s_1 \otimes setR$. Then

state	remark
$s_1 = \underbrace{\bigcirc}_{(w_1, e_1): p} \underbrace{2}_{(w_1, e_2): q}$	$\begin{vmatrix} s_1 \models p, \text{ but } s_1 \not\models K_2 p. \\ 2 \text{ does not know he can apply } set R. \end{vmatrix}$
$s_2 = \textcircled{0} (w_1, e_1, e_1) : p, r$	$s_2 \models r$. Goal is achieved.

BURG

22

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

More formally:

 \bullet $s_0 \models ((setP))((setR))r \Rightarrow (setP, setR)$ centralized plan

UNI FREIBURG

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

More formally:

■ $s_0 \models ((setP))((setR))r \Rightarrow (setP, setR)$ centralized plan

 $\bullet s_0 \models ((setP)) \neg K_2((setR))r$

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

More formally:

■ $s_0 \models ((setP))((setR))r \Rightarrow (setP, setR)$ centralized plan

 $\bullet s_0 \models ((setP)) \neg K_2((setR))r$

Motivation for different concept of plans:

If there is no central instance, then

- agents should coordinate themselves, and
- agents whose turn it is to act should know that the supposed action (a) is applicable and (b) makes progress to the goal.

UNI FREIBURG

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Implicitly Coordinated Plans

An implicitly coordinated plan $\pi = a_1, a_2, ..., a_n$ for Π with goal γ is a sequence of actions such that

 $s_0 \models K_{\omega(a_1)}((a_1))K_{\omega(a_2)}((a_2))\dots K_{\omega(a_n)}((a_n))\gamma$

Motivation

BURG

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Conclusion

.

An implicitly coordinated plan $\pi = a_1, a_2, ..., a_n$ for Π with goal γ is a sequence of actions such that

 $s_0 \models K_{\omega(a_1)}((a_1))K_{\omega(a_2)}((a_2))\dots K_{\omega(a_n)}((a_n))\gamma \quad .$

Example: Agent 1 has to tell agent 2 that (as a consequence of his action *setP*) the proposition *p* is now true.

Motivation

BURG

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

action	owner	pre	post	observability
tellP	1	р	Τ	fully observable Agent 2 receives message p

UNI FREIBURG

> Motivation Theoretical

Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

action	owner	pre	post	observability
tellP	1	p		$tellP = \textcircled{e}_1 : \langle p, \top \rangle$

Let $s_1 = s_0 \otimes setP$, $s_2 = s_1 \otimes tellP$, and $s_3 = s_2 \otimes setR$. Then

state	remark
$s_1 = \underbrace{\odot}_{(w_1, e_1): p} \underbrace{2}_{(w_1, e_2): q}$	$s_1 \models p$, but $s_1 \not\models K_2 p$. 2 does not know he can apply <i>setR</i> .

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

action	owner	pre	post	observability
tellP	1	p		$tellP = \textcircled{0} e_1 : \langle p, \top \rangle$

Let $s_1 = s_0 \otimes setP$, $s_2 = s_1 \otimes tellP$, and $s_3 = s_2 \otimes setR$. Then

state	remark
$s_1 = \underbrace{\textcircled{0}}_{(w_1,e_1):p} \underbrace{2}_{(w_1,e_2):q} \bullet$	$s_1 \models p$, but $s_1 \not\models K_2 p$. 2 does not know he can apply <i>setR</i> .
$s_2 = \bigotimes_{(w_1, e_1, e_1): p}$	$s_2 \models p$, and $s_2 \models K_2 p$. 2 now knows that he can apply <i>setR</i> .

UNI FREIBURG

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

action	owner	pre	post	observability
tellP	1	p		$tellP = \textcircled{0} e_1 : \langle p, \top \rangle$

Let $s_1 = s_0 \otimes setP$, $s_2 = s_1 \otimes tellP$, and $s_3 = s_2 \otimes setR$. Then

state	remark
$s_1 = \underbrace{\bigcirc}_{(w_1,e_1):p} \underbrace{2}_{(w_1,e_2):q} \bullet$	$s_1 \models p$, but $s_1 \not\models K_2 p$. 2 does not know he can apply <i>setR</i> .
$s_2 = \bigotimes_{(w_1, e_1, e_1): p}$	$\begin{vmatrix} s_2 \models p, \text{ and } s_2 \models K_2 p. \\ 2 \text{ now knows that he can apply } set R. \end{vmatrix}$
$s_3 = \textcircled{w}(w_1, e_1, e_1, e_1) : p, r$	$s_3 \models r$. Goal is achieved.

UNI

JRG

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Implicitly Coordinated Plans

More formally:

- $\blacksquare s_0 \models K_1((setP))K_1((tellP))K_2((setR))r$
- (setP, tellP, setR) is an implicitly coordinated plan for Π .

Motivation

BURG

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Implicitly Coordinated Plans

Searching for implicitly coordinated plans:

- Forward search in space of epistemic states using product update.
- In each step, perform a perspective shift to the agent whose action is considered, by considering its associated local state.

Motivation

8

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks

Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Implicitly Coordinated Conditional Plans

Conditional plans:

- Often, sequential plans are not sufficient to solve a task.
- One can also apply an AND-OR search to find conditional (branching) plans.

Motivation

8

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks Sequential

Conditional Planning

Agent Types and Plan Executions

Implicitly Coordinated Conditional Plans

Conditional plans:

- Often, sequential plans are not sufficient to solve a task.
- One can also apply an AND-OR search to find conditional (branching) plans.

Remark:

 Needed, e.g., to solve Russian card games problem (initial state uncertainty necessitates branching)

Motivation

Ž

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks Sequential

Conditional Planning

Agent Types and Plan Executions

Implicitly Coordinated Conditional Plans The Russian Card Game Problem

Seven cards randomly dealt to Alice, Bob & Eve:

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Conditional Plans

AND-OR Search

- AND: Solve an arbitrary state (\mathcal{M}, W_d) by solving all global states (\mathcal{M}, w) with $w \in W_d$
- OR: Solve a global state (\mathcal{M}, w) by finding an agent *i* and an action *a* with $\omega(a) = i$, and solving $(\mathcal{M}, w)^i \otimes a$

Motivation

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Conditional Plans

Global policy

•
$$\pi((\mathcal{M}, \{w_1\})) = \{a_1\}$$
 with $\omega(a_1) = 1$
• $\pi((\mathcal{M}, \{w_3\})) = \{a_2\}$ with $\omega(a_2) = 2$

$$\pi((\mathcal{M}, \{w_2\})) = \{a_1, a_2\}$$

Motivation

M

Theoretical Background

Cooperative Epistemic Planning

Planning Tasks Sequential Planning

Conditional Planning

Agent Types and Plan Executions

Agents in a Decentralized System

UNI FREIBURG

Motivation

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

- Each agent plans and decides for himself when/how to act
- No imposed agent/action precedence: First agent that decides to act updates the system
- \Rightarrow Agents may have to replan.

Agent Types: Lazy Agents

An agent is called lazy if he choses another agents' action whenever allowed (= it is part of a strong policy).

Example problem: Who gets the door?

The goal, for Jim and John, is to go to the door and let Sarah in. Both agents are perfectly capable of doing so in one action.

What happens if both agents are lazy?

Motivation

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Agent Types: Naively Eager Agents

An agent is called naively eager if he choses an action owned by himself whenever allowed (= it is part of a strong policy).

Example problem: Pulling the lever (I)

The goal, for Lewis and Ralph, is to pull the lever either fully to the left (-2), or to the right (2). Lewis can only pull left while Ralph can only pull right (both in steps of 1).

-2 2 2

Motivation

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Conclusion

What happens if both agents are naively eager?

Agent Types: Intelligently Eager Agents

An agent is called intelligently eager if he choses an action owned by himself whenever this action is part of a strong policy of minimal depth.

Example problem: Pulling the lever (II)

Same problem as before, but Lewis only knows about -2 being a goal position, while **R**alph only knows about 2 being one.

What happens if both agents are intelligently eager?

August 20, 2015

Motivation

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

A More Interesting Problem...

Motivation

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Conclusion

(robot icons made by Freepik and SimpleIcon from www.flaticon.com)

- Round and Square Robot have to pass each other.
- The corridor is narrow, only one agent per cell is allowed.
- Each agent is uncertain about the other's destination.

Interesting Questions Livelocks and Deadlocks? Successful Plan Executions?

Motivation

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions

Conclusion

When do we need which communicative actions?

What about meta-reasoning?

Conclusion

Summary:

- Synthesis of epistemic plans/strategies
- Centralized vs. implicitly coordinated planning
- Communication modeled as epistemic actions
- Coordination becomes part of the plan
- Relies on the agents' ability to shift perspective

UNI FREIBURG

Motivation

Theoretical Background

Cooperative Epistemic Planning

Agent Types and Plan Executions