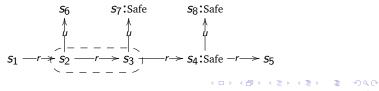
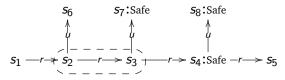
Conformant Planning with Probability A dynamic epistemic framework

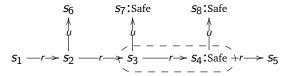
$\label{eq:Yanjun Li^{1,2}} Yanjun \ {\rm Li^{1,2}} \\ {\rm ongoing \ joint \ work \ with \ Barteld \ Kooi^1 \ \& \ Yanjing \ Wang^2}$

¹University of Groningen, The Netherlands


²Peking University, China

1/9


An Example of Conformant planning Scenario in *Mission Impossible*

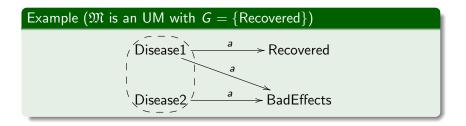

A rookie spy sneaks in a building. Suddenly someone spots him and pulls the alarm. Now he must run to a safe place. However, in panic he gets lost...

The initial model is \mathcal{M} :

After he moves right, the model is updated to $\mathcal{M}|^{r}$:

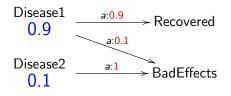
After he moves right and up, the model is updated to $\mathcal{M}|^{ru}$:

Definition (Uncertainty Map)


An *uncertainty map* (UM) $\mathcal{M} = \langle \mathcal{N}, U \rangle$ consists of a Kripke model \mathcal{N} and an uncertainty set U.

Definition (Conformant Planning)

Given an UM \mathcal{M} and a goal set G, a conformant plan consists of a sequence of actions that is guaranteed to achieve the goal regardless of the uncertainty in the initial state and in the nondeterministic effects of actions.


Example (*ru* is a conformant plan for \mathcal{M} with $\overline{G} = \{s_4, s_8, s_9\}$)

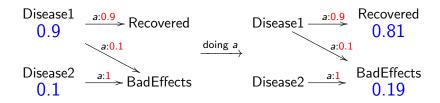
In the paper [Yu,Li,Wang TARK2015], we build a dynamic epistemic logic EPDL and reduce the existence of a conformant plan to a model checking problem of EPDL.

Conformant planning with probability

Definition (Probabilistic Uncertainty Map)

A Probabilistic Uncertainty Map PUM \mathfrak{M} is a tuple $\langle W^{\mathfrak{M}}, E^{\mathfrak{M}}, \{\mathsf{P}^{\mathfrak{M}}_{(a,s)} \mid a \in E^{\mathfrak{M}}(s)\}, \mathsf{P}^{\mathfrak{M}}, V^{\mathfrak{M}} \rangle$ such that

•
$$W^{\mathfrak{M}}
eq \emptyset$$
, and $E^{\mathfrak{M}} : W^{\mathfrak{M}} o \mathcal{P}(\mathsf{A})$,


• $\mathsf{P}^{\mathfrak{M}}_{(a,s)}: \mathcal{W}^{\mathfrak{M}} \to [0,1]$ such that $\sum_{t \in \mathcal{W}^{\mathfrak{M}}} \mathsf{P}^{\mathfrak{M}}_{(a,s)}(t) = 1$,

•
$$\mathsf{P}^{\mathfrak{M}}: W^{\mathfrak{M}} o [0,1]$$
 such that $\sum_{s' \in W^{\mathfrak{M}}} \mathsf{P}^{\mathfrak{M}}_{s}(s') = 1$,

• $V^{\mathfrak{M}}: \mathsf{P} \to \mathcal{P}(W^{\mathfrak{M}}).$

For any $s \in W^{\mathfrak{M}}$, (\mathcal{M}, s) is a pointed PUM.

After doing a, the agent's belief degree will be updated.

Definition (Update)

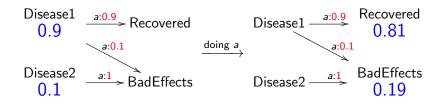
Given \mathfrak{M}, s and $a \in E^{\mathfrak{M}}(s)$, we define $\mathsf{P}^{\mathfrak{M}}|^a : W^{\mathfrak{M}} \to [0, 1]$ as for each $t \in W^{\mathfrak{M}}$,

$$\mathsf{P}^{\mathfrak{M}}|^{\mathsf{a}}(t) = \frac{\sum_{\{s' \in W^{\mathfrak{M}}| \mathsf{a} \in E^{\mathfrak{M}}(s')\}} \mathsf{P}^{\mathfrak{M}}(s') \times \mathsf{P}^{\mathfrak{M}}_{(\mathsf{a},s')}(t)}{\sum_{\{s' \in W^{\mathfrak{M}}| \mathsf{a} \in E^{\mathfrak{M}}(s')\}} \mathsf{P}^{\mathfrak{M}}(s')}$$

 $\mathfrak{M}|^{a}$ is almost the same as \mathfrak{M} except that $\mathsf{P}^{\mathfrak{M}|^{a}} = \mathsf{P}^{\mathfrak{M}}|^{a}$.

(日) (同) (日) (日)

Definition (Language)


$$\phi ::= p \mid \neg \phi \mid (\phi \land \phi) \mid \langle a \rangle_{\geq q} \phi \mid B_{\geq q} \phi$$

Definition (Dynamic semantics)

Given positively pointed PUM $\mathcal{M}, \textit{s},$ the truth relation is defined as follows:

$$\begin{array}{lll} \mathfrak{M}, s \vDash p & \Longleftrightarrow & s \in V^{\mathfrak{M}}(p) \\ \mathfrak{M}, s \vDash \neg \phi & \Longleftrightarrow & \mathfrak{M}, s \nvDash \phi \\ \mathfrak{M}, s \vDash \phi \land \psi & \Longleftrightarrow & \mathfrak{M}, s \vDash \phi \text{ and } \mathfrak{M}, s \vDash \psi \\ \mathfrak{M}, s \vDash \langle a \rangle_{\geq q} \phi & \Longleftrightarrow & a \in E^{\mathfrak{M}}(s) \text{ and } \mathsf{P}^{\mathfrak{M}}_{(a,s)}(\llbracket \phi \rrbracket^{\mathfrak{M}|^{a}}) \geq q \\ \mathfrak{M}, s \vDash B_{\geq q} \phi & \Longleftrightarrow & \mathsf{P}^{\mathfrak{M}}(\llbracket \phi \rrbracket^{\mathfrak{M}}) \geq q \end{array}$$

A weak plan

Let the goal is to find an action sequence σ such that after doing σ the belief degree of being recovered is more than 80%, then *a* is a solution. We can also check that

$$\mathfrak{M}, \mathsf{Disease1} \vDash \langle \mathsf{a} \rangle \mathsf{B}_{\geq 0.8} \mathsf{Recovered}$$