Knowledge-based programs as plans

Jérôme Lang (LAMSADE, Paris) \& Bruno Zanuttini (GREYC, Caen)
ECAI-2012 + TARK-2013 + IJCAI-2015

+ ongoing work (with Anaëlle Wilczinski, LAMSADE)

A card game program

Goal :

- pick some cards, maximum 5
- try to obtain three cards of the same rank

Do
pick a card c
look at the rank of c
Until three cards of the same rank or know it is impossible

A diagnose-and-repair program

- three components 1,2,3;
- propositional symbol ok ${ }_{i}$: component i is in working order;
- action repair(i): makes $o k_{i}$ true;
- action test (i) : returns the truth value of $o k_{i}$;
- initial knowledge state : K $\left(\left(o k_{1} \leftrightarrow\left(o k_{2} \wedge o k_{3}\right)\right) \wedge\left(\neg o k_{1} \vee \neg o k_{3}\right)\right)$;
- Goal : to have the three components working without replacing more components than necessary.

While $\neg K\left(o k_{1} \wedge o k_{2} \wedge o k_{3}\right)$ do
$i:=$ smallest integer such that $\neg K_{o} k_{i}$;
If $\neg K \neg o k_{i}$ then $\operatorname{test}(i)$ endif ;
If $K \neg o k_{i}$ then replace(i) endif
Endwhile

Outline

Knowledge-based programs:

- introduced by Fagin, Halpern, Moses and Vardi [1995]
- studied for behaviour specification in distributed environments
- we use them as outputs of planning problems
- what are the benefits and pitfalls of using knowledge-based programs instead of standard programs?

Classical partially observable planning vs. Knowledge-based planning

Classical partially observable planning
Output $=$ standard plan (policy) :

- tree or DAG containing observations/actions
- branching on current state and observations

Knowledge-based planning
Output $=$ knowledge-based program :

- branching conditions are subjective epistemic formulas

Example

- initial knowledge state: $O\left(\left(o k_{1} \leftrightarrow\left(o k_{2} \wedge o k_{3}\right)\right) \wedge\left(\neg o k_{1} \vee \neg o k_{3}\right)\right)$
- goal knowledge state: $K\left(o k_{1} \wedge o k_{2} \wedge o k_{3}\right)$
- actions : test (i), repair (i) for $i=1,2,3$

Knowledge-based plan :

While $\neg K\left(o k_{1} \wedge o k_{2} \wedge o k_{3}\right)$ do
find the smallest i such that \neg Kok $_{i}$;
If $\neg K \neg o k_{i}$ then $\operatorname{test}(i)$;
If $K \neg o k_{i}$ then replace (i)
Endwhile

Knowledge-based plans vs. policies

KBP

While $\neg K\left(o k_{1} \wedge o k_{2} \wedge o k_{3}\right)$ do find smallest i such that \neg Kok $_{i}$; If $\neg K \neg o k_{i}$ then $\operatorname{test}(i)$; If $K \neg o k_{i}$ then replace(i)

Endwhile

standard policy
replace(1);
test(2);
If ok(2)
then replace(3)
else replace(2);
test(3) ;
If $\neg \mathrm{ok}(3)$
then replace(3)
endif
endif

Knowledge-based programs vs. standard programs

Knowledge-based programs :

- introduced by Fagin, Halpern, Moses and Vardi [1995]
- studied for behaviour specification in distributed environments
- we use them as outputs of planning problems
- what are the benefits and pitfalls of using knowledge-based programs instead of standard programs?
- [-] more difficult to execute than standard programs : evaluating branching conditions is computationally hard
- $[+]$ more compact than standard programs
- [+] more natural to express than standard programs

Outline

Knowledge-based programs :

- introduced by Fagin, Halpern, Moses and Vardi [1995]
- studied for behaviour specification in distributed environments
- we use them as outputs of planning problems.

Our work:

- using knowledge-based programs as (single-agent) plans reaching some goals described by epistemic formulas
- LOFT-12 / ECAI-12 : expressivity and complexity of plan verification
- TARK-13 : comparing the succinctness of KBPs to that of standard plans + complexity of plan existence
- IJCAI-15 : probabilistic knowledge-based programs
- ongoing work: KBP synthesis
- ongoing work: multi-agent KBP

Plan

Knowledge-based programs
Knowledge-based planning problems
Succinctness
KBP verification
KBP existence
Probabilistic KBPs
KBP synthesis
KBP synthesis
Multi-agent KBPs

Knowledge-based programs

Knowledge-based planning problems
Succinctness
KBP verification
KBP existence
Probabilistic KBPs
KBP synthesis
KBP synthesis
Multi-agent KBPs

Syntax

Input

- set of propositional variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- Queen $\left(c_{1}\right), o k_{1} \ldots$
- state $=$ truth assignment (unobservable)
- set of actions

Knowledge-based program π :

- action, or
- sequence $\pi_{1} ; \pi_{2} ; \ldots ; \pi_{n}$, or
- branching If Φ then π_{1} else π_{2}, where Φ is a purely subjective S 5 formula (Boolean combination of epistemic atoms $K \varphi$); or
- loop While Φ do π_{1}, where Φ is a purely subjective S 5 formula.

Actions

Ontic action :

- changes the state of the world
- possibly nondeterministic + no feedback
- propositional symbol $x \mapsto\left\{x, x^{\prime}\right\}$;
- x before the action is performed
- x^{\prime} after the action is performed
- $\operatorname{switch}\left(x_{i}\right): \Sigma=\left(x_{i}^{\prime} \leftrightarrow \neg x_{i}\right) \wedge \bigwedge_{j \neq i}\left(x_{j}^{\prime} \leftrightarrow x_{j}\right)$
$-x_{i} \leftarrow 0: \Sigma=\left(\neg x_{i}^{\prime}\right)$
$-\operatorname{reinit}\left(x_{i}\right): \Sigma=\bigwedge_{j \neq i}\left(x_{j}^{\prime} \leftrightarrow x_{j}\right)$
Epistemic action :
- does not change the state of the world
- sends back one of several possible observations
- test $\left(x_{i} \vee x_{j}\right)$: observe $x_{i} \vee x_{j}$ or observe $\neg\left(x_{i} \vee x_{j}\right)$
- ask-how-much-time-left : observe $(t=15 \mathrm{mn})$ or observe $(t=10 \mathrm{mn})$ or observe $(t=5 m n)$ or observe $(t=0)$

Executing a KBP

At every step :

- current state of variables s^{t}
- $s^{0}=x_{1} x_{2} \bar{x}_{3}$
- current knowledge state M^{t}
- $M^{t}=\left\{x_{1} x_{2} x_{3}, x_{1} \bar{x}_{2} x_{3}, x_{1} x_{2} \bar{x}_{3}\right\}$
- succinct representation $O\left(x_{1} \wedge\left(x_{2} \vee x_{3}\right)\right)$: all I know is $x_{1} \wedge\left(x_{2} \vee x_{3}\right)$.

Execution :

- branching condition / loop : evaluated in M^{t}
- ontic action : nondeterministic modification of s^{t}
- epistemic action :
- no modification of s^{t}
- reception of an observation ω

Progression

Progression by an ontic action :

- $M^{t}=\left\{x_{1} x_{2} x_{3}, \bar{x}_{1} \bar{x}_{2} \bar{x}_{3}\right\} O\left(\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3}\right)\right)$
- progression of M^{t} by $\operatorname{switch}\left(x_{1}\right)$:

$$
M^{t+1}=\left\{\bar{x}_{1} x_{2} x_{3}, x_{1} \bar{x}_{2} \bar{x}_{3}\right\} O\left(\left(\neg x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \neg x_{2} \wedge \neg x_{3}\right)\right)
$$

- progression of M^{t+1} by reinit $\left(x_{1}\right)$:

$$
M^{t+2}=\left\{x_{1} x_{2} x_{3}, \bar{x}_{1} x_{2} x_{3}, x_{1} \bar{x}_{2} \bar{x}_{3}, \bar{x}_{1} \bar{x}_{2} \bar{x}_{3}\right\} O\left(x_{2} \leftrightarrow x_{3}\right)
$$

Progression by an observation (received after some epistemic action) :

- action test $\left(x_{1} \wedge x_{2}\right)$, observation $\neg\left(x_{1} \wedge x_{2}\right)$:
- progression of M^{t+2} by observation $\neg\left(x_{1} \wedge x_{2}\right)$:

$$
M^{t+3}=\left\{\bar{x}_{1} x_{2} x_{3}, x_{1} \bar{x}_{2} \bar{x}_{3}, \bar{x}_{1} \bar{x}_{2} \bar{x}_{3}\right\} O\left(\left(x_{2} \leftrightarrow x_{3}\right) \wedge \neg\left(x_{1} \wedge x_{2}\right)\right)
$$

Knowledge-based programs

Knowledge-based planning problems

Succinctness

KBP verification
KBP existence
Probabilistic KBPs
KBP synthesis
KBP synthesis
Multi-agent KBPs

Classical planning

- Set of initial states and goal states (described succinctly)
- Set of actions whose effects are described succinctly
- Output : standard plan (policy) :
- tree or DAG containing observations/actions
- branching on current state and observations

Knowledge-based planning problems

- initial knowledge state initial M^{0} :
- possibly OT
- must contain the true initial state
- goal G (purely subjective epistemic formula)
- π valid plan if
- terminates
- for every possible sequence of states $s^{0} \in M^{0} \ldots s^{\text {final }} \in M^{\text {final }}$ we have $s^{\text {final }} \mid=G$

Example

- initial knowledge state: $O\left(\left(o k_{1} \leftrightarrow\left(o k_{2} \wedge o k_{3}\right)\right) \wedge\left(\neg o k_{1} \vee \neg o k_{3}\right)\right)$
- goal knowledge state: $K\left(o k_{1} \wedge o k_{2} \wedge o k_{3}\right)$
- actions : test (i), repair (i) for $i=1,2,3$

Knowledge-based plan :

While $\neg K\left(o k_{1} \wedge o k_{2} \wedge o k_{3}\right)$ do
find the smallest i such that \neg Kok $_{i}$;
If $\neg K \neg o k_{i}$ then test (i);
If $K \neg o k_{i}$ then replace (i)
Endwhile

Knowledge-based plans vs. standard policies

- A standard policy is a KBP in which the last action executed before any branching condition if Φ or while Φ is an epistemic action a such that Φ is one of the possible observations for a.
- For every KBP π there exists a standard policy π^{\prime} "equivalent" to π (π and π^{\prime} have the same execution traces).

Expressivity :

- there exists a valid knowledge-based for a planning problem P iff there exists a valid standard policy for P

Knowledge-based plans vs. policies

KBP

While $\neg K\left(o k_{1} \wedge o k_{2} \wedge o k_{3}\right)$ do find smallest i such that \neg Kok $_{i}$; If $\neg K \neg o k_{i}$ then $\operatorname{test}(i)$; If $K \neg o k_{i}$ then replace(i)

Endwhile

standard policy
replace (1);
test(2);
If ok(2)
then replace(3)
else replace(2);
test(3) ;
If \neg ok(3)
then replace(3)
endif
endif

Knowledge-based plans vs. policies : reactivity

On-line execution :

- standard policy:
- move to the subtree corresponding to the observation and execute the next action
- constant time
- knowledge-based plan :
- branching / loop condition : decide $M^{t} \models \Phi$
- NP-hard and coNP-hard, in $\Delta_{2} P$

Knowledge-based plans vs. policies : succinctness

Proposition : unless NP $\subseteq P /$ poly (extremely unlikely), while-free KBPs with atomic branching conditions are exponentially more succinct than while-free standard policies.

Proof sketch :

- for each $n \in N$ we build a polysize KBP π_{n} that "reads" a CNF formula φ and either makes sure that it is unsatisfiable or else builds a model of it.
- if there is a family of standard policies π_{n}^{\prime} for every n, of size polynomial in $\left|\pi_{n}\right|$, with π_{n} equivalent to π_{n}^{\prime}, then there is a (possibly nonuniform) polytime algorithm for 3 sAT, yielding NP $\subseteq \mathrm{P} /$ poly.

Knowledge-based plans vs. policies: succinctness

Proposition: KBPs (with loops) are more succinct than standard policies (with loops).

Proof sketch :

- there is a polynomial $p o l$ and a collection of $\operatorname{KBPs}\left(\pi_{n}\right)_{n}$ such that $\left|\pi_{n}\right| \leq \operatorname{pol}(n)$ and such that π_{n} "counts" up to $2^{2^{n}}-1$ (by going once through all knowledge states).
- we build a family of planning problems $\left(P_{n}\right)_{n}$ such that the only valid plans for P_{n} are all equivalent to π_{n}
- assume that for all n there is a standard policy π_{n}^{\prime} for P_{n} and $\left|\pi_{n}^{\prime}\right| \leq p o l(n) \mid$; then π_{n}^{\prime} can manipulate only $p o l(n)$ variables, and can have only $2^{\text {pol }(n)} .\left|\pi_{n}^{\prime}\right|$ configurations (states + control points); then it cannot count up to $2^{2^{n}}-1$, contradiction.

Knowledge-based plans vs. policies : succinctness

Proposition: KBPs are more succinct than while-free KBPs.
Proof sketch : later

Knowledge-based programs
 Knowledge-based planning problems

 Succinctness

 Succinctness}

KBP verification

KBP existence
Probabilistic KBPs
KBP synthesis
KBP synthesis
Multi-agent KBPs

KBP existence vs. KBP verification

KBP verification

> input $P=$ (initial belief state, actions, goal) question is π valid for P ?

KBP existence
input $P=$ (initial belief state, actions, goal) question is there a valid KBP π for P ?
small KBP existence
input $P=+$ integer k encoded in unary question is there a valid KBP π for P such that $|\pi| \leq k$?

KBP verification : overview of results

loop-free programs

- Π_{2}^{P}-complete $\left(\Pi_{2}^{P}=\operatorname{coNP}{ }^{N P}\right)$
- remains Π_{2}^{P}-complete with each of the following restrictions :
- ontic actions only
- epistemic actions only
- standard plan verification : coNP-complete
programs with loops
- EXPSPACE-complete
- remains EXPSPACE-complete even if we know that π terminates
- standard plan verification : PSPACE-complete

KBP verification : loop-free programs

- Π_{2}^{P}-complete $\left(\Pi_{2}^{P}=\operatorname{coNP}{ }^{N P}\right)$
- hardness proof easy
- membership proof based on the following nondeterministic algorithm that shows that a plan is not valid;
- guess a sequence of observations
- at each step with a branching condition Φ, evaluate Φ [Needs a polynomial number of NP oracles]
- check that the goal is not satisfied at the end of the execution

KBP verification : general programs

- EXPSPACE-complete
- key point : a loop can be executed up to $2^{2^{n}}-2$ times (visit all possible belief states)
- membership easy
- hardness by reduction from NONDETERMINISTIC UNOBSERVABLE Plan Existence (Haslum and Jonsson, 99)

Knowledge-based plans vs. policies: succinctness

Proposition: KBPs are more succinct than while-free KBPs.
Proof sketch :

- verifying a KBP with loops is EXPSPACE-complete;
- verifying a while-free KBP is Π_{2}^{p}-complete;
- $\Pi_{2}^{p} \subseteq$ PSPACE \subset EXPSPACE (strict inclusion, Savitch's theorem)

KBB existence : overview of results

	unbounded	bounded
general	2-EXPTIME-complete	EXPSPACE-complete
while-free	2-EXPTIME-complete	\sum_{3}^{p}-complete
ontic	EXPSPACE-complete	$?$
while-free, ontic	EXPSPACE-complete	\sum_{2}^{p}-complete
while-free, epistemic	PSPACE-complete	$?$
while-free, epistemic, positive goal	coNP-complete	\sum_{2}^{p}-complete

KBP existence

	unbounded	bounded
general	2-EXPTIME-complete	EXPSPACE-complete
while-free	2-EXPTIME-complete	Σ_{3}^{p}-complete
ontic	EXPSPACE-complete	$?$
while-free, ontic	EXPSPACE-complete	Σ_{2}^{p}-complete
while-free, epistemic	PSPACE-complete	$?$
while-free, epistemic, positive goal	coNP-complete	Σ_{2}^{p}-complete

Corollaries from known results in planning together with the fact that there exists a KBP for a planning problem off there exists a standard plan.

KBP existence

	unbounded	bounded
general	2-EXPTIME-complete	EXPSPACE-complete
while-free	2-EXPTIME-complete	Σ_{3}^{p}-complete
ontic	EXPSPACE-complete	$?$
while-free, ontic	EXPSPACE-complete	Σ_{2}^{p}-complete
while-free, epistemic	PSPACE-complete	$?$
while-free, epistemic, positive goal	coNP-complete	Σ_{2}^{p}-complete

- membership : guess π of size $\leq k$ and verify it ; PLAN VERIFICATION is in EXPSPACE and NEXPSPACE $=$ EXPSPACE.
- hardness : reduction from plan verification. Build a planning problem P^{\prime}, and let $k=|\pi|$, such that every valid plan for P^{\prime} is equivalent to π.

KBP existence

	unbounded	bounded
general	2-EXPTIME-complete	EXPSPACE-complete
while-free	2-EXPTIME-complete	Σ_{3}^{p}-complete
ontic	EXPSPACE-complete	$?$
while-free, ontic	EXPSPACE-complete	Σ_{2}^{p}-complete
while-free, epistemic	PSPACE-complete	$?$
while-free, epistemic, positive goal	coNP-complete	Σ_{2}^{p}-complete

- membership : guess π and verify it ; PLAN VERIFICATION is in Π_{2}^{p}.
- hardness : reduction from $\mathrm{QBF}_{3, \exists}$.

KBP existence

	unbounded	bounded
general	2-EXPTIME-complete	EXPSPACE-complete
while-free	2-EXPTIME-complete	Σ_{3}^{p}-complete
ontic	EXPSPACE-complete	$?$
while-free, ontic	EXPSPACE-complete	Σ_{2}^{p}-complete
while-free, epistemic	PSPACE-complete	$?$
while-free, epistemic, positive goal	coNP-complete	Σ_{2}^{p}-complete

- branching is not necessary because we never get any feedback; the problem is equivalent to polynomially-bounded plan existence without branching, which is \sum_{2}^{p}-complete.

KBP existence

	unbounded	bounded
general	2-EXPTIME-complete	EXPSPACE-complete
while-free	2-EXPTIME-complete	Σ_{3}^{p}-complete
ontic	EXPSPACE-complete	$?$
while-free, ontic	EXPSPACE-complete	Σ_{2}^{p}-complete
while-free, epistemic	PSPACE-complete	$?$
while-free, epistemic, positive goal	coNP-complete	Σ_{2}^{p}-complete

- membership : because an epistemic action needs to be executed at most once, if a planning problem has a valid KBP then it has a valid KBP of height bounded by the number of epistemic actions. + searching a polynomial-height tree can be done in PSPACE.
- hardness : reduction from QBF.

KBP existence

	unbounded	bounded
general	2-EXPTIME-complete	EXPSPACE-complete
while-free	2-EXPTIME-complete	\sum_{3}^{p}-complete
ontic	EXPSPACE-complete	$?$
while-free, ontic	EXPSPACE-complete	\sum_{2}^{p}-complete
while-free, epistemic	PSPACE-complete	$?$
while-free, epistemic, positive goal	coNP-complete	\sum_{2}^{p}-complete

- membership, unbounded : performing an epistemic action cannot harm ; there exists a valid KBP iff the KBP consisting in performing all epistemic actions in any order is valid.
- membership, bounded : guess a set of k epistemic actions and perform them ; verification is in coNP.
- hardness : reductions from UNSAT and $\mathrm{QBF}_{2, \exists}$.

Probabilistic Belief-Based Programs

- 5 doors:
- a tiger hidden behind two of them
- a princess behind one of the other three
- initially, all possible configurations equiprobable.
- sensing actions listen $_{i}, i=1, \ldots, 4$ (not 5). Feedback:
- if a tiger is behind door i : hear the tiger roaring $\left(r_{+}\right)$with probability 0.5 , or not $\left(r_{-}\right)$with probability 0.5
- if no tiger behind door $i: r_{-}$with probability 1 ;
- ontic actions open $i: i=1, \ldots, 5$. Effects : the agent...
- ... becomes eaten by the tiger if there is one behind door i (reward -1)
- ... becomes married to the princess if she is behind door $i($ reward +1)

Probabilistic Belief-Based Programs

$\pi:$
listen $_{1}$; listen $_{2}$; listen $_{3}$; listen $_{4}$;
while $P\left(t_{1}\right)>0.1 \wedge \cdots \wedge P\left(t_{5}\right)>0.1$ do
if $P\left(t_{1}\right) \leq P\left(t_{2}\right) \wedge \cdots \wedge P\left(t_{1}\right) \leq P\left(t_{5}\right)$ then
[listen ; if $P\left(t_{1}\right) \leq 0.1$ then open ${ }_{1}$]
elself $P\left(t_{2}\right) \leq P\left(t_{1}\right) \wedge \cdots \wedge P\left(t_{2}\right) \leq P\left(t_{5}\right)$ then [listen ; if $P\left(t_{2}\right) \leq 0.1$ then open 2]
else [if $P\left(t_{5}\right) \leq 0.1$ then open 5]
π corresponds to a (less succinct) POMDP policy, with branching on sequences of observations.

KBP synthesis

Informally : maintain a list L of pairs $\langle K \varphi, a\rangle$ such that performing a in knowledge state $K \varphi$ eventually leads to the goal

- L initialized to $\{\langle K \varphi$, stop $\rangle \mid K \varphi \in \Gamma\}$
- repeat
- $\Gamma^{\prime}=\bigvee\{K \varphi \mid\langle K \varphi, a\rangle \in L$ for some $a\}$
- regress Γ^{\prime} by some action α
- add $\left\langle\operatorname{Reg}\left(\Gamma^{\prime}, \alpha\right), \alpha\right\rangle$ to L (unless it is redundant)
- until the initial knowledge state implies $K \varphi$ for some $\langle K \varphi, a\rangle$ in L If $L=\left\{\left\langle\varphi_{i}, \alpha_{i}\right\rangle, i=1, \ldots, m\right\}$, return

REPEAT
CASE

$$
\varphi_{1}: \alpha_{1}
$$

$$
\begin{aligned}
& \quad \varphi_{m}: \alpha_{m} \\
& \text { END } \\
& \text { UNTIL stop }
\end{aligned}
$$

KBP synthesis

Same example as in (Herzig, Lang \& Marquis, 2003) :

- two propositional variables u, v
- epistemic actions $\alpha=\operatorname{test}(u \wedge v), \beta=\operatorname{test}(u \leftrightarrow v)$
- ontic action $\gamma=\operatorname{switch}(u)$
- initial knowledge state $K T$
- goal $K v \vee K \neg v$.

Successive values of L :

1. initially: $L=\{\langle K v$, stop $\rangle,\langle K \neg v$, stop $\rangle\}$
2. add $\langle K(v \rightarrow u), \alpha\rangle$
3. add $\langle K(v \rightarrow \neg u), \gamma\rangle$
4. add $\langle K T, \beta\rangle\}$
$L=\{\langle K v$, stop $\rangle,\langle K \neg v$, stop $\rangle,\langle K(v \rightarrow u), \alpha\rangle,\langle K(v \rightarrow \neg u), \gamma\rangle,\langle\top, \alpha\rangle\}$

KBP synthesis

The plan returned is

$$
\begin{array}{ll}
\text { REPEAT } & \\
\text { CASE } & \text { stop } \\
K v: & \text { stop } \\
K \neg v: & \alpha \\
K(v \rightarrow u): & \alpha \\
K(v \rightarrow \neg u): & \gamma \\
K \top: & \beta \\
\text { END } & \\
\text { UNTIL stop } &
\end{array}
$$

Multi-agent KBPs : three prisoners and a lightbulb

The propositional variables:

- in(i): i is in the room
- hasbeen $(i): i$ has already been in the room
- light : the light is switched on
- success
- end (ensures tell is performed successfully at most once)

Multi-agent KBPs : three prisoners and a lightbulb

The actions:

- wait(i) : nature possibly sends one of the agents into the room ; i learns whether he is in the room or not; i can be sent in the room if it is not empty ; i forgets about the light if he knew something about it.

$$
\left(K_{i} \text { in }(i) \vee K_{i} \neg i n(i)\right) \wedge K_{i} \bigwedge_{j \neq k}\left(i n(j)^{\prime} \rightarrow\left(\neg i n(k) \wedge \neg i n(k)^{\prime}\right) \wedge(\ldots)\right)
$$

- observe(i): i learns the value of I, provided that he is in the room :

$$
K_{i}(i n(i) \rightarrow \text { light }) \vee K(i n(i) \rightarrow \neg \text { light }) \wedge(\ldots)
$$

- switch: $K_{i}\left(I^{\prime} \leftrightarrow \neg I\right) \wedge(\ldots)$
- exit $(i): i$ exits the room if he was in it : $K_{i} \neg i n(i) \wedge(\ldots)$
\triangleright tell : K $K_{i}\left(\right.$ end $d^{\prime} \wedge($ hasbeen $(1) \wedge$ hasbeen $(2) \wedge \neg$ end \rightarrow success $\left.) \wedge(\ldots)\right)$ and all these actions theories are common knowledge

Multi-agent KBPs : three prisoners and a lightbulb

```
1:}\mp@subsup{\pi}{0}{}
2:
    3: if Ko }\mp@subsup{K}{0}{
4: wait(0)
5: else
6: observe(0);
7: if K}\mp@subsup{K}{0}{}(hasbeen(1)\wedge hasbeen(2)) the
8: tell
9: else
10: if Kolight then
11: switch
12: end if
13: end if
14: exit
15: end if
```


Multi-agent KBPs : three prisoners and a lightbulb

1: π_{1} :
2:
: if $K_{1} \neg i n(1)$ then
4: \quad wait (1)
5: else
6: if $K_{1} \neg$ hasbeen (1) then
7: observe(1);
8: if $K_{1} \neg$ light then
9: switch
10: \quad hasbeen(1) $:=$ true
11: end if
12: end if
13: exit
14: end if
π_{2} is the same as π_{2}, replacing 1 by 2 everywhere.

