Complexity results in epistemic planning (IJCAI-15)

DTU

Technical University of Denmark

Thomas BolanderMartin Holm JensenFrançois Schwarzentrubertobo@dtu.dkmartinholmj@gmail.comfrancois.schwarzentruber@ens-rennes.fr

rennes

Epistemic planning and our contributions to it

Planning in general Given is a **planning task** consisting of: 1) initial state; 2) finite set of actions; 3) goal formula. The aim is to compute a **plan**: sequence of actions that leads from the initial state to a state satisfying the goal formula.

Epistemic planning Replace the propositional logic underlying classical planning by **Dynamic Epistemic Logic** (**DEL**). Actions are described as *action models* of DEL.

Why epistemic planning? Allows for *multi-agent planning* with *partial observability*, *non-determinism* and arbitrary levels of *beliefs about beliefs* (higher-order reasoning, *Theory of Mind*). E.g. *private sensing*: Zoé senses the truth-value of A without Bob knowing.

Epistemic planning task 1) *Initial state*: epistemic state (Kripke model); 2) *actions*: action models of dynamic epistemic logic; 3) *goal formula*: formula of multi-agent epistemic logic.

Plan existence problem in epistemic planning Given epistemic planning task, does there exist a plan for it?

Main contribution of this paper Complexity results for the plan existence problem in epistemic planning. We look at different classes of epistemic planning tasks, and determine the complexity of the corresponding plan existence problems.

Zoé, Bob

The truth of propositions A and BZoé is privately sensing that A is
true. Bob is completely ignorant.Zoé believes that α_1 occurs. BobBob considers it possible that Zoé
believes that Zoé senses A or B.A and BKnows A.

Stablisation results

Epistemic	Underlying	Stable after
action	frame	
	Singleton	1
	Chain	1
	Tree	E
	Graph	$ E ^{depth of goal}$

Complexity results for the plan existence problem

	Types of epistemic actions		
Class of planning tasks	Non-factual, propositional preconditions	Factual, propositional preconditions	Factual, epistemic preconditions
SINGLETONS	NP-complete	PSPACE-hard [1]	PSPACE-hard [1]
CHAINS	NP-complete	? (open question)	? (open question)
TREES	PSPACE-complete	? (open question)	? (open question)
GRAPHS	in EXPSPACE	in NON-ELEMENT. [2]	Undecidable [3]
	\uparrow results of this paper \uparrow		

• Upper bound using a guess and verify algorithm; soundness and completeness via stabilisation results.

An epistemic action is *stable after* n, if its (n + 1)-ary product is bisimilar to its *n*-ary product (repeating the action n + 1 times is the same as repeating it n times).

- Lower bound using polynomial time reductions from SAT (CHAINS) and QSAT (TREES).
- Singleton epistemic actions correspond to public announcements of propositional facts, chains and trees to certain forms of private announcements, and graphs capture any propositional epistemic action.

References

- [1] Martin Holm Jensen. *Epistemic and Doxastic Planning*. PhD thesis, Technical University of Denmark, 2014. DTU Compute PHD-2014.
- [2] Quan Yu, Ximing Wen, and Yongmei Liu. Multi-agent epistemic explanatory diagnosis via reasoning about actions. In Francesca Rossi, editor, *IJCAI*. IJCAI/AAAI, 2013.
- [3] Thomas Bolander and Mikkel Birkegaard Andersen. Epistemic planning for single and multi-agent systems. *Journal of Applied Non-Classical Logics*, 21(1):9–34, 2011.