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Abstract

This paper concerns formal theories for reasoning
about the knowledge and belief of agents. It has
seemed attractive to researchers in artificial intelli-
gence to formalise these propositional attitudes as
predicates of first-order predicate logic. This al-
lows the agents to express stronger introspective
beliefs and engage in stronger meta-reasoning than
in the classical modal operator approach. Results
by Montague[1963] and Thomason[1980] show,
however, that the predicate approach is prone to in-
consistency. More recent results by des Rivières
& Levesque[1988] and Morreau & Kraus[1998]
show that we can maintain the predicate approach if
we make suitable restrictions to our set of epistemic
axioms. Their results are proved by careful transla-
tions from corresponding modal formalisms. In the
present paper we show that their results fit nicely
into the framework of logic programming seman-
tics, in that we show their results to be corollar-
ies of well-known results in this field. This does
not only allow us to demonstrate a close connec-
tion between consistency problems in the syntactic
treatment of propositional attitudes and problems in
semantics for logic programs, but it also allows us
to strengthen the results of des Rivières & Levesque
[1988] and Morreau & Kraus[1998].

1 Introduction
The approach most often used in constructing formal theo-
ries for reasoning about multiagent systems is to formalise
the agents’ beliefs and knowledge through modal opera-
tors. An alternative approach is to formalise these proposi-
tional attitudes as predicates of a first-order predicate logic.
This has several advantages, which have been widely dis-
cussed in the literature[Davies, 1990; Attardi and Simi, 1995;
Carlucci Aiello et al., 1995; McCarthy, 1997; Grantet al.,
2000]. Most importantly, it allows us to quantify over the
propositional objects of knowledge and belief as for instance
in “agent 1 believes thateverythingknown by agent 2 is also
known by agent 1”, formalised by

B1(p∀x(K2(x)→ K1(x))q).

This formula has no counterpart in the classical modal op-
erator approach, since ifK1 andK2 were modal operators,
we would not be able to apply them directly to the variablex
(modal operators only apply to well-formed formulas). Thus
the predicate approach gives us more expressive power and
the ability of agents to refer to the totality of their own and
others beliefs, which is important in meta-reasoning.

Unfortunately, the predicate approach easily becomes in-
consistent, since the added expressive power allows the
agents to express self-referential beliefs that in some cases
turn out to be paradoxical. This was proved by Montague
[1963] and Thomason[1980]. They prove that certain axiom
schemes describing natural properties of knowledge and be-
lief are inconsistent with formal arithmetic. Their results are
reviewed in Section 3. Des Rivières & Levesque[1988] and
Morreau & Kraus[1998] have shown there to be a way out of
these inconsistency results: to suitably restrict the set of sen-
tences that we instantiate our axiom schemes of knowledge
and belief with. These results are reviewed in Section 3 as
well.

In this paper we will show that the results of des Rivières,
Levesque, Morreau and Kraus can be reduced to well-known
results in logic programming semantics. This is carried out
in Section 4. In Section 5 we give a strengthening of their
results, using again the connection to logic programming se-
mantics.

2 Terminology and Notation
We will be using theories of first-order predicate logic to for-
malise propositional attitudes of agents. To prove the consis-
tency of these first-order theories, we use results from logic
programming semantics. Below we introduce the kinds of
logic programs and first-order languages we will be consider-
ing.

2.1 Logic Programs
All logic programs considered in this paper will be proposi-
tional. Thus, anatom is simply a propositional letter, and
a literal is either a propositional letterp or its negation¬p.
We take the symbolstrue andfalse to be among our propo-
sitional letters with the obvious intended interpretation. A
clauseis a formula of propositional logic on the form

H ← L1 ∧ L2 ∧ · · · ∧ Ln



whereH is an atom,n ≥ 1 and allLi are literals. Aproposi-
tional program (or simply aprogram) is a (possibly infinite)
set of clauses.Herbrand models of programs are defined in
the usual way. We require that all models assign the truth-
value true to the propositional lettertrue and false tofalse.

Given a programP , comp(P ) denotes its Clark comple-
tion. Since we work only with propositional programs, the
Clark completion is particularly simple. TheClark comple-
tion of P is the following set of equivalences in infinitary
propositional logic: for each atomA in P ,

• if A does not appear as head of any clause inP , then
A↔ false ∈ comp(P ).

• otherwise we haveA ↔
∨
i∈I Bi ∈ comp(P ), where

{A← Bi | i ∈ I} is the set of clauses inP with head
A.

LetP be a propositional program. Thedependency graph
of P is the directed graph with signed edges defined as fol-
lows. The nodes of the graph are the atoms (propositional
letters) occurring inP excluding the special atomstrue and
false. There is a positive edge fromA to B, denoted by
〈A,B,+〉, if and only if there is a clauseA← L1 ∧ · · · ∧Ln
in P such thatLi = B for some1 ≤ i ≤ n. If Li = ¬B
then there is a negative edge fromA toB, denoted〈A,B,−〉.
We say thatA dependsonB, denoted byA < B, if there is a
proper path fromA toB in the graph. We say thatA depends
negativelyonB, denoted byA <1 B, if there is a path from
A toB containing at least one negative edge. A programP is
calledlocally stratified if the relation<1 in the dependency
graph ofP is well-founded.

2.2 First-Order Languages
We useL to range over languages of first-order predicate
logic. We take the connectives of first-order logic to be¬,∧
and∃. When using∨,→,↔ and∀ in formulas, these formu-
las are simply abbreviations of formulas containing only¬,∧
and∃. We require all languagesL to contain the one-place
predicate symbolsT andP. P will be used as a predicate
that picks out a set of (codes of) formulas inL. T will, de-
pending on the context, be used to express one of our syntac-
tic attitudesbelief or knowledge. By L− {T} we denote the
languageL with the predicate symbolT removed. We will
assume that all considered languages contain a parametrised
coding. By aparametrised coding in L we understand an
injective mapp·q from the formulas ofL into the terms ofL
satisfying:

(i) For any formulaϕ in L, the termpϕq has the same free
variables asϕ (butpϕq is not itself a variable).

(ii) For any formulaϕ(x) in L and any termτ which is free
for x in ϕ(x), pϕ(τ)q is the term obtained by substitut-
ing τ for all free occurrences ofx in pϕ(x)q.

(iii) The coding iswell-founded, that is, there is no infinite
sequence of formulasϕ0, ϕ1, ϕ2 . . . such thatpϕi+1q is
a term inϕi for all i ∈ N.

We refer to [Feferman, 1984] for the construction of a
parametrised coding. Feferman’s coding does not satisfy (ii),
but a simple variant of it will. pϕq is called thecode of

ϕ. The intended interpretation of a formulaT (pϕq) is that
“ϕ is known” or “ϕ is believed”. We assume all first-order
languagesL to contain the language of Peano arithmetic.
Throughout the paper, byformal arithmeticwe mean Robin-
son’s arithmetic, though any other standard formalisation of
arithmetic could have been used in its place. We identify first-
order languagesL with their sets of sentences. By asentence
in L we understand a closed formula, that is, a formula with-
out any occurrences of free variables. The set of ground terms
of L is denotedTerms(L).

To avoid confusion between formulas of propositional pro-
grams and formulas of first-order languages we will use Latin
letters for the former and Greek letters for the latter.

2.3 Regular Formulas and RPQ Formulas
We now define the sets of first-order sentences which we in-
tend to prove that our axiom schemes of knowledge and belief
can consistently be instantiated with.

Definition 1. LetL be a first-order language. The set ofreg-
ular formulas ofL is the least set satisfying:

(i) Any atomic formula ofL− {T} is a regular formula.

(ii) If ϕ andψ are regular formulas andx is a variable, then
ϕ ∧ ψ, ¬ϕ and∃xϕ are regular formulas.

(iii) If ϕ is a regular formula thenT (pϕq) is a regular for-
mula.

Our definition differs slightly from the one given by Mor-
reau and Kraus[1998]. Instead of using a parametrised cod-
ing, they have an(n + 1)-place predicate symbolTn for
eachn, such that instead of writingT (pϕ(x1, . . . , xn)q),
wherex1, . . . , xn are the free variables ofϕ, they would
be writing Tn(pϕq, x1, . . . , xn) where p·q is then a stan-
dard (non-parametrised) Gödel coding. To simplify matters,
we have chosen to take care of the free variables by using
a parametrised coding rather than by introducing infinitely
many predicate symbols of different arities.

As an example of a regular formula we have, for a suitable
choice ofL,

∃xT (ptelephone(Mike) = xq),

expressing that the agent knows Mike’s telephone number. If
we have more than one agent, we can of course introduce a
predicate symbolTi for each agenti. In that case the follow-
ing sentence also becomes regular:

T1(p∀x(T2(pdeparture-time(train, x)q)→
departure-time(train, x))q),

expressing that agent 1 believes agent 2 to have correct beliefs
about the departure time of the train. As an example of a non-
regular formula we have

Tuser(p∀x(utter(system, x)→ Tsystem(x))q),

expressing that the user believes that the system only utters
what it believes to be the case. It is non-regular because
Tsystemis applied directly to a variable and not to the code of
a formula. To allow expressing beliefs such as this one, Mor-
reau and Kraus[1998] extended the set of regular formulas to
a more inclusive class called the RPQ formulas.



Definition 2. LetL be a first-order language. The set ofRPQ
formulasofL is the least set satisfying:

(i) Any atomic formula ofL− {T} is an RPQ formula.

(ii) If ϕ andψ are RPQ formulas andx is a variable, then
ϕ ∧ ψ, ¬ϕ and∃xϕ are RPQ formulas.

(iii) If ϕ is an RPQ formula thenT (pϕq) is an RPQ formula.

(iv) If ϕ is any formula in L, then∃x (P(x) ∧ ϕ) is an RPQ
formula.

This definition also differs from the one given by Morreau
and Kraus[1998]. It defines a slightly more inclusive set of
formulas, and at the same time it is simpler, since it avoids
Morreau and Kraus’ use of two distinct collections of vari-
ables.

By regular sentencewe understand a closed regular for-
mula, and byRPQ sentencea closed RPQ formula.

3 Review of Previous Results
Consider the following axiom schemes in a first-order lan-
guageL:

A1. T (pϕq)→ ϕ

A2. T (pT (pϕq)→ ϕq)

A3. T (pϕ→ ψq)→ (T (pϕq)→ T (pψq))

A4. T (pϕq), if ϕ is a theorem in formal arithmetic.

A5. T (pϕq)→ T (pT (pϕq)q)

A6. ¬T (pϕ ∧ ¬ϕq)
As already mentioned,T (pϕq) is intended to denote either
“ϕ is known” or “ϕ is believed”. Thus, for instance, the first
axiom scheme expresses that everything known (believed) is
true. It seems reasonable to characterise knowledge by the ax-
iom schemes A1–A4 and belief by A2–A6. But the following
theorem shows that this is not always possible.

Theorem 3 (Montague[1963], Thomason[1980]). Let L
be a first-order language. Formal arithmetic extended with
any of the following sets of axioms isinconsistent.

(a) The axiom schemes of knowledge, A1–A4, instantiated
over the sentences ofL.

(b) The axiom schemes of belief, A2–A6, instantiated over
the sentences ofL.

The inconsistency of (a) is Montague’s result, and the in-
consistency of (b) is Thomason’s result. A way out of these
inconsistency results is to restrict the set of sentences that we
instantiate A1–A6 with. This strategy gives us the following
positive results.

Theorem 4 (des Rivíeres and Levesque[1988]). LetL be a
first-order language. Formal arithmetic extended with any of
the following sets of axioms isconsistent.

(a) The axiom schemes of knowledge, A1–A4, instantiated
over the regular sentences ofL.

(b) The axiom schemes of belief, A2–A6, instantiated over
the regular sentences ofL.

Theorem 5 (Morreau and Kraus [1998]). Theorem 4 still
holds when we replace “regular sentences” with “RPQ sen-
tences”.

Theorem 4 is proved in[des Rivìeres and Levesque, 1988]
by a careful translation from a corresponding first-order
modal logic. Theorem 5 is proved in[Morreau and Kraus,
1998] by a similar translation from a corresponding second-
order modal logic. In the following section we give proofs
of their results taking a completely different route. We show
that the problems can be reduced to problems of consistency
of particular logic programs.

Instead of working directly with the axiom schemes A1–
A6, we will most of the time be working with thetruth
schemewhich is the following axiom scheme:

T (pϕq)↔ ϕ.

This is often sufficient since, as the following lemma shows,
instances of axiom schemes A1–A6 are logical consequences
of corresponding instances of the truth scheme. To prove that
the axiom schemes A1–A6 instantiated over a set of sentences
S are consistent, it thus suffices to prove the consistency of
the truth schema instantiated over that same set.

Lemma 6. LetL be a first-order language, and letS be a set
of sentences inL satisfying:

if ϕ andψ are inS thenT (pϕq),¬ϕ andϕ ∧ ψ are inS.

LetM be a model ofL in whichT (pϕq) ↔ ϕ holds for all
ϕ in S. Then all of A1–A6 hold inM for all ϕ,ψ in S.

Proof. That A1 holds inM whenϕ is in S is a trivial con-
sequence of the fact thatT (pϕq) ↔ ϕ holds inM. To
see that A2 holds inM, we first note that ifϕ is in S then
¬ (T (pϕq) ∧ ¬ϕ) is in S as well, by assumption onS. This
sentence is an abbreviation ofT (pϕq) → ϕ, so we get that
the following instance of the truth schema holds inM:

T (pT (pϕq)→ ϕq)↔ (T (pϕq)→ ϕ).

Using this together with the fact that A1 holds inM, we get
thatT (pT (pϕq)→ ϕq) holds inM. That is, A2 holds inM.
A3–A6 are proved to hold inM in a similar manner.

4 From LP Semantics to Consistent
Treatments of Knowledge and Belief

The results of this paper are based on the following lemma.

Lemma 7 (Przymusinski[1987], Sato[1990]). If a pro-
gramP is locally stratified thencomp(P ) has a Herbrand
model.

Our formulation is taken from[Sato, 1990]. It should be
noted that Sato is not considering infinite programs in his pa-
per, but his proof carries over without modification to this
more general framework. This is because Sato is consider-
ing the set of ground instances of non-propositional programs
rather than these programs themselves. The set of ground in-
stances of a finite non-propositional program is in general an
infinite propositional program, that is, the kind of logic pro-
gram we are considering in this paper.



Definition 8. Let L be a first-order language, and letS be
a set of sentences inL. We define an infinite programPL,S
as follows. For every sentenceϕ in L, the programPL,S
contains a propositional atom denotedpϕ. The clauses of
PL,S are given by:

pϕ∧ψ ← pϕ ∧ pψ, for all ϕ,ψ ∈ L.
p¬ϕ ← ¬pϕ, for all ϕ ∈ L.
p∃xϕ(x) ← pϕ(τ), for all ∃xϕ(x) ∈ L andτ ∈ Terms(L).
pT (pϕq) ← pϕ, for all ϕ ∈ S.
The relation between models of the programPL,S and

models of the first-order languageL is given by the following
lemma.

Lemma 9. Let L andS be as above. Ifcomp(PL,S) has a
Herbrand modelM thenL has a Herbrand modelN satisfy-
ing:

(i) For every sentenceϕ in L,

M |= pϕ ⇔ N |= ϕ. (1)

(ii) N |= T (pϕq)↔ ϕ, for all ϕ ∈ S.

Proof. AssumeM is a model ofcomp(PL,S). comp(PL,S)
is the following set of equivalences:

pϕ∧ψ ↔ pϕ ∧ pψ, for all ϕ,ψ ∈ L. (2)

p¬ϕ ↔ ¬pϕ, for all ϕ ∈ L. (3)

p∃xϕ(x) ↔
∨
τ∈Terms(L) pϕ(τ), for all ∃xϕ(x) ∈ L. (4)

pT (pϕq) ↔ pϕ, for all ϕ ∈ S. (5)

LetN be the following Herbrand model ofL:

N = {ϕ ∈ L | ϕ is an atom andM |= pϕ} .
(i) is proved by induction on the syntactic complexity ofϕ. If
ϕ is an atom then (1) holds by definition ofN . To prove (1)
for sentences of the formϕ ∧ ψ, ¬ϕ and∃xϕ(x) we simply
use (2), (3) and (4), respectively. For the case of¬ϕ the proof
is:

M |= p¬ϕ ⇔M |= ¬pϕ ⇔M 6|= pϕ
i.h.⇔

N 6|= ϕ⇔ N |= ¬ϕ,
where the first equivalence is by (3) and the third is by induc-
tion hypothesis. The two remaining cases are proved simi-
larly. Thus (i) holds. Furthermore, using (i) and (5), we get
for all ϕ ∈ S:

N |= T (pϕq)⇔M |= pT (pϕq) ⇔M |= pϕ ⇔ N |= ϕ,

and thusN |= T (pϕq)↔ ϕ, proving (ii).

Lemma 10. LetL be a first-order language and letR be the
set of regular sentences in L. The propositional programPL,R
is locally stratified.

Proof. To simplify matters we will throughout this proof be
identifying every propositional letterpϕ with the correspond-
ing first-order sentenceϕ in L. It should always be clear from
the context whetherϕ is used to denote the first-order sen-
tence or the corresponding propositional letter. Thus, by the
identification, the nodes of the dependency graph ofPL,R are
all sentences inL. The edges are:

• 〈ϕ ∧ ψ,ϕ,+〉 and〈ϕ ∧ ψ,ψ,+〉, for all ϕ,ψ ∈ L.

• 〈¬ϕ,ϕ,−〉, for all ϕ ∈ L.

• 〈∃xα(x), α(τ),+〉, for∃xα(x) ∈ L andτ ∈ Terms(L).

• 〈T (pϕq), ϕ,+〉, for all ϕ ∈ R.

Edges of the first type are called∧-edges, edges of the second
type are called¬-edges, edges of the third type are called∃-
edgesand edges of the last typeT -edges.

We have to prove thatPL,R is locally stratified. Actually,
we will be proving something slightly stronger. We will prove
that the relation< in the dependency graph ofPL,R is well-
founded. That is, we will prove that there does not exist any
path of infinite length in the graph. Assume the opposite, that
is, assume the existence of an infinite pathσ.

Claim. σ contains infinitely manyT -edges.

Proof of claim. Assume the opposite. Then there will be
an infinite subpathσ′ of σ containing noT -edges. Thus all
edges onσ′ must be∧-, ¬- or ∃-edges. But note that for any
such edge, the start node will have higher syntactic complex-
ity than the end node. Thus, alongσ′ the syntactic complexity
will be strictly decreasing, which contradictsσ′ being infinite.
This proves the claim. ♦

With every formulaϕ in L we now associate a natural num-
berd(ϕ), called theT -degreeof ϕ. TheT -degree is defined
recursively by

• d(ϕ) = 1 + d(ψ), if ϕ = T (pψq) for someψ.

• d(ϕ) = 0, if ϕ is any other atomic formula.

• d(ϕ) = max{d(ψ) | ψ is a subformula ofϕ}, other-
wise.

The well-foundedness of the parametrised coding ensures that
d is well-defined. By the above claim,σ contains an infinite
number ofT -edges. Letϕ be the end node of such an edge.
Thenϕ is regular. Letσ′ be the infinite subpath ofσ having
ϕ as its start node. Then every node onσ′ must be a regular
formula (c.f. the definition of a regular formula). This implies
that every edge onσ′ is

(i) either a∧-, ¬- or T -edge,

(ii) or of type 〈∃xα(x), α(τ),+〉, whereα(x) does not con-
tainT (x) as a subformula.

Item (ii) follows from that fact that whenx is a variable then
T (x) is not a regular formula, and therefore no formula hav-
ing T (x) as a subformula can be regular either. Now note
that on any edge of type (i) or (ii), theT -degree of the end
node will be less than or equal to theT -degree of the start
node. Thus theT -degree will be monotonically decreasing
alongσ′ and must therefore be constant from some point. But
then from this point it can not contain anyT -edges, since the
T -degree of the end node of such an edge is always one less
than theT -degree of the start node. This contradicts the claim
above.

Lemma 11. Let L be a first-order language and letS be a
set of sentences inL. If PL,S is locally stratified then any
Herbrand model ofL−{T} can be expanded into a Herbrand
model ofL in whichT (pϕq)↔ ϕ holds for allϕ in S.



Proof. LetM denote a Herbrand model ofL − {T}. Let P
be the programPL,S extended with the following clauses:

pϕ ← true, if ϕ is an atom inL− {T} andM |= ϕ.

pϕ ← false, if ϕ is an atom inL− {T} andM |= ¬ϕ.
PL,S is assumed to be locally stratified, and sinceP has
the same dependency graph asPL,S , thenP must be lo-
cally stratified as well. Thereforecomp(P ) has a Herbrand
modelM′, by Lemma 7. Finally, Lemma 9 gives us the exis-
tence of a Herbrand modelN of L in which the equivalences
T (pϕq) ↔ ϕ hold for allϕ in S. To see thatN expandsM
we just have to note that ifϕ is an atom inL− {T} then

M |= ϕ⇒ pϕ ← true ∈ P ⇒M′ |= pϕ ⇒ N |= ϕ

and

M |= ¬ϕ⇒ pϕ ← false ∈ P ⇒M′ |= ¬pϕ ⇒ N |= ¬ϕ,
where the last implications are by (i) in Lemma 9.

Theorem 12. LetL be a first-order language and letU be a
theory inL − {T} containing formal arithmetic. IfU has a
Herbrand model thenU extended with any of the following
sets of axioms has a Herbrand model.

(i) The axiom schemeT (pϕq) ↔ ϕ instantiated over the
regular sentences ofL.

(ii) The axiom schemes of knowledge, A1–A4, instantiated
over the regular sentences ofL.

(iii) The axiom schemes of belief, A2–A6, instantiated over
the regular sentences ofL.

Proof. AssumeU has a Herbrand modelM. Let R denote
the set of regular sentences inL. By Lemma 10,PL,R is
locally stratified. So by Lemma 11,M can be expanded into
a Herbrand modelN in which T (pϕq) ↔ ϕ holds for all
regularϕ. This proves (i). (ii) and (iii) then immediately
follow, using Lemma 6.

Theorem 4 is an immediate consequence of Theorem 12,
when takingU to be formal arithmetic. The machinery we
have introduced can also be applied to prove Theorem 5. It is
an immediate consequence of the following corollary to The-
orem 12.

Corollary 13. Theorem 12 still holds when we replace “reg-
ular sentences” with “RPQ sentences”. Furthermore, the ex-
tension ofP in the Herbrand model constructed will be the
set of codes of regular sentences.

Proof. Let S denote the set of RPQ sentences ofL. Modify
the programPL,S by removing every clause of the form

p∃x(P(x)∧ϕ(x)) ← pP(τ)∧ϕ(τ),

whereτ is not the code of any regular sentence. Call the new
programQL,S . It is easy to see thatQL,S is locally strat-
ified, using the argument given in the proof of Lemma 10.
Lemma 11 still holds when we useQL,S instead ofPL,S , so
any Herbrand model ofU can be expanded into a model of
L in which T (pϕq) ↔ ϕ holds for all RPQ sentences. This
proves (i) in Theorem 12 with “regular sentences” replaced
by “RPQ sentences”. (ii) and (iii) then follows from Lemma
6.

5 Strengthening the Results
We now strengthen the results obtained above. We want to
define a set of formulas more inclusive than the RPQ formulas
that the truth schemeT (pϕq)↔ ϕ can safely be instantiated
with. For this we need a couple of new definitions.

Definition 14. LetL be a first-order language and letϕ be a
formula inL. The set of formulasoccurring in ϕ is defined
as the least set containingϕ and satisfying:

• If β is a subformula of a formulaα occuring inϕ, then
β is occuring inϕ.

• If T (pαq) is occurring inϕ, thenα is occurring inϕ.

Assumeψ is a formula occurring inϕ. The occurrence is said
to benegativeif ψ occurs in a formulaα where¬α occurs in
ϕ. Otherwise the occurrence is calledpositive. An occurence
of ψ in ϕ is said to beprotectedif ψ occurs in a formulaα
where∃x (P(x) ∧ α) occurs inϕ.

Thus, for instance,ϕ occurs in formulas such asT (pϕq)∧
¬ψ andT (p¬T (pϕq) ∧ ψq) but not inA(pϕq) whenA 6=
T . ϕ has positive occurrence inT (pϕq) ∧ ¬ψ but negative
occurrence inT (p¬T (pϕq) ∧ ψq).
Definition 15. Let L be a first-order language. A formula
ϕ in L is said to beweakly RPQif, for any variablex, the
formulaT (x) only occurs positively or protected inϕ.

Note that in an RPQ formula, every occurrence ofT (x) for
some variablex is protected, so every RPQ formula is also
weakly RPQ. Thus the set of RPQ formulas is a subset of
the set of weakly RPQ formulas. It is furthermore a proper
subset, since among the weakly RPQ formulas we have e.g.
∃x(about love(x)∧T (x)), which is not RPQ. The previously
obtained results can be extended to the weakly RPQ formulas.

Theorem 16. Let L be a first-order language and letU be
a theory inL − {T}. If U has a Herbrand model, thenU
extended with the axiom scheme

T (pϕq)↔ ϕ

instantiated over the set of weakly RPQ sentences has a Her-
brand model.

Proof. Let S denote the set of weakly RPQ formulas. Us-
ing Lemma 11, it suffices to prove thatPL,S is locally strat-
ified. As in the proof of Corollary 13, we can consider the
modified programQL,S instead. To obtain a contradiction,
assumeQL,S is not locally stratified. Then<1 in the depen-
dency graph ofQL,S is not well-founded, that is, there must
exist an infinite pathσ containing infinitely many negative
edges. As in the proof of Lemma 10, we get thatσ must con-
tain infinitely manyT -edges. Letϕ be the end node of such
an edge. Thenϕ is weakly RPQ. Letσ′ be the infinite sub-
path ofσ having this node as its start node. Then every node
onσ′ must be weakly RPQ. As noted in the proof of Lemma
10, if every edge onσ′ is

(i) either a∧-, ¬- or T -edge,

(ii) or of type 〈∃xα(x), α(τ),+〉 whereα(x) does not con-
tainT (x) as a subformula,



thenσ′ can not be infinite. Thus, every node onσ′ must have
an occurrence ofT (x) for some variablex. Since all nodes
are weakly RPQ, in each of theseT (x) is either positive or
protected. But ifT (x) occurs protected inϕ, there can be no
infinite path starting atϕ. Thus, in every formulaϕ on σ′,
T (x) must occur positively (for some variablex). But this
implies that all edges in the path are positive, which contra-
dicts our assumption.

The above theorem also relates to a result by Perlis[1985].
Perlis showed that a modified truth schemeT (pϕq) ↔ ϕ∗

is consistent with arithmetic. It is easily seen that the set of
instances of the (unmodified) truth scheme shown to be con-
sistent by Perlis’ result is contained in the set of instances
shown to be consistent by Theorem 16.

In view of the results by Montague and Thomason (Theo-
rem 3), there is a limit to how many instances of our axiom
schemes we can add while still retaining consistency. The
set of weakly RPQ sentences is quite close to this limit, as is
made clear by the following example.

Example. Let L be a first-order language containing three
one-place predicate symbolsA,P andT . One of the simplest
examples of a formula which is not weakly RPQ inL is the
formula∃x (A(x) ∧ ¬T (x)). Let us call this formulaψ. In
ψ, T (x) occurs negatively and unprotected (sinceA 6= P).
LetU be the theory consisting of the following axioms

A(pψq) (6)

¬A(τ), whenτ is a term6= pψq. (7)

U obviously has a Herbrand modelM, but we will show that
U extended with the single axiom

T (pψq)↔ ψ (8)

does not have a Herbrand model. This shows that Theorem
16 no longer holds if we to the weakly RPQ sentences add a
sentence such asψ. Assume, to obtain a contradiction, that
there exists a Herbrand modelN in which all of (6), (7) and
(8) holds. Then we obtain the following contradiction:

N |= ψ ⇔ N |= ∃x(A(x) ∧ ¬T (x))⇔

N |= A(τ) ∧ ¬T (τ) for someτ
(7)⇔

N |= A(pψq) ∧ ¬T (pψq)
(6)⇔ N |= ¬T (pψq)⇔

N 6|= T (pψq)
(8)⇔ N 6|= ψ.

6 Conclusion
We have been showing that results on the consistency of the
predicate approach to knowledge and belief can be proved
through the use of well-known results from logic program-
ming semantics. This connects the two research fields in a
new and interesting way, and have furthermore allowed us to
strengthen the previously known results on the consistency of
the predicate approach. It is expected that the connection be-
tween the two fields can be pursued further to get even better
consistency results. This might be done by using some of the
results from the literature on logic programming semantics
that strengthen Lemma 7.
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