
Knowledge-based programs as plans

Jérôme Lang (LAMSADE, Paris) & Bruno Zanuttini (GREYC, Caen)

ECAI-2012 + TARK-2013 + IJCAI-2015
+ ongoing work (with Anaëlle Wilczinski, LAMSADE)

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 1/47

A card game program

Goal :
I pick some cards, maximum 5
I try to obtain three cards of the same rank

Do
pick a card c
look at the rank of c

Until three cards of the same rank or know it is impossible

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 2/47

A diagnose-and-repair program

I three components 1,2,3 ;
I propositional symbol oki : component i is in working order ;
I action repair(i) : makes oki true ;
I action test(i) : returns the truth value of oki ;
I initial knowledge state : K ((ok1 ↔ (ok2 ∧ ok3)) ∧ (¬ok1 ∨ ¬ok3)) ;
I Goal : to have the three components working without replacing more

components than necessary.
While ¬K (ok1 ∧ ok2 ∧ ok3) do

i := smallest integer such that ¬Koki ;
If ¬K¬oki then test(i) endif ;
If K¬oki then replace(i) endif

Endwhile

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 3/47

Outline

Knowledge-based programs :
I introduced by Fagin, Halpern, Moses and Vardi [1995]
I studied for behaviour specification in distributed environments
I we use them as outputs of planning problems
I what are the benefits and pitfalls of using knowledge-based programs

instead of standard programs ?

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 4/47

Classical partially observable planning vs.
Knowledge-based planning

Classical partially observable planning
Output = standard plan (policy) :

I tree or DAG containing observations/actions
I branching on current state and observations

Knowledge-based planning
Output = knowledge-based program :

I branching conditions are subjective epistemic formulas

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 5/47

Example

I initial knowledge state : O((ok1 ↔ (ok2 ∧ ok3)) ∧ (¬ok1 ∨ ¬ok3))

I goal knowledge state : K (ok1 ∧ ok2 ∧ ok3)

I actions : test(i), repair(i) for i = 1, 2, 3

Knowledge-based plan :

While ¬K (ok1 ∧ ok2 ∧ ok3) do
find the smallest i such that ¬Koki ;
If ¬K¬oki then test(i) ;
If K¬oki then replace(i)

Endwhile

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 6/47

Knowledge-based plans vs. policies

KBP standard policy

While ¬K (ok1 ∧ ok2 ∧ ok3) do
find smallest i such that ¬Koki ;
If ¬K¬oki then test(i) ;
If K¬oki then replace(i)

Endwhile

replace(1) ;
test(2) ;
If ok(2)
then replace(3)
else replace(2) ;

test(3) ;
If ¬ok(3)
then replace(3)
endif

endif

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 7/47

Knowledge-based programs vs. standard programs

Knowledge-based programs :
I introduced by Fagin, Halpern, Moses and Vardi [1995]
I studied for behaviour specification in distributed environments
I we use them as outputs of planning problems
I what are the benefits and pitfalls of using knowledge-based programs

instead of standard programs ?
I [-] more difficult to execute than standard programs : evaluating

branching conditions is computationally hard
I [+] more compact than standard programs
I [+] more natural to express than standard programs

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 8/47

Outline

Knowledge-based programs :
I introduced by Fagin, Halpern, Moses and Vardi [1995]
I studied for behaviour specification in distributed environments
I we use them as outputs of planning problems.

Our work :
I using knowledge-based programs as (single-agent) plans reaching

some goals described by epistemic formulas
I LOFT-12 / ECAI-12 : expressivity and complexity of plan verification
I TARK-13 : comparing the succinctness of KBPs to that of standard

plans + complexity of plan existence
I IJCAI-15 : probabilistic knowledge-based programs
I ongoing work : KBP synthesis
I ongoing work : multi-agent KBP

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 9/47

Plan

Knowledge-based programs

Knowledge-based planning problems

Succinctness

KBP verification

KBP existence

Probabilistic KBPs

KBP synthesis

KBP synthesis

Multi-agent KBPs

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 10/47

Knowledge-based programs

Knowledge-based planning problems

Succinctness

KBP verification

KBP existence

Probabilistic KBPs

KBP synthesis

KBP synthesis

Multi-agent KBPs

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 11/47

Syntax

Input
I set of propositional variables X = {x1, . . . , xn}

I Queen(c1), ok1 . . .
I state = truth assignment (unobservable)

I set of actions

Knowledge-based program π :
I action, or
I sequence π1;π2; . . . ;πn, or
I branching If Φ then π1 else π2, where Φ is a purely subjective S5

formula (Boolean combination of epistemic atoms Kϕ) ; or
I loop While Φ do π1, where Φ is a purely subjective S5 formula.

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 12/47

Actions
Ontic action :

I changes the state of the world
I possibly nondeterministic + no feedback
I propositional symbol x 7→ {x , x ′} ;

I x before the action is performed
I x ′ after the action is performed

I switch(xi) : Σ = (x ′
i ↔ ¬xi) ∧

∧
j 6=i (x ′

j ↔ xj)

I xi ← 0 : Σ = (¬x ′
i)

I reinit(xi) : Σ =
∧

j 6=i (x ′
j ↔ xj)

Epistemic action :
I does not change the state of the world
I sends back one of several possible observations
I test(xi ∨ xj) : observe xi ∨ xj or observe ¬(xi ∨ xj)

I ask-how-much-time-left : observe (t = 15mn) or observe (t = 10mn)
or observe (t = 5mn) or observe (t = 0)

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 13/47

Executing a KBP

At every step :
I current state of variables st

I s0 = x1x2x̄3

I current knowledge state Mt

I Mt = {x1x2x3, x1x̄2x3, x1x2x̄3}
I succinct representation O(x1 ∧ (x2 ∨ x3)) : all I know is x1 ∧ (x2 ∨ x3).

Execution :
I branching condition / loop : evaluated in Mt

I ontic action : nondeterministic modification of st

I epistemic action :
I no modification of st

I reception of an observation ω

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 14/47

Progression

Progression by an ontic action :
I Mt = {x1x2x3, x̄1x̄2x̄3} O((x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ ¬x2 ∧ ¬x3))

I progression of Mt by switch(x1) :
Mt+1 = {x̄1x2x3, x1x̄2x̄3} O((¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3))

I progression of Mt+1 by reinit(x1) :
Mt+2 = {x1x2x3, x̄1x2x3, x1x̄2x̄3, x̄1x̄2x̄3} O(x2 ↔ x3)

Progression by an observation (received after some epistemic action) :
I action test(x1 ∧ x2), observation ¬(x1 ∧ x2) :
I progression of Mt+2 by observation ¬(x1 ∧ x2) :

Mt+3 = {x̄1x2x3, x1x̄2x̄3, x̄1x̄2x̄3} O((x2 ↔ x3) ∧ ¬(x1 ∧ x2))

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 15/47

Knowledge-based programs

Knowledge-based planning problems

Succinctness

KBP verification

KBP existence

Probabilistic KBPs

KBP synthesis

KBP synthesis

Multi-agent KBPs

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 16/47

Classical planning

I Set of initial states and goal states (described succinctly)
I Set of actions whose effects are described succinctly
I Output : standard plan (policy) :

I tree or DAG containing observations/actions
I branching on current state and observations

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 17/47

Knowledge-based planning problems

I initial knowledge state initial M0 :
I possibly O>
I must contain the true initial state

I goal G (purely subjective epistemic formula)
I π valid plan if

I terminates
I for every possible sequence of states s0 ∈ M0 . . . sfinal ∈ Mfinal

we have sfinal |= G

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 18/47

Example

I initial knowledge state : O((ok1 ↔ (ok2 ∧ ok3)) ∧ (¬ok1 ∨ ¬ok3))

I goal knowledge state : K (ok1 ∧ ok2 ∧ ok3)

I actions : test(i), repair(i) for i = 1, 2, 3

Knowledge-based plan :

While ¬K (ok1 ∧ ok2 ∧ ok3) do
find the smallest i such that ¬Koki ;
If ¬K¬oki then test(i) ;
If K¬oki then replace(i)

Endwhile

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 19/47

Knowledge-based plans vs. standard policies

I A standard policy is a KBP in which the last action executed before
any branching condition if Φ or while Φ is an epistemic action a such
that Φ is one of the possible observations for a.

I For every KBP π there exists a standard policy π′ “equivalent” to π
(π and π′ have the same execution traces).

Expressivity :
I there exists a valid knowledge-based for a planning problem P iff

there exists a valid standard policy for P

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 20/47

Knowledge-based plans vs. policies

KBP standard policy

While ¬K (ok1 ∧ ok2 ∧ ok3) do
find smallest i such that ¬Koki ;
If ¬K¬oki then test(i) ;
If K¬oki then replace(i)

Endwhile

replace(1) ;
test(2) ;
If ok(2)
then replace(3)
else replace(2) ;

test(3) ;
If ¬ok(3)
then replace(3)
endif

endif

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 21/47

Knowledge-based plans vs. policies : reactivity

On-line execution :
I standard policy :

I move to the subtree corresponding to the observation and execute the
next action

I constant time
I knowledge-based plan :

I branching / loop condition : decide Mt |= Φ
I NP-hard and coNP-hard, in ∆2P

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 22/47

Knowledge-based plans vs. policies : succinctness

Proposition : unless NP ⊆ P/poly (extremely unlikely), while-free KBPs
with atomic branching conditions are exponentially more succinct than
while-free standard policies.

Proof sketch :
I for each n ∈ N we build a polysize KBP πn that “reads” a CNF

formula ϕ and either makes sure that it is unsatisfiable or else builds a
model of it.

I if there is a family of standard policies π′
n for every n, of size

polynomial in |πn|, with πn equivalent to π′
n, then there is a (possibly

nonuniform) polytime algorithm for 3sat, yielding NP ⊆ P/poly.

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 23/47

Knowledge-based plans vs. policies : succinctness

Proposition : KBPs (with loops) are more succinct than standard policies
(with loops).

Proof sketch :
I there is a polynomial pol and a collection of KBPs (πn)n such that
|πn| ≤ pol(n) and such that πn “counts” up to 22n − 1 (by going once
through all knowledge states).

I we build a family of planning problems (Pn)n such that the only valid
plans for Pn are all equivalent to πn

I assume that for all n there is a standard policy π′
n for Pn and

|π′
n| ≤ pol(n)| ; then π′

n can manipulate only pol(n) variables, and can
have only 2pol(n).|π′

n| configurations (states + control points) ; then it
cannot count up to 22n − 1, contradiction.

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 24/47

Knowledge-based plans vs. policies : succinctness

Proposition : KBPs are more succinct than while-free KBPs.

Proof sketch : later

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 25/47

Knowledge-based programs

Knowledge-based planning problems

Succinctness

KBP verification

KBP existence

Probabilistic KBPs

KBP synthesis

KBP synthesis

Multi-agent KBPs

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 26/47

KBP existence vs. KBP verification

KBP verification
input P = (initial belief state, actions, goal)

question is π valid for P ?
KBP existence

input P = (initial belief state, actions, goal)
question is there a valid KBP π for P ?

small KBP existence
input P = + integer k encoded in unary

question is there a valid KBP π for P such that |π| ≤ k ?

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 27/47

KBP verification : overview of results

loop-free programs
I ΠP

2 -complete (ΠP
2 = coNPNP)

I remains ΠP
2 -complete with each of the following

restrictions :
I ontic actions only
I epistemic actions only

I standard plan verification : coNP-complete
programs with loops

I EXPSPACE-complete
I remains EXPSPACE-complete even if we know that π

terminates
I standard plan verification : PSPACE-complete

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 28/47

KBP verification : loop-free programs

I ΠP
2 -complete (ΠP

2 = coNPNP)
I hardness proof easy
I membership proof based on the following nondeterministic algorithm

that shows that a plan is not valid ;
I guess a sequence of observations
I at each step with a branching condition Φ, evaluate Φ [Needs a

polynomial number of NP oracles]
I check that the goal is not satisfied at the end of the execution

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 29/47

KBP verification : general programs

I EXPSPACE-complete
I key point : a loop can be executed up to 22n − 2 times (visit all

possible belief states)
I membership easy
I hardness by reduction from nondeterministic unobservable

plan existence (Haslum and Jonsson, 99)

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 30/47

Knowledge-based plans vs. policies : succinctness

Proposition : KBPs are more succinct than while-free KBPs.

Proof sketch :
I verifying a KBP with loops is EXPSPACE-complete ;
I verifying a while-free KBP is Πp

2-complete ;
I Πp

2 ⊆ PSPACE ⊂ EXPSPACE (strict inclusion, Savitch’s theorem)

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 31/47

KBB existence : overview of results

unbounded bounded
general 2-EXPTIME-complete EXPSPACE-complete

while-free 2-EXPTIME-complete Σp
3-complete

ontic EXPSPACE-complete ?
while-free, ontic EXPSPACE-complete Σp

2-complete
while-free, epistemic PSPACE-complete ?
while-free, epistemic,

positive goal coNP-complete Σp
2-complete

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 32/47

KBP existence

unbounded bounded
general 2-EXPTIME-complete EXPSPACE-complete

while-free 2-EXPTIME-complete Σp
3-complete

ontic EXPSPACE-complete ?
while-free, ontic EXPSPACE-complete Σp

2-complete
while-free, epistemic PSPACE-complete ?
while-free, epistemic,

positive goal coNP-complete Σp
2-complete

Corollaries from known results in planning together with the fact that
there exists a KBP for a planning problem off there exists a standard plan.

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 33/47

KBP existence

unbounded bounded
general 2-EXPTIME-complete EXPSPACE-complete

while-free 2-EXPTIME-complete Σp
3-complete

ontic EXPSPACE-complete ?
while-free, ontic EXPSPACE-complete Σp

2-complete
while-free, epistemic PSPACE-complete ?
while-free, epistemic,

positive goal coNP-complete Σp
2-complete

I membership : guess π of size ≤ k and verify it ; plan verification
is in EXPSPACE and NEXPSPACE = EXPSPACE.

I hardness : reduction from plan verification. Build a planning
problem P ′, and let k = |π|, such that every valid plan for P ′ is
equivalent to π.

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 34/47

KBP existence

unbounded bounded
general 2-EXPTIME-complete EXPSPACE-complete

while-free 2-EXPTIME-complete Σp
3-complete

ontic EXPSPACE-complete ?
while-free, ontic EXPSPACE-complete Σp

2-complete
while-free, epistemic PSPACE-complete ?
while-free, epistemic,

positive goal coNP-complete Σp
2-complete

I membership : guess π and verify it ; plan verification is in Πp
2 .

I hardness : reduction from qbf3,∃.

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 35/47

KBP existence

unbounded bounded
general 2-EXPTIME-complete EXPSPACE-complete

while-free 2-EXPTIME-complete Σp
3-complete

ontic EXPSPACE-complete ?
while-free, ontic EXPSPACE-complete Σp

2-complete
while-free, epistemic PSPACE-complete ?
while-free, epistemic,

positive goal coNP-complete Σp
2-complete

I branching is not necessary because we never get any feedback ; the
problem is equivalent to polynomially-bounded plan existence without
branching, which is Σp

2-complete.

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 36/47

KBP existence

unbounded bounded
general 2-EXPTIME-complete EXPSPACE-complete

while-free 2-EXPTIME-complete Σp
3-complete

ontic EXPSPACE-complete ?
while-free, ontic EXPSPACE-complete Σp

2-complete
while-free, epistemic PSPACE-complete ?
while-free, epistemic,

positive goal coNP-complete Σp
2-complete

I membership : because an epistemic action needs to be executed at
most once, if a planning problem has a valid KBP then it has a valid
KBP of height bounded by the number of epistemic actions.
+ searching a polynomial-height tree can be done in PSPACE.

I hardness : reduction from qbf.

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 37/47

KBP existence

unbounded bounded
general 2-EXPTIME-complete EXPSPACE-complete

while-free 2-EXPTIME-complete Σp
3-complete

ontic EXPSPACE-complete ?
while-free, ontic EXPSPACE-complete Σp

2-complete
while-free, epistemic PSPACE-complete ?
while-free, epistemic,

positive goal coNP-complete Σp
2-complete

I membership, unbounded : performing an epistemic action cannot
harm ; there exists a valid KBP iff the KBP consisting in performing
all epistemic actions in any order is valid.

I membership, bounded : guess a set of k epistemic actions and
perform them ; verification is in coNP.

I hardness : reductions from unsat and qbf2,∃.

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 38/47

Probabilistic Belief-Based Programs

I 5 doors :
I a tiger hidden behind two of them
I a princess behind one of the other three
I initially, all possible configurations equiprobable.

I sensing actions listeni , i = 1, . . . , 4 (not 5). Feedback :
I if a tiger is behind door i : hear the tiger roaring (r+) with probability

0.5, or not (r−) with probability 0.5
I if no tiger behind door i : r− with probability 1 ;

I ontic actions openi : i = 1, . . . , 5. Effects : the agent...
I ... becomes eaten by the tiger if there is one behind door i (reward −1)
I ... becomes married to the princess if she is behind door i (reward +1)

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 39/47

Probabilistic Belief-Based Programs

π :

listen1; listen2; listen3; listen4;
while P(t1) > 0.1 ∧ · · · ∧ P(t5) > 0.1 do

if P(t1) ≤ P(t2) ∧ · · · ∧ P(t1) ≤ P(t5) then
[listen1; if P(t1) ≤ 0.1 then open1]

elseIf P(t2) ≤ P(t1) ∧ · · · ∧ P(t2) ≤ P(t5) then
[listen2; if P(t2) ≤ 0.1 then open2]

. . .
else [if P(t5) ≤ 0.1 then open5]

π corresponds to a (less succinct) POMDP policy, with branching on
sequences of observations.

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 40/47

KBP synthesis

Informally : maintain a list L of pairs 〈Kϕ, a〉 such that performing a in
knowledge state Kϕ eventually leads to the goal

I L initialized to {〈Kϕ, stop〉 | Kϕ ∈ Γ}
I repeat

I Γ′ =
∨
{Kϕ | 〈Kϕ, a〉 ∈ L for some a}

I regress Γ′ by some action α
I add 〈Reg(Γ′, α), α〉 to L (unless it is redundant)

I until the initial knowledge state implies Kϕ for some 〈Kϕ, a〉 in L
If L = {〈ϕi , αi〉, i = 1, . . . ,m}, return

REPEAT
CASE

ϕ1 : α1
. . .
ϕm : αm

END
UNTIL stop

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 41/47

KBP synthesis

Same example as in (Herzig, Lang & Marquis, 2003) :
I two propositional variables u, v
I epistemic actions α = test(u ∧ v), β = test(u ↔ v)

I ontic action γ = switch(u)

I initial knowledge state K>
I goal Kv ∨ K¬v .

Successive values of L :
1. initially : L = {〈Kv , stop〉, 〈K¬v , stop〉}
2. add 〈K (v → u), α〉
3. add 〈K (v → ¬u), γ〉
4. add 〈K>, β〉}
L =

{
〈Kv , stop〉, 〈K¬v , stop〉, 〈K (v → u), α〉, 〈K (v → ¬u), γ〉, 〈>, α〉

}
Jérôme Lang, Bruno Zanuttini Knowledge-based plans 42/47

KBP synthesis

The plan returned is

REPEAT
CASE

Kv : stop
K¬v : stop
K (v → u) : α
K (v → ¬u) : γ
K> : β

END
UNTIL stop

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 43/47

Multi-agent KBPs : three prisoners and a lightbulb

The propositional variables :
I in(i) : i is in the room
I hasbeen(i) : i has already been in the room
I light : the light is switched on
I success
I end (ensures tell is performed successfully at most once)

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 44/47

Multi-agent KBPs : three prisoners and a lightbulb

The actions :
I wait(i) : nature possibly sends one of the agents into the room ; i

learns whether he is in the room or not ; i can be sent in the room if it
is not empty ; i forgets about the light if he knew something about it.

(Ki in(i) ∨ Ki ¬in(i)) ∧ Ki
∧
j 6=k

(
in(j)′ → (¬in(k) ∧ ¬in(k)′) ∧ (...)

)
I observe(i) : i learns the value of l , provided that he is in the room :

Ki (in(i)→ light) ∨ K (in(i)→ ¬light) ∧ (...)

I switch : Ki (l ′ ↔ ¬l) ∧ (...)

I exit(i) : i exits the room if he was in it : Ki¬in(i) ∧ (...)

I tell : Ki (end ′ ∧ (hasbeen(1) ∧ hasbeen(2) ∧ ¬end → success ′) ∧ (...))

and all these actions theories are common knowledge
Jérôme Lang, Bruno Zanuttini Knowledge-based plans 45/47

Multi-agent KBPs : three prisoners and a lightbulb

1: π0 :
2:
3: if K0 ¬in(0) then
4: wait(0)
5: else
6: observe(0) ;
7: if K0(hasbeen(1) ∧ hasbeen(2)) then
8: tell
9: else

10: if K0 light then
11: switch
12: end if
13: end if
14: exit
15: end if

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 46/47

Multi-agent KBPs : three prisoners and a lightbulb

1: π1 :
2:
3: if K1 ¬in(1) then
4: wait(1)
5: else
6: if K1¬hasbeen(1) then
7: observe(1) ;
8: if K1 ¬light then
9: switch

10: hasbeen(1) := true
11: end if
12: end if
13: exit
14: end if
π2 is the same as π2, replacing 1 by 2 everywhere.

Jérôme Lang, Bruno Zanuttini Knowledge-based plans 47/47

	Knowledge-based programs
	Knowledge-based planning problems
	Succinctness
	KBP verification
	KBP existence
	Probabilistic KBPs
	KBP synthesis
	KBP synthesis
	Multi-agent KBPs

