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1 Introduction

It is well-known that there exist consistent first-order theories that become inconsistent when
we add Tarski’s schema T. This is Tarski’s Theorem. To avoid the inconsistency result, one
can restrict Tarski’s schema in different ways. In our paper we restrict Tarski’s schema T
by only instantiating the schema with a proper subset of the set of all sentences. We prove
several results concerning the sets of sentences M for which Tarski’s schema T instantiated
with the sentences of M is relatively consistent with any first-order theory.

Let L be any first-order language containing the one-place predicate symbol T (intended
to denote truth). Let M be a subset of the set of sentences of L. By the truth predicate
over M we understand the instances over M of Tarski’s schema T, that is, the theory

{ϕ↔ T (pϕq) | ϕ ∈M} ,

where p·q is some suitable coding scheme. Such theories are also called restricted truth
predicates. Let L− denote the first-order language L with the predicate symbol T removed.
The truth predicate over M is called universally consistent if it is relatively consistent
with any theory in L−.1 We are interested in knowing for which sets of sentences M the
truth predicate over M is universally consistent. We already know that this is not the case
when M = L (Tarski’s Theorem. See Tarski 1956). Based on this negative result, our
main question become: What are the maximal M for which the truth predicate over M is
universally consistent? 2 Our tools to investigate these problems will be semantic functionals
and dependence relations. These are introduced in Section 4 and 5. In Section 6 and 7 we prove
several results concerning universally consistent truth predicates. We will be generalizing
previous results by Perlis 1985, Feferman 1984, and des Revières and Levesque 1986. Our
main result is Theorem 8 (p. 7). Proofs can be found in the appendix.

2 Motivation

The problem of determining for which sets M the truth predicate over M is universally
consistent has an interest in at least the following three fields of research:

(i) Philosophy—especially regarding truth definitions in the philosophy of language.

(ii) Computer science—especially regarding introspective agents in artificial intelligence.
1That is, if U is any consistent first-order theory in L− then U extended with the truth predicate over M

is also consistent.
2Vann McGee considers a closely related problem in McGee 1992. But McGee finds maximal truth predicates

that are relatively consistent with particular theories, and not maximal truth predicates that are relatively
consistent with any theory.



(iii) Mathematics—especially regarding axiomatic set theories in mathematical logic.

In philosophy, the naive theory of truth requires that the truth predicate, formalized by
T , satisfies each of the equivalences

ϕ↔ T (pϕq) (1)

where ϕ range over the sentences of the language considered. But the naive theory of truth
is challenged by the fact that the theory

{ϕ↔ T (pϕq) | ϕ is a sentence}

is not universally consistent. That is, not every consistent theory formalized in first-order
logic can consistently be extended with a truth predicate T satisfying (1) above.

In computer science, one of the important problems is the question of how to implement
introspection, or self-reflection, in artificial intelligence agents. It turns out that the problem
of constructing an agent which possesses complete and correct introspective abilities is—
in a first-order logical setting—equivalent to the problem of having a first-order theory in
which all instances of (1) are theorems. Thus, in a first-order logical setting, the problem of
complete introspection of agents is more or less identical to the problem of truth definitions.
This is actually not too surprising: both the construction of truth predicates and obtaining
complete introspection amounts to constructing a theory a part of which contains a complete
representation of the theory itself (in our case the part that concerns the T predicate).

In mathematics, restricted truth predicates are relevant to axiomatic set theory amongst
others. By the abstraction principle over a set M of sentences of a suitable first-order
language L we understand the theory consisting of all sentences

∀x (x ∈ {y | ϕ(y)} ↔ ϕ(x))

where ϕ(x) ∈ M . The naive theory of sets is the abstraction principle over all sentences
of L. The naive theory of sets is inconsistent (this is shown by a formalization of Russell’s
paradox). Thus, in axiomatic set theory, one needs to restrict the abstraction principle in
one way or another to regain the essential consistency. This can for instance be done by only
considering the abstraction principle over some subset M of the set of sentences of L. The
truth predicate over M ,

{ϕ↔ T (pϕq) | ϕ ∈M} ,

is interpretable in the abstraction principle overM .3 Under certain conditions, the abstraction
principle over M is also interpretable in the truth predicate over M . Thus, results about the
consistency of theories containing restricted truth predicates also gives information on the
consistency of restricted abstraction principles.

The above discussion shows that proving consistency results for restricted truth predicates
can be of importance to all of the three fields of research mentioned in the beginning of this
section. Besides and beneath these motivations for studying restricted truth predicates lies
an attempt to understand and model the essential features of self-reflection and self-reference.

3This is not hard to show. See e.g. Bealer 1982.



3 Basic Definitions and Conventions

We use L,L′, etc. to range over languages of first-order predicate logic containing the predicate
symbol T . For every first-order language L, we let L− denote the language obtained by
removing the predicate symbol T from L. We use U, V, U ′, V ′, etc. to range over theories of
first-order predicate logic. Predicate logic is here taken to mean predicate logic with identity.
This means that: 1) all languages contain the identity symbol =; 2) all theories contain the
axioms of equality as part of their logical axioms; 3) all models are normal.4 Every first-order
language L is identified with its set of sentences. We assume the connectives of first-order logic
to be ¬,∧ and ∨. When using → and ↔ in a formula this should be read as an abbreviation
for the corresponding formula using only ¬,∧ and ∨.

To make things technically simpler, we will make some further assumptions on the lan-
guages and theories to be used. We will assume that every language considered contains 0
as its only constant symbol and the one-place function symbol s at its only function symbol.
For theories with equality this does not restrict the generality of the results, since all constant
and function symbols in theories with equality can be dispensed with by introducing new
predicate symbols instead (Mendelson 1997). We will furthermore assume that every theory
U considered satisfy

U ` n̄ 6= m̄ when n,m ∈ N with n 6= m.5

Throughout the paper we will be using a fixed Gödel coding p·q that maps any formula
of any first-order language into an element of N. The only property we will need this coding
to satisfy is that pϕ(pψq)q > pψq for all ϕ,ψ. For every formula ϕ we identify pϕq with the
numeral n̄ denoting this Gödel number. Thus in every theory, for every formula ϕ, there is a
term pϕq that we can use to denote ϕ.

The set of closed terms (ground terms) of L is denoted Terms(L). The set of atomary
sentences (closed atomary formulas) is denoted Atoms(L) and the set of well-formed formulas
is denoted wff(L).

4 Semantic Functionals

To prove our universal consistency results we will introduce a general method that can be
used to prove many such consistency results.

Let a first-order language L be given. We use t to denote the truth-value “true” and
f to denote the truth-value “false”. {t, f}⊥ denotes the set {t, f,⊥}. We use mappings
L → {t, f}⊥ to represent partial functions from L into {t, f}, where the value ⊥ means
“undefined”. We expect the reader to be familiar with the basics of partial functions treated in
this way (otherwise consult e.g. Stoltenberg-Hansen et al. 1994). By a semantic functional
we then understand any map

F : (L → {t, f}⊥)→ (L → {t, f}⊥) ,
4A model is called normal if the predicate symbol = is interpreted as the identity on the domain of the

model.
5As usual, we take n̄ for all n ∈ N to denote the term s(s(. . . s(0) . . . )) with n occurrences of s. n̄ is the

numeral representing n.



that is, any map that takes a partial truth-value assignment [[·]] : L → {t, f}⊥ and returns a
new partial truth-value assignment. Such a partial truth-value assignment is called a fixed
point of a F if F ([[·]]) = [[·]], that is, if F ([[·]])(ϕ) = [[ϕ]] for all ϕ ∈ L. It is called a total
fixed point if it is a total function, that is, if [[ϕ]] ∈ {t, f} for all ϕ ∈ L. When we talk about
semantic functionals in the following we will often just call them functionals.

We define a class of semantic functionals that are of particular interest in our case. For
any first-order language L and any set of sentences M ⊆ L we define the functional FL,M by

FL,M : (L → {t, f}⊥)→ (L → {t, f}⊥)

by, for all sentences ϕ,ψ,∀xα(x) ∈ L,

FL,M ([[·]])(ϕ ∧ ψ) =


t if [[ϕ]] = [[ψ]] = t

⊥ if [[ϕ]] = ⊥ or [[ψ]] = ⊥
f otherwise

(2)

FL,M ([[·]])(¬ϕ) =


f if [[ϕ]] = t
t if [[ϕ]] = f
⊥ otherwise

(3)

FL,M ([[·]])(∀xα(x)) =


t if [[α(τ)]] = t for all terms τ in L
⊥ if [[α(τ)]] = ⊥ for some term τ in L
f otherwise

(4)

FL,M ([[·]])(T (pϕq)) = [[ϕ]] for all ϕ ∈M (5)

The first three clauses above are recognized to correspond to the truth conditions of Kleene’s
weak three-valued logic with ⊥ as the third value. The fourth clause ensure that in any fixed
point [[·]] of FL,M we will have

[[T (pϕq)]] = [[ϕ]] for all ϕ ∈M, (6)

that is, for all ϕ ∈M, [[·]] assigns the same truth value to T (pϕq) as to ϕ. This is the property
that will allow us to prove universal consistency results using these functionals.

Let F : (L → {t, f}⊥) → (L → {t, f}⊥) be a functional. The set of initial elements of
F , denoted init(F ), is defined as

init(F ) = {ϕ ∈ L | F ([[·]])(ϕ) = ⊥ for all [[·]] : L → {t, f}⊥} .

For FL,M defined above we have

init(FL,M ) = {ϕ ∈ L | ϕ is an atomary sentence not on the form T (pψq) for any ψ ∈M} .

That is, init(FL,M ) is the set of sentences that are not covered by any of the defining clauses
for FL,M . By an initial extension of F we understand any functional G that extends F as
a partial function and satisfies:

G([[·]])(ϕ) ∈ {t, f} for all ϕ ∈ init(F ) and all [[·]] : L → {t, f}⊥.

The connection between our semantic functionals and universal consistency of truth predicates
is revealed by the following important lemma.



Lemma 1. Let M ⊆ L. If for every first-order language L′ ⊇ L, every initial extension of
FL′,M has a total fixed point then the theory

{ϕ↔ T (pϕq) | ϕ ∈M}

is universally consistent.

Thus the problem now becomes to prove the existence of total fixed points of semantic
functionals. For this we need the notion of a dependence relation.

5 Dependence Relations

Consider again (2), the first clause in the definition of FL,M . This is the clause for the
conjunction ϕ ∧ ψ. Since both [[ϕ]] and [[ψ]] occur on the right hand side of the clause we can
infer that

“ϕ ∧ ψ is semantically dependent on ϕ and ψ”

or that

“to determine the semantic value of ϕ∧ψ we first need to determine the semantic
values of both ϕ and ψ”.

Similarly, from the clause

FL,M ([[·]])(T (pϕq)) = [[ϕ]] for all ϕ ∈M

we can infer that

“T (pϕq) is semantically dependent on ϕ (when ϕ ∈M)”.

The semantical dependence that is hereby expressed in the semantic functionals can be rep-
resented by dependence relations. A dependence relation is a binary relation on the set of
sentences in which ϕ is related to ψ iff ϕ is semantically dependent on ψ, that is, iff ψ appears
on the right-hand side of the clause for ϕ. More formally,

Definition 2. Let F : (L → {t, f}⊥) → (L → {t, f}⊥) be a semantic functional. For each
ϕ ∈ L, we define the dependence set for ϕ (wrt. F ) as the least set M such that

for all [[·]] : L → {t, f}⊥, if dom([[·]]) ⊇M then ϕ ∈ dom(F ([[·]])).6

If such a least set M does not exist, we let the dependence set for ϕ be ∅. The dependence
relation of F is now defined as the binary relation D on L given by

ϕDψ ⇔ ψ is in the dependence set of ϕ (wrt. F ).

When ϕDψ we say that ϕ depends on ψ.
6For every function f : L → {t, f}⊥, dom(f) is the set of ϕ ∈ L for which f(ϕ) 6= ⊥.



6 Well-founded Truth Predicates

We will now use Lemma 1 to prove our first universal consistency result.
A binary relation D is called conversely well-founded is there is no infinite sequence

of elements e1, e2, e3, . . . such that

e1De2De3 · · · .

When we are given a semantic functional for which the dependence relation is conversely
well-founded we find ourselves in a very advantageous situation:

Lemma 3. Let M ⊆ L. If the dependence relation of FL,M is conversely well-founded then
any initial extension of FL,M has a total fixed point.

Combining this result with Lemma 1 we immediately get

Lemma 4. Let M ⊆ L. If the dependence relation of FL′,M is conversely well-founded for
every L′ ⊇ L then the theory

{ϕ↔ T (pϕq) | ϕ ∈M}

is universally consistent.

To know that the truth predicate over a set M is universally consistent we thus only need
to know that the dependence relation of FL′,M is conversely well-founded. For every language
L, there is actually a greatest set for which FL,M is conversely well-founded, as the following
lemma shows.

Lemma 5. Let L be a first-order language. Let M ⊆ L be given by

M = {ϕ ∈ L | ϕ does not contain T (x) as a subformula} .

M is the greatest subset of L for which the dependence relation of FL,M is conversely well-
founded.

This lemma together with Lemma 4 immediately gives us our first universal consistency
result.

Theorem 6. Let L be a first-order language. The theory

{ϕ↔ T (pϕq) | ϕ does not contain T (x) as a subformula}

is universally consistent.

This result tells us that we can always safely instantiate Tarski’s schema T with sentences
such as

T (p¬T (pon(cat,mat)q)q)

in which we have nested and/or negated occurrences of T , but not necessarily with sentences
such as

∀x (P (x) ∨ T (x))

where we have quantified truth.



Corollary 7. As special cases of the above theorem we get that both of the following theories
are universally consistent:

(i) {ϕ↔ T (pϕq) | ϕ does not contain the predicate symbol T}.

(ii) {ϕ↔ T (pϕq) | ϕ does not contain variables}.

(i) above is the Tarski idea: we only apply the truth predicate to sentences that do not
themselves contain the truth predicate. (ii) gives us a truth predicate that is restricted in
only applying to singular statements (that is, “the sentence ‘the cat is on the mat’ is true” is
included but “every sentence is true” is not). Such a truth predicate might be sufficient for
many applications to introspective agents.

The result above can actually be immediately strengthened by using a more general type
of coding. By a parametrized coding in L we understand an injective map p·q from the
formulas of L into the terms of L satisfying

(i) For any formula ϕ in L, pϕq has the same free variables as ϕ.

(ii) For any formula ϕ(x) and any term τ which is free for x in ϕ(x), pϕ(τ)q is the term
obtained by substituting τ for all free occurrences of x in pϕ(x)q.

Unfortunately, the space does not allow us to prove the existence of such parametrized cod-
ings, but the interested reader is referred to Feferman 1984 in which a closely related kind
of parametrized coding is constructed. Using a parametrized coding scheme rather than a
standard Gödel coding does not change the validity of Theorem 6. This is easily seen from
the proof of Theorem 6 given in the appendix. Using a parametrized coding allows us to
quantify into arguments of the T predicate as in for instance

∃xT (pon(cat, x)q) .

Since such sentences have no occurrence of T (x), the parametrized version of Theorem 6
shows that we can also safely instantiate Tarski’s schema T with these. The parametrized
version of Theorem 6 is a generalization of the main theorem of des Rivières and Levesque
1986.

7 Positive Truth Predicates

We will now prove universal consistency of an even bigger set of instances of Tarski’s schema
T.

Theorem 8. Let L be a first-order language. The theory

{ϕ↔ T (pϕq) | ϕ does not contain T (x) as a subformula in the scope of ¬}

is universally consistent.

Note that we are only using the connectives ¬,∧ and ∨, so e.g. the formula

∀x (T (x)→ A(x))



will contain T (x) in the scope of ¬, since this sentence is an abbreviation for

∀x (¬T (x) ∨A(x)) .

Compared to Theorem 6 this result shows us that it is also safe to instantiate Tarski’s schema
T with sentences such as

∀x(A(x) ∧ T (x))

in which we have occurrences of T (x)—as long as these occurrences are not negative. This
theorem generalizes results from Perlis 1985 and Feferman 1984, in that their results only
prove it safe to instantiate Tarski’s schema T with sentences that has no negative occurrence
of T (τ) for any term τ . This means that e.g.

¬T (pϕq)

is excluded from their solution for all ϕ, while it is included in the one given here.
We cannot get a universally consistent truth predicate much stronger than given by the

above theorem. This is seen by the following fact.

Lemma 9. Let L be any first-order language. If M ⊆ L is a set containing a sentence

∀x (A(x) ∨ ¬T (x))

where A 6= T then

{ϕ↔ T (pϕq) | ϕ ∈M}

is not universally consistent.

Appendix

We now give proofs for the results stated above. We do not give proofs for Lemma 4, Theorem
6, and Corollary 7 that were all obvious corollaries of preceding results. Furthermore, the
space unfortunately does not allow us to give a proof of Theorem 8. But it is a relatively
simple corollary of lemmata 1, 3 and 5.

Proof of Lemma 1. Assume that for every first-order language L′ ⊇ L every initial exten-
sion of FL′,M has a total fixed point. Let A = {ϕ↔ T (pϕq) | ϕ ∈M}. We have to prove that
A is universally consistent, that is, for every consistent theory U in L−, U ∪A is consistent.7

Let thus U be any consistent theory in L−. Then there exists some language L′− ⊇ L− in
which U has a Herbrand modelM (a model in which the domain is the set of closed terms of
the language and every closed term is interpreted as itself). Since we have that U ` n̄ 6= m̄
whenever n 6= m, this model can be assumed to be normal. We want to expand the model
M into a model M′ of L′ such that M′ becomes a model of U ∪A. This would prove U ∪A
to be consistent, and thus we would be done.

7Note that U ∪A is a theory in L and thus also contains the axioms of equality for formulas involving the
T predicate.



Let G be any initial extension of FL′,M satisfying

G([[·]])(ϕ) =

{
t if ϕ ∈ init(FL′,M ) ∩ L′− and M |= ϕ

f if ϕ ∈ init(FL′,M ) ∩ L′− and M 6|= ϕ.
(7)

By assumption, G has a total fixed point [[·]]. The expansion M′ of M is then defined by
letting

TM
′

=
{
τ ∈ Terms(L′) | [[T (τ)]] = t

}
. (8)

Our goal is now to prove the following.

Claim. For all ϕ ∈ L′, M′ |= ϕ if and only if [[ϕ]] = t.

Proof of claim. We will prove this by induction on the syntactic complexity of ϕ. Assume
first that ϕ is atomary. If ϕ is an initial element in L′− then by (7) we have

M′ |= ϕ⇔ G([[·]])(ϕ) = t⇔ [[ϕ]] = t

where the last equivalence follows from the fact that [[·]] is a fixed point of G. If ϕ is atomary
but not initial it must be on the form T (τ) for some τ ∈ Terms(L′). But then by (8) we
immediately get

M′ |= T (τ)⇔ τ ∈ TM′ ⇔ [[T (τ)]] = t.

This completes case where ϕ is atomary. The cases where ϕ is non-atomary are easily proven
using (2)-(4) (that is, (2) is used to prove the cases where ϕ = α ∧ β for some α, β, and so
forth). ♦

Now we can prove that M′ is a model of U ∪ A in the following way. First, since M′
expands M, it must be a model of U . Second, using the claim and (5) we get for all T (pϕq)
with ϕ ∈M ,

M′ |= T (pϕq)⇔ [[T (pϕq)]] = t⇔ G([[·]])(T (pϕq)) = t⇔ [[ϕ]] = t⇔M′ |= ϕ

showing that all of the sentences in A are true in M′.

Proof of Lemma 3. Let G be any initial extension of FL,M . We have to show that G has a
total fixed point. For f, g : L → {t, f}⊥ we define f ⊆ g to mean that everywhere f is defined,
g has the same value as f , that is, ∀x(f(x) 6= ⊥ → f(x) = g(x)). It is easy to show that FL,M ,
and therefore G, is monotone on L → {t, f}⊥ with respect to the ordering ⊆. Furthermore,
L → {t, f}⊥ is a ccpo8 with respect to ⊆, and therefore G must have a least fixed point [[·]]
(Gupta and Belnap 1993). To prove that [[·]] is total, assume the opposite. Let D denote
the dependence relation of G. This is of course identical to the dependence relation of FL,M .
Since D is conversely well-founded, the set of elements on which [[·]] is undefined must have a
D-maximal element ϕ. We must have ϕ 6∈ init(FL,M ) since otherwise—from the fact that G
is an initial extension—we would get [[ϕ]] = G([[·]])(ϕ) ∈ {t, f}. It is furthermore easily seen
from the definition of FL,M that any non-initial element will have a non-empty dependence
set. In particular, ϕ has a non-empty dependence set A. Since [[ϕ]] = ⊥, there must be some
ψ ∈ A s.t. [[ψ]] = ⊥. But this contradicts the D-maximality of ϕ since ϕDψ.

8Chain complete partial order.



Proof of Lemma 5. First we prove that no set M ′ properly including M gives a conversely
well-founded dependence relation for FL,M ′ . Let thus M ′ be any such set. Let D denote the
dependence relation of FL,M ′ . Let D∗ denote the transitive closure of D.9 Since M ′ properly
includes M , it must contain some sentence ϕ in which T (x) is a subformula. That is, ϕ
contains a subformula on the form qxψ(x) where T (x) is a subformula of ψ(x) and q is either
∃ or ∀. Since qxψ(x) is a subformula of ϕ there must furthermore be a sequence of formulas
α1, . . . , αn such that

ϕDα1D · · ·DαnDqxψ(x),

that is, ϕD∗qxψ(x). From the clause (4) in the definition of FL,M ′ we see that

qxψ(x)Dψ(τ)

for all τ ∈ Terms(L). Since T (x) is a subformula of ψ(x) we must in addition have

ψ(τ)D∗T (τ)

for every τ ∈ Terms(L). Since ϕ ∈M ′, the clause (5) gives us

T (pϕq)Dϕ.

Letting τ = pϕq this means that

ϕD∗qxψ(x)Dψ(pϕq)D∗T (pϕq)Dϕ,

showing that D is not conversely well-founded (since ϕD∗ϕ).
We now prove that the dependence relation D of FL,M is conversely well-founded. Assume

the opposite, that is, assume there exists sentences ϕ1, ϕ2, ϕ3, . . . such that

ϕ1Dϕ2Dϕ3 · · · (9)

From the definition of FL,M we see that if αDβ then one of the following three is the case

(i) α = ∀xα′(x) for some formula α′ and β = α′(τ) for some term τ .

(ii) β is a subformula of α,

(iii) α = T (pβq) and β ∈M .

Claim (A). For all i ≥ 0 there is a j > i such that ϕj = T (pϕj+1q).

Proof of claim. Assume the opposite. Then there is an i such that for all j > i, either
ϕj = ∀xα(x) and ϕj+1 = α(τ) for some formula α and some term τ (corresponding to (i)
above) or ϕj+1 is a subformula of ϕj (corresponding to (ii) above). In both cases, ϕj will
have higher syntactic complexity than ϕj+1. Thus ϕi+1, ϕi+2, . . . will be a chain of sentences
of strictly decreasing syntactic complexity. This contradicts the chain (9) being infinite, and
thus completes the proof. ♦

9The transitive closure R∗ of a binary relation R is given by

xR∗x′ ↔ there exists a sequence of elements x1, . . . , xn such that xRx1Rx2R · · ·RxnRx′.



Define a function d : wff(L)→ N by

d(ϕ) =


1 + d(ψ) if ϕ = T (pψq) for some ψ
0 if ϕ is any other atomary formula
max{d(ψ) | ψ is a subformula of ϕ} otherwise.

d(ϕ) is called the T -degree of ϕ. The well-definedness of d given by these recursive clauses
is ensured by the fact that for all ψ, pT (pψq)q > pψq. The function d can thus be defined by
recursion on the Gödel number of ϕ.

Now choose j > 0 such that ϕj satisfies claim (A), that is, ϕj = T (pϕj+1q). We then have
the following claim

Claim (B). The T -degree is monotonically decreasing in the chain ϕj+1Dϕj+2Dϕj+3 · · · .

Proof of claim. Assume there is a ϕi such that ϕi+1 has greater T -degree than ϕi. Then
ϕi = ∀xα(x) and ϕi+1 = α(τ) for some formula α and term τ (corresponding to (i) above.
In both of the cases (ii) and (iii) the T -degree is constant or decreasing). But α(τ) can only
have higher T -degree than ∀xα(x) if T (x) is a subformula of α(x) (otherwise instantiating x
with τ will leave the T -degree unchanged). Now let k be the greatest number less than i for
which ϕk−1 = T (pϕkq) with ϕk ∈ M . The choice of j guarantees us the existence of such a
number. Then ϕi must be a subformula of ϕk, and therefore T (x) must be a subformula of
ϕk as well. But this contradicts ϕk being in M , which concludes the proof. ♦

We now get a contradiction from claim (B): since the T -degree is monotonically decreasing
in the chain ϕi+1Dϕi+2Dϕi+3 · · · , the T -degree must be constant from some sentence on. But
this immediately contradicts claim (A).

Proof of Lemma 9. Assume M contains a sentence

ψ = ∀x (A(x) ∨ ¬T (x)) .

where A 6= T . We need to show that the set of sentences

P = {ϕ↔ T (pϕq) | ϕ ∈M}

is not universally. To prove this, let U be the theory containing the axiom

∀y (y = pψq↔ ¬A(y))

and axioms ` n̄ 6= m̄ for all n 6= m. U is obviously consistent. We now only have to show
that U ∪ P is not consistent, which proves P not to be universally consistent. To obtain a
contradiction, assume that U ∪ P is consistent. Then it has a model M. This gives us the
following sequence of implications

M |= ψ ⇒M |= ∀x (A(x) ∨ ¬T (x))⇒M |= ∀x (x 6= pψq ∨ ¬T (x))⇒
M |= pψq 6= pψq ∨ ¬T (pψq)⇒M |= ¬T (pψq)⇒M |= ¬ψ,

which shows that M 6|= ψ. At the same time we have

M |= ¬ψ ⇒M |= ∃x (¬A(x) ∧ T (x))⇒M |= ∃x (x = pψq ∧ T (x))⇒
M |= pψq = pψq ∧ T (pψq)⇒M |= T (pψq)⇒M |= ψ,



which shows that M 6|= ¬ψ. Now we have both M 6|= ψ and M 6|= ¬ψ, which is a contradic-
tion.
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