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Abstract. Dynamic Belief Update (DBU) is a model checking problem
in Dynamic Epistemic Logic (DEL) concerning the effect of applying a
number of epistemic actions on an initial epistemic model. It can also
be considered as a plan verification problem in epistemic planning. The
problem is known to be PSPACE-hard. To better understand the source
of complexity of the problem, previous research has investigated the com-
plexity of 128 parameterized versions of the problem with parameters
such as number of agents and size of epistemic actions. The complex-
ity of many parameter combinations has been determined, but previous
research left 14 parameter combinations open. In this paper, we solve
all of these open problems. Most of the parameter combinations turns
out to be fixed-parameter intractable, except 2 that are fixed-parameter
tractable.
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1 Introduction

In the fields of psychology, ecology, economy, and various areas of computer
science like automated planning and distributed systems, the need often arises
to model multi-agent systems and reason about the knowledge of the involved
agents. Indeed, situations where multiple human or artificial agents interact with
their environment, and have to update their knowledge accordingly, are ubiqui-
tous. Our cognitive ability to attribute mental states to ourselves and to others
has been previously studied under the name of Theory of Mind reasoning [20,22].

There is a consensus across all fields that the problem posed by Theory of
Mind reasoning is a computationally intractable task. Nonetheless, the exact
aspects that are responsible for its hardness are still open to discussion. Indeed,
in many real-life situations, humans manage to reason fairly efficiently about
the knowledge of themselves and other agents. A conjecture is that higher-order
thinking is the most prominent source of intractability, and situations requiring
modest depth of reasoning are the easiest to untangle. However, this claim is still
at the heart of a decades-old debate, where different explanations collide [16,24].

As an illustration of some of the potential complications, let us consider the
coordinated attack problem [13], which is famous in the area of distributed sys-
tems. In this problem, two generals, i and j, are stationed in separate camps
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and plan to capture a fortified place. They will only succeed by attacking si-
multaneously, and thus have to agree on a common time to begin the assault.
In addition, they will only attack if they are certain that the other general will
follow through. However, they can only communicate by means of a messenger,
who might be captured while travelling between camps. In this setting, each
general has to reason about the knowledge of the other, and its evolution after
each message that is sent. Suppose general i decides to attack at dawn. General
i will need to ensure that general j knows, and will hence send a messenger
to let j know. A while after having dispatched the messenger, general i might
ask himself: “Does general j now know that I will attack at dawn?”. Suppose
the message was successfully delivered. Upon reception of the message, general
j might also reflect on general i’s knowledge, and ask himself: “Does general i
know that I know that he will attack at dawn?”. As general i has no way of
knowing whether the message arrived safely or not (the messenger might have
been caught), general j can acknowledge the message by sending another mes-
sage back to general i’s camp, who will then wonder: “Does general j know that
I know that he knows that...?”.

The coordinated attack problem is famous for the fact that, no matter how
many messages are being sent back and forth, the two generals can never achieve
common knowledge that they will attack at dawn, and can hence never safely
coordinate an attack [13]. What will happen, though, is that their level of shared
knowledge will grow higher and higher as more and more messages are success-
fully delivered. After the successful delivery of the first message, we will have
that “general j knows that i will attack at dawn”. After the successful delivery
of 2 messages (one from i to j and an acknowledgement from j to i), we will
have that “general i knows that general j knows that i will attack at dawn”.
After 3 messages we have “general j knows that general i knows that general j
knows that i will attack at dawn”, etc. The potential source of computational
complexity here is that each message delivery results in a higher level of Theory
of Mind (higher level of shared knowledge), and this might require a larger model
to represent. The coordinated attack problem actually doesn’t at all exploit the
worst-case computational behaviour of reasoning about the higher-order knowl-
edge resulting from a sequence of actions. However, it still points to the fact that
such problems can be non-trivial and it is not immediately obvious whether we
can always ensure tractability (we can’t).

Dynamic Epistemic Logic (DEL) is a well-suited framework to model situa-
tions like the coordinated attack problem, as it is a family of modal logics that
allow not only to reason about (higher-order) knowledge, but also to represent
how such knowledge is dynamically updated through the occurrence of events.
Even if many decision problems associated with DEL are provably hard [11,20],
it has been shown that simpler tasks involving DEL can be carried out fairly
easily [20]. In this paper, we study the Dynamic Belief Update (DBU) prob-
lem, which boils down to verifying whether an epistemic formula holds in an
epistemic model after a series of epistemic updates, i.e., whether a certain epis-
temic fact holds after a sequence of (epistemic) events have occurred in an initial
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(epistemic) situation. In the coordinated attack problem, we could for instance
ask about whether the two generals have shared knowledge to depth n about
attacking at dawn after the successful delivery of n messages. This would be an
instance of the DBU problem: The initial epistemic situation is the one where
general i has decided to attack at dawn, the sequence of epistemic events is the
n messages sent back and forth, and the epistemic fact to be check after the
sequence of events is whether nth-order shared knowledge has been achieved.

In previous work, van de Pol et al. [20] identifies numerous dimensions of
interest of a DBU instance. Those dimensions include the number of events that
occur, the modal depth of the epistemic formula to be checked after the events
have occurred, and the number of agents involved. The restriction of one or
several dimensions of the problem forms a new, simpler problem, which is po-
tentially easier. Using tools from parameterized complexity [12], it has been
shown that some restricted problems are tractable, while others remain hard.
Our work consists in extending the efforts of van de Pol et al. [20] to identify
which aspects of DBU make it intractable. We manage to settle the tractability
question of all problems left open by van de Pol et al..

In section 2, we present the DEL framework of this paper, and after recalling
notions of parameterized complexity, we present DBU and its parameters. In
section 3, we prove our new fixed-parameter intractability results of DBU. In
section 4, we settle the last remaining problems by proving their tractability.

2 Background

2.1 Dynamic Epistemic Logic

Dynamic Epistemic Logic (DEL) is a modal logic focused on reasoning about
knowledge, which can be revised according to the evolution of the situation [11].
In this paper, we use a variant of DEL that allows multi-pointed epistemic
models and has propositional postconditions [6]. While various other variants
of DEL exist, we present here a simple version, that can be readily extended
into a version of DEL with more general preconditions, postconditions, or frame
conditions. The advantage of choosing a restricted version of DEL is that we
mainly prove intractability results, and those intractability results will then of
course immediately generalise from the restricted to the generalised versions of
DEL.

The language LK(P,A) of multi-agent epistemic logic is defined as follows,
where p ranges over a finite set of propositional variables (atoms) P , and i over
a finite set of agents A:

φ := ⊤ | p | ¬φ | φ ∧ φ | Kiφ,

The intended meaning of Kiφ is “agent i knows φ”. We will often use the ab-
breviated notation K̂iφ = ¬Ki¬φ, which reads “agent i considers φ possible”.
Other symbols such as ∨ and → can be defined by abbreviation as usual. The
semantics of the language is defined through epistemic models (Kripke models).
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w1 : d,mi w2 : mi

j

Fig. 1: An epistemic model M0 = (W,∼, L, w1) for LK({d,mi,mj}, {i, j}). In this model, W =
{w1, w2}, ∼i = {(w1, w1), (w2, w2)}, ∼j = {(w1, w1), (w2, w2), (w1, w2), (w2, w1)}, L(w1) =
{d,mi} and L(w2) = {mi}. Even though they are not depicted for readability reasons, there are
reflexive edges on each world, labelled by i and j. In general, we are going to omit reflexive edges in
figures.

Example 1. Our running example will be the coordinated attack problem, in-
formally introduced in Section 1. A propositional variable (atom) d is used to
express that “general i attacks at dawn”. For k = i, j, we use the atom mk to
denote that the messenger is currently at the camp of general k. We can then
use the formula ¬mi∧¬mj to express that the messenger has been captured (he
is no longer at any of the two camps). As mentioned in the introduction, after 2
messages successfully delivered, general i knows that general j knows that i will
attack at dawn, which we can express formally as the formula KiKjd. Hence
the relevant formulas of the coordinated attack problem can be expressed in the
language LK(P,A) with P = {d,mi,mj} and A = {i, j}.

Definition 1. (Epistemic Models) An epistemic model for the language LK(P,A)
is a tuple M = (W,∼, L,Wd), where:

– W is a non-empty finite set of worlds.
– Wd ⊆W is a non-empty set of designated worlds.
– ∼ is a function assigning an equivalence relation ∼i on W to every agent
i ∈ A, called the indistinguishability relation for agent i.

– L : W → 2P is a function assigning to each world w a labelling, which is
the set of atoms true in w.

When Wd = {wd} for some wd ∈W , M is called a single-pointed epistemic
model, and wd is then often referred to as the actual world. By slight abuse
of notation, we will then write M = (W,∼, L, wd). Otherwise, M is a multi-
pointed epistemic model.

Definition 2. (Truth in an epistemic model) Let M = (W,∼, L,Wd) be an
epistemic model. We define truth as follows, where w ∈ W , p ∈ P , i ∈ A, and
φ,ψ ∈ LK(P,A):

(W,∼, L,Wd) |= φ iff for all w ∈Wd, (W,∼, L, w) |= φ
(W,∼, L, w) |= ⊤ always
(W,∼, L, w) |= p iff p ∈ L(w)
(W,∼, L, w) |= ¬φ iff (W,∼, L, w) ̸|= φ
(W,∼, L, w) |= φ ∧ ψ iff (W,∼, L, w) |= φ and (W,∼, L, w) |= ψ
(W,∼, L, w) |= Kiφ iff for all w′ s.t. w ∼i w

′, (W,∼, L, w′) |= φ

Example 2. Figure 1 shows an epistemic model M0 representing the initial sit-
uation of the coordinated attack problem. Nodes depict the worlds of M0, and
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e1 : ⟨d ∧mi,¬mi ∧mj⟩ e2 : ⟨⊤,¬mi ∧ ¬mj⟩
i

Fig. 2: The event model Ei→j = (E,∼, pre, post, e1). In this model, E = {e1, e2}, ∼i =
{(e1, e1), (e2, e2), (e1, e2), (e2, e1)}, ∼j = {(e1, e1), (e2, e2)}, pre(e1) = d∧mi, post(e1) = ¬mi∧mj ,
pre(e2) = ⊤, post(e2) = ¬mi ∧ ¬mj .

represent different possible states of affairs. Each node is labelled by its name,
followed by the list of the atomic propositions that are true in the world. The
world on the left, w1, represented by a double circle, is the actual world. It means
that actually general i has decided to attack at dawn (d), and actually the mes-
senger is at the camp of general i (mi), which is expressed by M0 |= d ∧ mi.
However, in the other world w2, general i has not decided to attack at dawn,
and d is not true. Since general j does not know whether general i has decided
to attack at dawn or not, general j deems worlds w1 and w2 equally possible,
which is illustrated by the indistinguishability edge labelled j between worlds w1

and w2. As such, M0 |= ¬Kjd.

Event models, defined next, represent changes to the situation resulting from
the occurrence of events or execution of actions, which lead agents to update their
knowledge.

Definition 3. (Event Models) An event model for LK(P,A) is a tuple E =
(E,∼, pre, post, Ed), such that:

– E is a non-empty finite set of events.
– Ed ⊆ E is a non-empty set of designated events.
– ∼ is a function assigning an equivalence relation ∼i on W to every agent
i ∈ A, called the indistinguishability relation for agent i.

– pre : E → LK(P,A) is a function assigning to each event a precondition.
– post : E → LK(P,A) is a function assigning to each event a postcondition,

which is a conjunction of literals (propositional variables and their negations,
including ⊤) in which each atom appears at most once.

As with epistemic models, when Ed = {ed} for some ed ∈ E, E is called a single-
pointed event model and ed often the actual event. By slight abuse of notation,
we will then write E = (E,∼, pre, post, ed). Otherwise, E is a multi-pointed event
model.

Example 3. Figure 2 depicts the event model Ei→j representing the event/action
where the messenger successfully delivers message d from i to j. Here the nodes
are called events. They represent the possible outcomes of the action. Similarly
to the epistemic model presented earlier, event e1 on the left is represented by a
double square, which indicates that it is the actual event. It is labelled by a pair
of two formulas, which are respectively its precondition pre(e1) = d ∧ mi and
its postcondition post(e1) = ¬mi ∧mj . Intuitively, event e1 models the outcome
where the messenger safely arrives at general j’s camp. The occurrence of d in
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the precondition of e1 means that agent j gets to know that d is true (since
agent j can distinguish e1 from e2). The postcondition ¬mi ∧mj of e1 makes
mj true instead of mi, that is, represents the fact that the messenger ends up
being at general j instead of general i. The event e2 represents the situation
where the messenger gets caught (ends up being at neither of the two camps).
As general i has no way of knowing wether the messenger will be successful in
his quest, he does not know which of the two events will actually occur, and
can hence not distinguish between e1 and e2. This is the reason we have an
indistinguishability edge labelled i between the two events. In addition to event
model Ei→j depicted here, we will consider the additional event model Ej→i

that represents the symmetric situation where general j sends the messenger to
general i’s camp. It can be obtained from Ei→j by swapping all occurrences of i
and j.

Epistemic models can be updated with the application of event models through
product updates, defined as follows.

Definition 4. (Product Update) Let M = (W,∼, L,Wd) be an epistemic model
and E = (E,∼, pre, post, Ed) an event model. Suppose that there exists at least
one pair (w, e) ∈Wd×Ed such that (W,∼, L, w) |= pre(e). The product update of
M with E is then the epistemic model M⊗E = M′ with M′ = (W ′,∼ ′, L′,W ′

d)
and

– W ′ = {(w, e) ∈W × E | (W,∼ , L, w) |= pre(e)}
– ∼′

i = {((w, e), (v, f)) ∈W ′ ×W ′ | w ∼i v and e ∼i f}
– L′((w, e)) = (L(w) ∪ {p | post(e) |= p})− {p | post(e) |= ¬p}
– W ′

d = {(w, e) ∈W ′ | w ∈Wd and e ∈ Ed}

Example 4. Figure 3 depicts the evolution of the coordinated attack problem
when messages are sent back and forth. The initial situation, represented by
the epistemic model M0 at the top of the figure, is the same as described in
Example 2. Its update with the epistemic model Ei→j is depicted immediately
below, noted M1. Let us explain how M1 = M0⊗Ei→j is built. In order to build
the set of worlds of M1, one has to check, for each event of Ei→j , which worlds
of M0 satisfy its precondition. The designated event e1 has its precondition
satisfied in the designated world w1. The model M1 thus has a world (w1, e1),
which is also designated and depicted as the leftmost world of the model (and
renamed to w1 for simplicity). As the postcondition of e1 is ¬mi∧mj , the label of
(w1, e1) is the same as w1, except thatmi is now false andmj true. Event e2, that
general i can not distinguish from event e1, has its precondition satisfied in both
worlds of M0. Event e2 will hence create a complete copy of the original model
M0, except the postcondition will be imposed on the copy. The postcondition
of e2 makes both mi and mj false. This explains why the two rightmost worlds
of M1 is a copy of M0 with mi removed.

Model Mn is the model resulting from n successful message passings. From
the figure we can see that Mn for all n is a chain model in which the first world,
w1, is the actual world, and in which d holds in all worlds except the last, wn+2.
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M0 =
w1 : d,mi w2 : mi

j

M1 = M0 ⊗ Ei→j =

w1 : d,mj w2 : d w3

i j

M2 = M1 ⊗ Ej→i =

w1 : d,mi w2 : d w3 : d w4

j i j

M3 = M2 ⊗ Ei→j =

w1 : d,mj w2 : d w3 : d w4 : d w5

i j i j

M4 = M3 ⊗ Ej→i =

w1 : d,mi w2 : d w3 : d w4 : d w5 : d w6

j i j i j

Ei→j

Ej→i

Ei→j

Ej→i

Ei→j

Fig. 3: The epistemic model M0 of Example 2 and its successive updates with event models Ei→j

and Ej→i.

Furthermore, it is an alternating chain, where the edges alternate between i-
edges and j-edges. From this it follows that we have Mn |= Kk1

Kk2
· · ·Kkn

d for
any sequence of agents k1, . . . , kn. E.g. in M3 we have both M3 |= KiKjKid and
M3 |= KjKiKjd. The conclusion is, as hinted at before, that after n successful
message passings, the two generals will have shared knowledge to degree n that
they will attack at dawn.

2.2 Generalisations of the DEL framework

One could also define the precondition of an event as a formula of the language
LDK(P,A) which is LK(P,A) extended with modalities [E ] for each event model
E . In this extended language, [E ]ϕ expresses that after the action E has occurred,
ϕ is true. We here don’t consider this extended language and the generalised pre-
conditions it leads to. All our intractability results of course trivially generalise
to this more general setting (since anything expressible in the more restricted
setting is also expressible in the more general setting). The same holds for gen-
eralising to other frame conditions, that is, alternative conditions on ∼ that do
not require the ∼i relations to be equivalence relations, but do not prevent them
from being it either. This includes various versions of DEL where the underlying
epistemic models represent beliefs rather than knowledge—or other propositional
attitudes weaker than knowledge. Specifically, it includes DEL based on e.g. K
or KD45 and also DEL based on plausibility models [2]. As we will later see,
even our tractability results generalise from S5 to other frame conditions (in fact,
arbitrary frame conditions), since the proof doesn’t make use of any assumptions
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about frame conditions. In other words, all our results, both the tractability and
intractability results, generalise to doxastic versions of DEL.

Finally, we can also consider to generalise the form of the postconditions.
Often in DEL, the postconditions are expressed as mappings from propositions
to epistemic formulas [10], so that the updated truth value of a proposition can
potentially depend on the prior truth value of a complicated epistemic formula.
Using such postconditions, many event models can be expressed more compactly.
Given a postcondition of our type (a conjunction of literals) of size (length)
n, we can always translate it into a mapping from propositions to epistemic
formulas of size Θ(n) (at least when assuming, as is usually done, that we only
encode how the mapping differs from the identity). Hence, we again get that any
intractability result we might achieve for our type of postconditions transfers to
the generalised postconditions.

2.3 Parameterized Complexity

In this section, we recall some notions of parameterized complexity. Parameter-
ized complexity is a branch of complexity theory whose aim is to offer a finer-
grained analysis of a computational problem, taking into account some charac-
teristics of each instance. It studies parameterized problems [12], which resemble
classical decision problems. Given an alphabet Σ, a parameterized problem L is
a subset of Σ∗ ×N. Given an instance ⟨x, k⟩ of L, we call x the main part and k
the parameter. The parameter k is a metric that gauges one dimension of x. For
instance, if our problem is to model-check formulas of LK(P,A), then x consists
of a formula ϕ and a model M, while k can e.g. be the modal depth of ϕ or the
number of agents used in ϕ and M.

In classical complexity theory, the class of tractable problems is P. The cor-
responding class in parameterized complexity theory is FPT, defined next.

Definition 5. (Fpt-algorithms and fixed-parameter tractability [14, Definition
1.4]) Let L be a parameterized problem. An fpt-algorithm for problem L is an
algorithm that solves L, for which there exists a computable function f : N → N
and a polynomial P, such that the running time of the algorithm on any instance
⟨x, k⟩ ∈ L is at most

f(k) · P(|x|).

A parameterized problem is called fixed-parameter tractable if there exists an
fpt-algorithm solving it, and the class of all fixed-parameter tractable problems is
denoted FPT.

A well-known problem that is intractable in the traditional sense is SAT [9].
However, one of its parameterized variants p-SAT, where the number of proposi-
tional variables p of an instance is a parameter of the problem, is fixed-parameter
tractable.

Indeed, let us try to check whether formula φ, built over p variables, is
satisfiable. Checking whether a given assignment of the p variables satisfies the
formula can be done in time P(|φ|), for some polynomial P. As there are 2p
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different assignments of the variables of φ, one could check them all against φ,
which can be done in time 2p · P(|φ|). We have thus described an fpt-algorithm
for the p-SAT problem. Intuitively, this means that if we consider the number of
variables p of any instance of SAT to be a constant, SAT becomes tractable.

Proving that a parameterized problem is or is not fixed-parameter tractable
can often be done through fpt-reductions, defined next. They can be seen as the
parameterized complexity counterpart of classical polynomial-time reductions,
and are useful for proving membership and hardness results for parameterized
problems.

Definition 6. (Fpt-reductions [14, Definition 2.1]) Let L and L′ be two param-
eterized problems. An fpt-reduction from L to L′ is a mapping R : L −→ L′

such that:

– ⟨x, k⟩ ∈ L iff R(⟨x, k⟩) ∈ L′.
– R is computable by an fpt-algorithm, i.e., there is a computable function f

and a polynomial P such that R(⟨x, k⟩) can be computed in time f(k)·P(|x|).
– There exists a computable function g such that if ⟨x, k⟩ ∈ L and ⟨x′, k′⟩ =
R(⟨x, k⟩) then k′ ≤ g(k).

When there exists an fpt-reduction from L to L′, we write L ≤fpt L
′.

It follows from the way fpt-reductions are defined that the problem class FPT
is closed under fpt-reductions. More specifically, suppose L ≤fpt L

′. Then if L′

belongs to FPT, so does L [14, Lemma 2.2]. Hence, to prove that a problem L′

is not fixed-parameter tractable, it suffices to find an fpt-reduction to L′ from
a problem L known to be not fixed-parameter tractable (we call such problems
fixed-parameter intractable). In this paper, we consider two complexity classes
that are deemed fixed-parameter intractable, namely W[1] and para-NP [12].
W[1] is the class of problems that can be fpt-reduced to k-W2SAT, which is the
problem where, given a 2CNF formula φ and a parameter k, one has to decide
if there exists a valuation satisfying φ in which at most k variables are true.
Para-NP is the class of parameterized problems that can be solved by a nonde-
terministic fpt-algorithm. Para-NP-hard problems are deemed fixed-parameter
intractable, as W[1] ⊆ para-NP [14].

In the remaining of this paper, we will allow problems to have multiple pa-
rameters. If a problem L has parameters k1, . . . , kn, we denote it k1 · · · kn-L.
The instances of the problem are then of the form ⟨x, k1 + · · ·+ kn⟩. Note that,
for any permutation σ of k1, . . . , kn, the notations k1 · · · kn-L and σ(k1 · · · kn)-L
define the same problem. If the parameter sequence contains repetitions, e.g.
k1k2k1-L, we still only count each distinct parameter once, so the instances of
that problem would be of the form ⟨x, k1+k2⟩. When adding further parameters
to a parameterized problem, we of course make it more constrained. That is, for
any problem L and parameter sequences X and Y , the problem XY -L is at least
as constrained as X-L. Hence the following is easily proved.

Proposition 1. Let X and Y be sequences of parameters of a decision problem
L. Then XY -L ≤fpt X-L.
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Dynamic Belief Update (DBU)

Input: An initial epistemic model M on LK(P,A);
A series of event models E1, . . . , Eu on LK(P,A);
A goal formula φg ∈ LK(P,A).

Output: Yes if M⊗E1 ⊗ · · · ⊗ Eu |= φg

No otherwise

Fig. 4: The decision problem DBU considered in this paper

2.4 Dynamic Belief Update

The decision problem considered in this paper is presented in Figure 4, following
van de Pol et al. [20]. It is the problem of checking whether a certain epistemic
formula is true after having updated an initial epistemic situation (epistemic
model) with a sequence of epistemic actions (event models).3 So it is about the
complexity of keeping track of “who knows what” when observing a sequence of
actions taking place, where these actions can both change ontic facts and what
the different agents know. A concrete example could be the coordinated attack
problem presented above. The problem of whether n messages lead to nth-order
shared knowledge can be stated as the following instance of DBU. We let M be
the initial epistemic model M0 of the coordinated attack problem presented in
Figure 1. For m = 1, . . . , n, if m is odd we let Em be the event model Ei→j of
Figure 2, and if m is even we let Em be the symmetric event model Ej→i. Finally,
we let the goal formula ϕg be the formula

∧
k1,...,kn

Kk1
Kk2

· · ·Kkn
d. Now we

have that the instance is positive if and only if the successful delivery of the
first n messages lead to nth-order shared knowledge of d among agents i and j.
Other problems that can be phrased as instances of DBU are the consecutive
number puzzle, the muddy children puzzle, and problems related to epistemic
games like Hanabi and Clue, as well as the false-belief tasks studied in cognitive
psychology [7,5,3]. We can also think of DBU as the plan verification problem
in epistemic planning [6]: Given an initial state (epistemic model), a sequence of
actions (event models) and a goal formula, does the action sequence achieve the
goal from the initial state?

DBU is PSPACE-complete, as proven by van de Pol et al. [20]. Their paper
proposes various parameters as an attempt to identify the features that make
DBU hard. Those parameters are given in Table 1, and any combination of the 7

3 The term “Dynamic Belief Update” might reasonably be considered a bit unfortu-
nate. A potentially better name could be “Dynamic Knowledge Update” as we are
here only considering models where the underlying accessibility relations are equiva-
lence relations (i.e., S5). However, the choice of naming of the problem was already
established by van de Pol [20] from which our work departures, so it seems even
more unfortunate if we decided to change the naming convention. Furthermore, all
our results still hold when considering doxastic versions of DEL based on e.g. KD45
or plausibility models, as argued in Section 2.2.
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Param. Description

a Number of agents

c Max. length of event preconditions

e Max. no. of events per event model

f Length of goal formula

Param. Description

o Goal formula’s modal depth

p Number of prop. variables

u Number of event models

Table 1: Parameters for DBU

Param. for DBU Complexity

acfou W[1]-hard

afopu W[1]-hard

eu FPT

Earlier known results [20]

Param. for DBU Complexity

acefop para-NP-hard

cfopu W[1]-hard

acopu W[1]-hard

acfpu FPT

New results of this paper

Table 2: Complexity results for the most general parameterized variants of DBU, from which all other
results for our set of parameters can be immediately deduced. Results on the left table originate
from [20], while results on the right table constitute the original contributions of this paper.

parameters form a parameterized version of DBU. This leads us to the class of
problems of the form X-DBU, where X is a subsequence of the 7 parameters. For
instance, acp-DBU is the dynamic belief update problem where the parameters
are the number of agents, the length of the preconditions and the number of
propositional variables. There are 27 = 128 problems of this form. Prior to
our work, the (fixed-parameter) tractability or intractability of 114 of them was
already known [20]. Of the remaining 14 problems, we show intractability of 12 of
them, and tractability for 2. We also provide alternative proofs for some problems
that were previously settled. Table 2 summarizes the known results, including
the new ones of this paper, and Figure 5 shows the same results alternatively, by
providing an outline of the tractability frontier. Both only mention the strongest
results, as all other results can be immediately deduced from them through
Proposition 1, and the observation that, for any sequence of parameters X of
DBU, Xf-DBU ≤fpt Xfo-DBU (if we constrain the length of the goal formula, we
are also constraining its modal depth).

It can be hard to keep track of 128 different versions of the same problem.
However, many are obviously interdependent in the sense that the (in)tractability
of one immediately implies the (in)tractability of the other, e.g. through Propo-
sition 1. To keep track of dependency and which problems are still open, we devel-
oped a small script, which can be found at https://github.com/arnaudlequen/
dbuproblemfinder. The script allowed us to find the open problems that would
solve most other open problems, and keeping track of the remaining open prob-
lems as we gradually settled more cases.

https://github.com/arnaudlequen/dbuproblemfinder
https://github.com/arnaudlequen/dbuproblemfinder
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∅

copu

cefop
acefo

aefop

acfou

afopu

acopucfopu

acefop
not fp-tractable

fp-tractable

eu
acf(o)pu

acefopu

Fig. 5: Complexity results for the most general parameterized variants of DBU. Each parameter
sequence X shown in the figure is short for the associated decision problem X-DBU. The problems
above the vertical line are the ones that are not fixed-parameter tractable, and the ones below
are those who are. The dashed edges show problem inclusion: the top end-point of the edge has a
parameter sequence included in the sequence of the bottom end-point. This implies that the problem
at the bottom reduces to the problem at the top, and hence that the the problem at the bottom
is easier than the problem at the top. The framed parameter sequences are associated to problems
whose tractability is settled in this paper. Problems in gray formed the previously known border,
but are now superseeded by one of our results. Notice that acfopu-DBU = acfpu-DBU.

2.5 Single-pointed vs multi-pointed DBU

We have defined the DBU problem on multi-pointed epistemic models and event
models. In classical DEL, one usually only considers single-pointed models with
a single designated world (actual world) of each epistemic model and a single
designated event (actual event) of each event model. In our intractability proofs,
we are however going to use multi-pointed models extensively, and they are also
essential to represent non-deterministic actions in epistemic planning [6]. We
here show that the question of fixed-parameter tractability is independent of
whether we consider single- or multi-pointed models.

Proposition 2. Let X denote a subsequence of the 7 parameters of Table 1,
and let X-DBUs denote the X-DBU problem restricted to single-pointed epis-
temic models and event models. Then X-DBU ≤fpt X-DBUs and X-DBUs ≤fpt

X-DBU.

Proof. The reductionX-DBUs ≤fpt X-DBU is trivial, as any problem inX-DBUs

is also a problem in X-DBU. We then prove the other direction, X-DBU ≤fpt

X-DBUs. To prove this, we first define a translation ·s from multi-pointed models
over the language LK(P,A) into single-pointed models. To define the translation,
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we first pick a fresh agent j and fresh propositional symbol pj . Let A′ = A∪{j}
and P ′ = P ∪ {pj}. The translation will then take any multi-pointed epistemic
(or event) model over LK(P,A) and turn it into a single-pointed epistemic (or
event) model over LK(P ′,A′). For any epistemic model M = (W,∼, L,Wd), the
translated model Ms = (W ′,∼′, L′, wd) is defined by:

– W ′ =W ∪ {wd}, where wd ̸∈W .
– L′(w) = L(w) for all w ∈W , and L′(wd) = {pj}.
– ∼′

i = ∼i for all i ∈ A, and ∼′
j= ((Wd ∪ {wd}) × (Wd ∪ {wd}))r (where Rr

denotes the reflexive closure of relation R).

Note that by this construction, for any formula ϕ in LK(P,A), we will have
M |= ϕ iff Ms |= Kj(¬pj → ϕ). Similarly, for any event model E = (E,∼
, pre, post, Ed), we define its translation Es = (E′,∼′, pre′, post′, ed) by:

– E′ = E ∪ {ed}, where ed ̸∈ E.
– ∼′

i = ∼i for all i ∈ A, and ∼′
j= ((Ed ∪ {ed})× (Ed ∪ {ed}))r.

– pre′(e) = ¬pj ∧ pre(e) for all e ∈ E, and pre′(ed) = pj .
– post′(e) = post(e) for all e ∈ E, and post′(ed) = ⊤.

Claim. For any epistemic model M and event model E over LK(P,A), the models
(M ⊗ E)s and Ms ⊗ Es are isomorphic. Proof of claim: We create a bijection
f between the worlds of the two models as follows. The model (M ⊗ E)s has
a single designated world wd. The model Ms ⊗ Es also has a single designated
world (wd, ed). So we let f(wd) = (wd, ed). Now take any other world w of
(M ⊗ E)s. This will be a world (w, e) of M ⊗ E . By definition, we then have
that w is a world of M, e is an event of E , and pre(e) is true in w. Since w is
a world of M, it is also a world of Ms. Since e is an event of E , it is also an
event of Es. Since pre(e) is true in w, (w, e) must then be a world of Ms ⊗ Es.
We can hence let f((w, e)) = (w, e). We then first need to prove that this is a
bijection. As f is clearly injective, it suffices to prove that it is surjective. So
let (w, e) be any world of Ms ⊗ Es. Either w is a world of M or w = wd. If
w = wd then e = ed, since ed is the only event of Es that has its precondition
satisfied in wd. But then (w, e) = (wd, ed), and we know that this is in the image
of f . Now suppose w ̸= wd. Then also e ̸= ed, since the precondition of ed is
pj that is only satisfied in wd. This implies that w belongs to M and e to E .
By definition of the product update, we also have that pre(e) is satisfied in w.
This implies that (w, e) also belongs to (M ⊗ E)s, and hence that (w, e) must
be in the image of f , as required. We now know that f is a bijection, and need
to check that it satisfies the conditions for being an isomorphism. First we check
that for any world w of (M ⊗ E)s, w and f(w) satisfy the same propositional
variables. This is trivial for all world except wd of (M ⊗ E)s. The world wd

of (M ⊗ E)s satisfies only pj , so we need to show that f(wd) = (wd, ed) also
only satisfies pj . But since wd only satisfies pj and the event ed has the trivial
postcondition ⊤, it immediately follows. Now we only need to check that the two
models also have the same indistinguishability relations between worlds related
by f . Suppose w ∼i v for a pair of distinct worlds w, v of (M⊗E)s and an agent
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i. Since the indistinguishability relations of both models are trivially reflexive,
we can assume w ̸= v. Suppose first i = j. Suppose further that w = wd. Then
v = (w′, e′) for some w′ ∈ Wd and e′ ∈ Ed. Since w

′ ∈ Wd, in Ms we have
wd ∼j w

′. Since e′ ∈ Ed, in Es we have ed ∼j e
′. Hence (wd, ed) ∼j (w′, e′)

in Ms ⊗ Es. Since (wd, ed) = f(wd) and (w′, e′) = f((w′, e′)), we then get
f(w) ∼i f(v), as required. Suppose that instead w ̸= wd, still assuming i = j.
We can assume that also v ̸= wd, as otherwise the case is symmetric to the
previous one. In this case, we must have that w = (w′, e′) and v = (v′, f ′) where
w′, v′ ∈ Wd and e′, f ′ ∈ Ed. It follows that w′ ∼j v

′ in Ms and e′ ∼j f
′ in

Es, and hence (w′, e′) ∼j (v′, f ′) in Ms ⊗ Es. This again shows the required.
This covers the case where i = j. Now assume i ̸= j. Then we must have that
w = (w′, e′) and v = (v′, f ′), where w′ ∼i v

′ in M and e′ ∼i f
′ in E . Then also

w′ ∼i v
′ in Ms and e′ ∼i f

′ in Es. Hence (w′, e′) ∼i (v′, f ′) in Ms ⊗ Es, as
required. This completes the proof of the claim.

To prove X-DBU ≤fpt X-DBUs, we define a mapping R from X-DBU to
X-DBUs as follows. For each X-DBU instance ⟨x, k⟩, we let R(⟨x, k⟩) = ⟨x′, k′⟩
be the X-DBUs instance where

– If x consists of the elements M, E1, . . . , Eu and ϕg, then x′ consists of the
elements Ms, (E1)s, . . . , (Eu)s and Kj(¬pj → ϕg).

– k′ = g(k) = k + 13.

R and g are clearly computable. We hence only need to prove that ⟨x, k⟩ is a
positive instance ofX-DBU iff ⟨x′, k′⟩ is a positive instance ofX-DBUs. As earlier
concluded, we haveM⊗E1⊗· · ·⊗Eu |= ϕg iff (M⊗E1⊗· · ·⊗Eu)s |= Kj(¬pj → ϕ).
By the claim above, we get that (M⊗E1⊗· · ·⊗Eu)s |= Kj(¬pj → ϕ) is equivalent
to Ms ⊗ (E1)s ⊗ · · ·⊗ (Eu)s |= Kj(¬pj → ϕ). Hence x is a positive instance iff x′

is. The only thing left to check is the size of the parameter k′ = g(k). We need
to ensure that k′ is less than or equal to the sum of the parameters in X for the
problem x′. Compared to x, the input x′ uses 1 additional agent, the maximal
length of preconditions is at most 3 higher, the maximal number of events per
event model is at most 1 higher, the length of the goal formula is 6 higher, it’s
modal depth is 1 higher, and the number of propositional variables is 1 higher.
Hence the sum of the parameters in X is at most 1 + 3 + 1 + 6 + 1 + 1 = 13
higher for x′ than x. Hence, we can bound k′ by k + 13.

3 New intractability results

In this section, we present proofs for the intractability of three parameterized
variants of DBU, namely acefop-DBU, cfopu-DBU, and acopu-DBU. As the se-
quences of parameters considered consist of five parameters or more, the in-
tractability of numerous other problems is also settled by our proofs. However,
we will only mention explicitly, as corollaries, the problems whose intractability
was previously unknown.

Theorem 1. acefop-DBU is fixed-parameter intractable (more precisely, para-
NP-hard). In other words, the Dynamic Belief Update problem is intractable
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even when restricting the number of propositional variables and agents (p,a), the
maximum number of events in event models (e), the maximum length of event
preconditions (c), and the length and modal depth of the goal formula (f,o).

Proof. The proof is by an fpt-reduction from an NP-hard problem to an instance
of acefop-DBU with fixed values of a, c, e, f, o and p, thus proving para-NP-
hardness of the latter (since the NP-hard problem doesn’t have any parameter,
the reduction is also a regular polynomial reduction). The construction used in
the proof is an adaptation of the proof of Theorem 19 of Bolander et al. [6]. The
general idea is to simulate, through an instance of DBU, the execution of a fixed
nondeterministic Turing machine M that solves a given NP-hard problem (any
NP-hard problem will do). We begin by encoding the initial configuration of the
machine (i.e., its tape, the position of its head and its internal state) into the
initial epistemic model. Then, we build a series of event model updates, such
that the epistemic model after n product updates contains the representation of
every configuration of M that can be reached in exactly n transitions (compu-
tation steps). Finally, we build a goal formula that checks whether an accepting
configuration was encountered in the process or not. Thus, the DBU instance is
positive if and only if M accepts the word in the input.

Let M = (S,Γ, q0, δ, qf ) be any nondeterministic Turing machine that solves
an NP-hard problem in polynomial time, with states S = {q0, q1, . . . , qf}, where
q0 is the only initial state, qf is the only accepting state, Γ is the set of tape
symbols including the blank symbol # and δ is the transition function [17]. The
DBU instance we build has agents A = {i, j, k, g} and propositional variables
P = Γ ∪ S ∪ {ri, rj , t}. Information cells for agent k (i.e., sets Wk ⊆ W of
maximum size that are closed under ∼k) are used to encode configurations of
M , and agents i and j are used to distinguish the right and the left of each cell of
the tape that we encode. We will in all epistemic models enforce ∼k = ∼i ∪ ∼j

by having ∼k = ∼i ∪ ∼j in the initial model, and ∼k = ∼i ∪ ∼j in all event
models. We will similarly enforce ∼g to be the universal relation—i.e., make
any two worlds indistinguishable—by making all pairs of worlds in the initial
model indistinguishable, and by making all pairs of events of all event models
indistinguishable. For simplicity, the ∼k and ∼g indistinguishability relations
will not be explicitly drawn. Furthermore, the reflexive and transitive closure of
all indistinguishability relations drawn is implicitly assumed.

A configuration of the machine can be represented by an Instantaneous De-
scription (ID) [17]. Following Bolander et al. [6], we represent IDs by epistemic
models as illustrated in Figure 6. This pair of information cells for agent k offers
two unique representations of an ID [6], and we call represented ID an informa-
tion cell for k that has the form of either (6.1) or (6.2). Each world represents
one cell of the tape of the machine, and is marked with a propositional variable
representing the symbol in the cell. One world is marked with two additional
propositions: one for the current state of the machine (qs), as well as either ri
or rj . This world represents the current position of the head and is called the
current world (not to be confused with the actual world of an epistemic model).
The propositions ri and rj are used to distinguish between the right and the left
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x1 xn−2 xn−1 xn, qs, ri xn+1 xn+2 xm

i j i j (6.1)

x1 xn−2 xn−1 xn, qs, rj xn+1 xn+2 xm

j i j i (6.2)

Fig. 6: Two information cells for agent k, both representing the ID x1 · · · xn−1qsxn · · · xm of the
Turing machine M = (S,Γ, q0, δ, qf ), where xi ∈ Γ and qs ∈ S. This ID represents the configuration
of M where the word on the tape is x1 · · · xm, where M is in state qs, and the head is at the nth
symbol xn of the word on the tape. Recall that ∼k = ∼i ∪ ∼j and ∼g = W × W are implicitly
assumed, where W is the set of all worlds. Note the similarity to the chain models obtained when
formalising the coordinated attack problem, cf. Figure 3. In both cases, the models have the structure
of an alternating i, j-chain of worlds.

M0 =
x1 ∧ q0 ∧ ri x2 x3 xm wt : t

i j

Fig. 7: The initial epistemic model M0 for the Turing machine M with input word ω = x1 · · · xm.
It consists of the represented ID of the initial configuration of M plus an additional designated
world wt only accessible from the other worlds by the ∼g relation (recall that ∼k = ∼i ∪ ∼j and
∼g = W × W are implicitly assumed).

of the current cell. If ri (resp. rj) is true, then the cell at the right of the current
one is reachable through an i-edge (resp. j-edge).

We proceed to show how to build the initial epistemic model and event
models. Suppose that in its initial configuration, M is in state q0 and with
the word ω = x1 · · ·xm on its tape. Then the initial epistemic model M0 is
the represented ID of the initial configuration of M , as shown in Figure 7. In
addition to that, we add a designated world wt only labeled by the propositional
variable t. Its purpose is to make sure the model doesn’t end up being empty,
which could otherwise happen if at some point no transition can be applied to
any ID.

The next step consists in building the series of event models, which are all
copies of a single model Etrans. The aim of Etrans is to simulate one step of the
Turing machineM , by applying all applicable transitions to each represented ID
of the previous epistemic model. The event model mainly consists in a disjoint
union of several sub-event models, that we call transition components, whose
purpose is to attempt to apply a transition of the Turing machine M to a rep-
resented ID. For each transition l, i.e., each element of the transition function
δ, we construct an i-transition component τ il and a j-transition component τ jl .
We construct these transition components such that given an ID s and valid
transition l for s, applying τ il (resp. τ jl ) to the represented ID of s, of the form
(6.1) (resp. (6.2)), will result in the represented ID of the successor of s after l
was applied. Applying to an ID s a transition component whose form does not
match the represented ID of s, or whose transition is not applicable to s, will
yield no worlds.

Figure 8 shows an example of an i-transition component. The j-transition
component can be obtained by swapping i and j everywhere. Other transitions,
such as δ(qs, xn) = (qt, y, L) or transitions satisfying xn = y, can be handled
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e1 : ⟨Ki¬qs ∧ K̂k(qs ∧ xn ∧ ri),⊤⟩

e2 : ⟨qs ∧ xn ∧ ri,¬qs ∧ ¬xn ∧ ¬ri ∧ y⟩

e3 : ⟨¬qs ∧ K̂i(qs ∧ xn ∧ ri), qt ∧ rj⟩

e4 : ⟨qs ∧ xn ∧ ri ∧Kiqs,¬qs ∧ ¬xn ∧ ¬ri ∧ qt ∧# ∧ rj⟩

j

i
i

j

Fig. 8: The transition component τ i
l , for a transition l of the form δ(qs, xn) = (qt, y, R), where

xn ̸= y.

ef : ⟨qf ,⊤⟩ et : ⟨t,⊤⟩

Fig. 9: Event model σ. The purpose of ef is to make sure to preserve any world marked with qf , as
the existence of such a world would mean that an accepting configuration has been reached (in one
of the represented executions). Event et copies the world wt as the only designated event, making
sure always to preserve a single designated world (actual world) after each update. Recall that we
have implicitly assumed ef ∼g et.

similarly. Let us try to explain the intuition behind this construction. It is very
similar to the construction of Bolander et al. [6]. Event e1 makes sure that, after
the update, worlds that represent cells of the tape that are unaffected by the
transition are left unchanged. It copies into the updated model every world of
the represented ID, except the world representing the current head position and
the one at its right. Event e2 copies the current world, noted w, but removes the
propositional variables that mark the head of the machine. It also updates the
tape symbol. If the cell to the right of the current position of the head is not
blank, then there exists a world w′ to the right of the current world w, i.e., such
that w ∼i w

′. Event e3 adds to w′ the propositional variables that make it into
the current world of the updated model. It updates as well the current state of the
machine, from qs to qt. If the cell to the right of the current position of the head
is blank, then no world is to the right of the current world. Event e4 then creates
it with a blank symbol, and sets it to be the current world of the updated model.
Applying the i-transition component of Figure 8 to a represented ID s of the
form (6.2) results in no world. Indeed, in s, the current world is instead labeled
by rj , and thus, no world verifies ri. Therefore, no event has its precondition
satisfied, as each of the four events e1, . . . , e4 has a precondition requiring ri to
hold in at least one world. Similarly, if the transition is not applicable to the
ID represented by s, then the current world of s is labeled by q′s ̸= qs and/or
x′n ̸= xn, and thus does not satisfy qs∧xn. And as before, each of the four events
e1, . . . , e4 has a precondition requiring qs ∧ xn to hold in at least one world.

In order to build Etrans, we need to introduce another component σ, which
consists of two events, ef and et. Those events, depicted in Figure 9, carry to the
updated model the information that will eventually allow the goal formula to
check whether the instance is positive or not. Building Etrans is then straightfor-
ward. In addition to σ, it consists in the disjoint union of the i- and j-transition
components τ il and τ jl associated to every transition l of M . Recall again that
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we implicitly assume to also add a g-edge between any pair of events. Applying
Etrans to an epistemic model that contains the representations of all IDs reach-
able in n transitions results in a model containing the representations of all IDs
reachable in n+1 transitions. If a model contains a world where qf is true, then
in the updated model, there is also a world where qf if true.

By assumption, there exists a polynomial P such that, for any word ω′, M
accepts ω′ iff M accepts it in at most P(|ω′|) steps. Then, for our given input ω,
we only need to simulate P(|ω|) steps of M , and thus create a series of P(|ω|)
product updates of M0 with the event model Etrans. In the final model, the only
designated world is wt, which is linked by a g-edge to every other remaining
world. The goal formula K̂gqf must thus be true in the final model iff a world
verifying qf has been reach after some initial sequence of product updates, i.e.,
if M can reach an accepting state in at most P(|ω|) steps. Thus, M accepts
input ω iff the instance of DBU with initial state M0, with P(|ω|) copies of the
event model Etrans and with goal formula K̂gqf is positive. Note that we indeed
here have fixed values for all of the parameters a, c, e, f, o and p. We initially
fixed 4 agents, so a = 4. We defined P = Γ ∪ S ∪ {ri, rj , t}, where Γ and S
are finite sets of the fixed Turing machine M , so also p has a fixed value. The
event models we have constructed are completely independent of the problem
instance we consider (the input word), and even independent of which Turing
machine M we start out with. Thus also c and e have fixed values. The goal
formula is ϕg = K̂gqf , which clearly also has a fixed length and a fixed model
depth independent of the input word, so also f and o have fixed values. We have
hence successfully fpt-reduced the problem “Does M accept input ω?”, where
M is fixed and ω is the input, to the problem acefop-DBU. We comply with the
conditions of Definition 6: we respectively satisfy the second and third conditions
as the reduction is polynomial, and all parameters of acefop-DBU are constants,
by construction. Finally, as M solves an NP-hard problem, acefop-DBU is para-
NP-hard.

Corollary 1. acp-DBU, acep-DBU and acfp-DBU are all fixed-parameter in-
tractable.

The corollary is by Proposition 1. In addition to settling those four open prob-
lems, Theorem 1 shows a stronger result, which is that all parameterized versions
of DBU that do not have u as a parameter are fixed-parameter intractable. This
settles in itself the fixed-parameter intractability of 64 out of the total 128 prob-
lems. It also constitutes an alternative proof of the intractability of three differ-
ent problems shown separately by van de Pol et al. [20], which are acefo-DBU,
cefop-DBU and aefop-DBU.

We now prove fixed-parameter intractability of two further problems that
were left open by van de Pol et al. [20]: cfopu-DBU and acpu-DBU. We here show
that both are fixed-parameter intractable, which implies the fixed-parameter
intractability of cfpu-DBU and acp-DBU. Our proofs of both theorems are adap-
tations of the fixed-parameter intractability proof of copu-DBU by van de Pol et
al. [20]. In addition to strengthening their construction to be able to generalize
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their intractability results, we also simplify their construction in a few places.
The general point is to show W[1]-hardness by a reduction from the earlier men-
tioned W[1]-complete problem k-W2SAT: Given a 2CNF input formula φ and
a parameter k, decide whether there exists a valuation satisfying φ in which at
most k variables are true.

In the following we assume the variables of φ are named x1, . . . , xm. The
general trick in constructing an fpt-reduction from k-W2SAT to a parameterized
DBU problem is as follows. First we define epistemic (sub)models that can be
used to encode propositional valuations over {x1, . . . , xm}. We call these valua-
tion gadgets and use Mv to denote the valuation gadget encoding the valuation
v. The initial model of the DBU instance is then the model M0 where 0 denotes
the valuation with 0(xi) = 0 for all i (the valuation that sets every variable false).
We then construct an event model that can take any set of valuation gadgets
and for each gadget Mv it constructs m new gadgets Mv[x1 7→1], . . . , Mv[xm 7→1]

(where v[x 7→ 1] is the mapping that is as v except v(x) = 1). After updating
k times with this event model, we are guaranteed to have gadgets representing
all valuations where at most k variables are true. If we have no bound on f, we
can now directly use the goal formula of the DBU instance to check that there
exists a gadget making φ true. This is what we do for the intractability proof of
acpu-DBU. If we have a bound on f, as in the intractability proof of cfopu-DBU,
we need to perform product updates with additional event models that mark
the gadgets making φ true.

Theorem 2. cfopu-DBU is fixed-parameter intractable (W[1]-hard). In other
words, the Dynamic Belief Update problem is intractable even when restrict-
ing the number of propositional variables (p), the number of event models (u),
the maximum length of event preconditions (c), and the length and modal depth
of the goal formula (f,o).

Proof. The main contribution of this proof over the proof of the fixed-parameter
intractability of copu-DBU by van de Pol et al. [20] is the construction of an
additional event model (Eφ) that allows us to only consider a goal formula
of fixed length (while still preserving the fixed bound on the event precondi-
tions). Let φ and k be given (an instance of k-W2SAT), where φ has variables
var(ϕ) = {x1, . . . , xm}. We will now create an instance of DBU that can de-
cide the k-W2SAT instance, i.e., whether there exists a valuation satisfying ϕ
and setting at most k variables true. The DBU instance will be using agents
A = {1, . . . ,m, a, b}. For each valuation v over var(φ), we define the gadget Mv

as the star-shaped model with a single root world satisfying proposition r, and
for each xi with v(xi) = 0 it has an outgoing i-edge to a unique world satisfying
no propositions. The construction is illustrated for m = 4 in Figure 10. Now
consider the event model E illustrated for m = 4 in Figure 11. The events with
no label are implicitly labelled ⟨⊤,⊤⟩, i.e., they are events that preserve any
world to which they are applied. The events labelled ⟨r,⊤⟩ only apply to the
roots of gadgets. When E is applied to a gadget Mv, it creates m copies of the
gadget, where in the first gadget x1 is made true (by removing the outgoing
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Fig. 10: Left: A valuation gadget form =
4 representing the valuation 0 in which
all xi, i = 1, . . . ,m, are false. Right:
The gadget for the valuation where x2

and x4 are true (since the outgoing 2-
and 4-edges have been deleted).
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Fig. 11: The pointed event model E for
m = 4. The unlabelled events are im-
plicitly labelled ⟨⊤,⊤⟩.

1-edge), in the second x2 is made true (by removing the outgoing 2-edge), etc.
These gadgets are furthermore connected by a-edges via their root worlds. When
this event model is applied k times to the initial gadget model M0, we achieve a
model with mk gadgets connected by a-edges via their root worlds. Each gadget
is obtained by starting with the initial gadget representing the valuation 0, and
then making at most k variables true by consecutively removing k edges from
the gadget model. Since we might attempt to remove the same edge multiple
times, this construction gives us a representation of all valuations where at most
k variables are true (except the valuation 0 that can be checked separately).
Hence the final model M0 ⊗ Ek contains a gadget for each valuation with at
most k variables set true (except the valuation 0).

Note that a clause (¬)xi ∨ (¬)xj is true in a valuation v iff the formula
(¬)Kir ∨ (¬)Kjr is true at the root of the gadget Mv. We now construct an
additional event model Eφ as follows. It has a single designated event labelled
⟨r,⊤⟩. For each clause (¬)xi ∨ (¬)xj of φ, it has an additional event labelled
⟨r ∧ ¬((¬)Kir ∨ (¬)Kjr), f⟩, where f is a new propositional variable denoting
“failure”. All events of Eφ are connected by b-edges. Each event with postcon-
dition f checks whether a particular clause of φ is false in the gadget to which
it is applied. If it is, a b-accessible world satisfying f is created. When Eφ is
applied to a valuation gadget, it will hence preserve the root (due to the event
⟨r,⊤⟩), and additionally it will add a b-accessible f -world for each unsatisfied
clause. If there are no unsatisfied clauses, it will only preserve the root. Hence,
if we apply Eφ to the model M0 ⊗ Ek containing gadgets for all the relevant
valuations, the resulting model M0 ⊗ Ek ⊗ Eφ will contain an r-world with no
b-accessible f -worlds iff φ is true in one of the valuations. Hence, we can check
whether φ is true in one of the relevant valuations by checking the goal formula
φg := K̂a(r ∧Kb¬f) in the model M0 ⊗ Ek ⊗ Eφ.

To sum up, given a k-W2SAT instance φ with parameter k, we reduce it to
the DBU instance with initial model M0, with k copies of the event model E
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followed by the event model Eφ and with goal formula φg. We now only have
to verify that the reduction is an fpt-reduction from k-W2SAT to copu-DBU.
Building the epistemic model M0 and the k copies of the event model E is
clearly polynomial in m and k and hence in the input size of the k-W2SAT
instance. Building Eφ is polynomial in the formula φ and hence also in the input
size of the k-W2SAT instance. Finally, the goal formula has a fixed length. This
shows that the reduction is computable by an fpt-algorithm. We then only need
to show that the parameters of the translated cfopu-DBU instance can be bound
by a computable function in k. The parameters c, f, o, p all have a fixed value
independent of the k-W2SAT instance, and u is k + 1. So the parameters are
clearly bound by a computable function in k, and the proof is complete.

Theorem 3. acopu-DBU is fixed-parameter intractable (W [1]-hard).

Proof. The main contribution of this proof over the proof of the fixed-parameter
intractability of copu-DBU by van de Pol et al. [20] is that we show how to create
gadgets that encode the truth value of the different variables via worlds at differ-
ent depths of the model rather than via different agents. This is necessary since
we have a as a parameter, so we need to put a bound on the number of agents.
When referring to worlds at different depths of a model, and with no bound on
the depth of a model, we usually also need preconditions of unbounded length.
But our construction shows that it is possible to still do with only preconditions
of bounded length. In our proof, in order to encode a valuation, we use chains of
worlds linked by alternating agents (as in the formalisation of the coordinated
attack problem, and as in the encoding of the Turing machine tape in Theo-
rem 1). This trick, central to our proof, resembles a trick used by de Haan and
van de Pol [15]. The main difference is that they encode the truth-value of a sin-
gle variable as a chain, and create as many chains as there are true propositional
variables in the encoded valuation, whereas we encode an entire valuation in a
single chain.

Essentially, the structure of this proof is as the previous, except we need a
different type of gadgets. Let φ and k be given with var(φ) = {x1, . . . , xm}. Let
A = {1, 2, a}. For each valuation v, we define the gadget Mv as an alternating
1, 2-chain of worlds with a root world satisfying r, and where the world at dis-
tance i from the root makes the propositional variable t true iff v(xi) = 1. The
construction is illustrated for m = 4 in Figure 12. Now consider the event model
E illustrated for m = 4 in Figure 13. As in the previous proof, when this event
model is applied to a gadget Mv, it creates m copies of the gadget, where in
the first gadget x1 is made true (by adding t to the world at distance 1 from
the root), in the second x2 is made true (by adding t to the world at distance
2 from the root), etc. As before, these gadgets will be connected by a-edges via
their root worlds. Also as before, when this event model is applied k times to
the initial gadget model M0, we achieve a model with mk gadgets containing at
least one gadget for each valuation making at most k variables true (again except
the valuation 0 that can be treated separately). The only essential difference is
that instead of making use of agents to encode the truth value of the different
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Fig. 12: Left: A valuation gadget for
m = 4 representing the valuation
0 in which all xi, i = 1, . . . ,m,
are false. Right: The gadget for the
valuation where x2 and x4 are true
(since the worlds in distance 2 and
4 from the root have label t).
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Fig. 13: The pointed event model E for m =
4. The unlabelled events are implicitly la-
belled ⟨⊤,⊤⟩.

variables, we use the depth of the event model. This means we can use a as a
parameter in our reduction (the number of agents is fixed independently of the
input).

Let ψ1 := K̂1t, ψ2 := K̂1K̂2t, ψ3 := K̂1K̂2K̂1t, etc. Then note that φ is true
in the valuation v iff the formula φ[ψi/xi] is true in the root of the gadget Mv.
Hence, to check whether φ is true in a valuation making at most k variables
true, we can check whether the formula φg := K̂aφ[ψi/xi] is true in M0⊗Ek. To
sum up, given a k-W2SAT instance φ with parameter k, we reduce it to the DBU
instance with initial model M0, with k copies of the event model E and with
goal formula φg. Building M0 and the k copies of E is polynomial in m and k,
and building φg is polynomial in m and the length of φ. Hence the DBU instance
can be computed in polynomial time in the size of the k-W2SAT instance, and
is hence computable by an fpt-algorithm. We then only need to show that the
parameters of the translated acopu-DBU instance can be bound by a computable
function in k. This trivially holds, as the parameters a, c, o, p all have fixed value
independent of the k-W2SAT instance, and u is k.

4 New tractability results

In this section we prove tractability of acfpu-DBU (and hence also acfopu-DBU).
By Proposition 2, we can freely choose to consider single- or multi-pointed mod-
els. We here only consider single-pointed models, as it becomes technically sim-
pler and allows us to rely on many existing results that only exist for single-
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pointed models. The overall idea of our proof is to reduce the size of mod-
els via stratified bisimulation contractions (k-bisimulation contractions). In the
first subsection below, we define stratified bisimulations (k-bisimulations) and
some well-known results concerning them, followed by a new result concerning
the relation between k-bisimulations and product updates. In the next subsec-
tion we then consider partition refinements as a way to compute k-bisimulation
contractions, and study the computational complexity of partition refinement
algorithms. In the final subsection, all the previous results will be combined to
prove our tractability result.

4.1 Stratified bisimulations and bisimulation contractions

We use the variant of the definition of stratified bisimulations provided by Yu
et al. [23], but otherwise refer to Blackburn et al. [4] for a thorough introduc-
tion to bisimulations in modal logic (the latter contains a slightly different, but
equivalent, definition of stratified bisimulations).

Definition 7. [23, Definition 4.9] Let M be an epistemic model. Two worlds w
and w′ are called 0-bisimilar, written w ↔0 w

′, if L(w) = L(w′). For k > 0,
they are k-bisimilar, written w↔kw

′, if they are 0-bisimilar and for every agent
i ∈ A:

– [forthk] If v ∼i w then there is a v′ ∼i w
′ such that v ↔k−1 v

′.
– [backk] If v

′ ∼i w
′ then there is a v ∼i w such that v ↔k−1 v

′.

Two epistemic models M = (W,∼, L, w) and M′ = (W ′,∼′, L′, w′) are called
k-bisimilar, written M↔kM′, if w and w′ are k-bisimilar in the disjoint union
of the two models.4

Note that k-bisimilarity implies n-bisimiliarity for all n < k. A crucial property
of k-bisimulations is that they preserve modal equivalence up to depth k. More
precisely, we have the following.

Proposition 3. [4, Proposition 2.31] Two (single-pointed) epistemic models are
k-bisimilar iff they agree on all formulas of modal depth at most k.

Another crucial property of k-bisimulations is that we can reduce the size of
a model by taking its k-bisimulation contraction, and doing so will give us a
model that is k-bisimilar to the original model. The k-bisimulation contraction
is achieved by identifying all k-bisimilar worlds of the model. Hence, for instance,
the 0-bisimulation contraction of a model is the one in which we identify any
pair of worlds that has the same label. More precisely, we define as follows.

4 The disjoint union of the two models simply takes the union of the worlds of the two
models (these world sets are supposed to be disjoint), the union of the indistinguish-
able relations, and preserves the labels of all worlds. To preserve single-pointedness,
we need to choose a single designated world of the resulting model, but this can be
chosen arbitrarily, as the construction of the disjoint union is only there to simplify
the definition of the k-bisimulation between distinct models.
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Definition 8. [23, Definition 4.11] The k-bisimulation contraction of an epis-
temic model M, denoted ⌊M⌋k, is the quotient structure of M with respect to
the ↔k-relation on its worlds.

The following notational convention will later come in handy.

Definition 9. Let M be an epistemic model and E an event model. We introduce
M⊗k E as shorthand for ⌊M⊗ E⌋k.

Proposition 4. [23, Proposition 4.12] For any model M and any k ≥ 0, we
have ⌊M⌋k ↔k M.

Combining Propositions 3 and 4, we can conclude that if we need to check
the truth of a formula ϕ of modal depth k in an epistemic model M, we can
first compute ⌊M⌋k, and then check whether ϕ holds there. Computing the k-
bisimulation contraction of course takes time, so it is not obvious that this would
be a better approach to the model checking of ϕ in M, even if the contracted
model is smaller. The real advantage appears if we can perform a k-bisimulation
contraction after each of a series of product updates, as we can then prove that
the models stay within a certain size (as opposed to e.g. the coordinated attack
problem, where each product update produces a model that is one world larger
than the previous). For instance, 0-bisimulation contraction always gives us a
model with at most 2|P | worlds, as any two worlds with the same label are
identified. The main complication of this idea is that we need to figure out how
to pick the right value of k. The following result by Yu et al. [23] shows that
when the event models only have propositional preconditions (preconditions of
modal depth 0), it is simple.

Proposition 5. [23, Proposition 4.14] Let M and M′ be two (single-pointed)
epistemic models with M↔kM′. Let E = (E,∼, pre, post, e) be a (single-pointed)
event model with propositional preconditions (preconditions of modal depth 0),
and suppose that M |= pre(e) and M′ |= pre(e). Then M⊗E ↔k M′ ⊗ E.

Suppose we are trying to solve a DBU instance with initial epistemic model M,
event models E1, . . . , Eu that only have propositional preconditions, and goal
formula ϕg. Let o denote the modal depth of ϕg. By Propositions 4, we have
M⊗E1↔oM⊗oE1. Applying Proposition 5, we then get (M⊗E1)⊗E2↔o(M⊗o

E1)⊗E2. Applying again Proposition 4, we get (M⊗oE1)⊗E2↔o (M⊗oE1)⊗oE2.
Combining these, we get

M⊗E1 ⊗ E2 ↔o M⊗o E1 ⊗o E2.

More generally, by repeated applications of Propositions 4 and 5, we get that

M⊗E1 ⊗ · · · ⊗ Eu ↔o M⊗o E1 ⊗o · · · ⊗o Eu

In other words, we can replace the original sequence of product updates (left)
by a sequence where after each update, we take the o-bisimulation contrac-
tion (right). This gives us a resulting model that is o-bisimilar to the model
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that would have resulted from performing the original product update sequence.
Hence the two resulting models assign the same truth-value to the goal formula
ϕg (by Proposition 3). This gives us an alternative way to decide DBU instances:
after each product update, we take the o-bisimulation contraction. This can po-
tentially be a computational advantage, as the o-bisimulation contractions can
prevent models from growing arbitrarily large when undergoing a sequence of
updates.

Example 5. Consider again the coordinated attack problem. Both of the event
models Ei→j and Ej→i only have propositional preconditions (more specifically,
the precondition formulas are d ∧ mi, d ∧ mj and ⊤). Hence, given any goal
formula ϕg of modal depth o, we can check whether ϕg holds after the successful
delivery of u messages by checking whether the following holds:

M⊗o Ei→j ⊗o Ej→i ⊗o · · ·︸ ︷︷ ︸
u event models

|= ϕg.

In the coordinated attack problem, the size of an o-bisimulation contracted model
is actually linear in o, as we will now show. Consider the Mn models of Figure 3.
Consider any two worlds wk and wl in Mn where o+1 < k, l < n+2− o. Then
from wk and wl we can by any path of length ≤ o only reach worlds where d
holds, so wk and wl will satisfy the same formulas of depth at most o, and hence
by Proposition 3, wk ↔o wl. In other words, wk and wl will be identified in the
o-bisimulation contraction. So any pair of worlds between the leftmost o worlds
and the rightmost o of Mn will be identified, and the contracted model ⌊Mn⌋o
can hence at most contain 2o + 1 worlds. This implies that when we need to
check whether ϕg holds after a sequence of updates (message passings), we only
need to consider models of a size that is linear in the model depth o of the goal
formula, not linear in the number u of updates.

In order for the idea presented above to work in general, we still need a
bit more. First of all, in DBU we can generally not assume that events have
propositional preconditions. So we can not rely on Proposition 5 in its current
form. We hence generalise it in the following way.

Proposition 6. Suppose M ↔k M′. Let E = (E,∼, pre, post, e) be an event
model with preconditions of modal depth at most n, where n ≤ k, and suppose
that M |= pre(e) and M′ |= pre(e). Then M⊗E ↔k−n M′ ⊗ E.

Proof. The proof is by induction on the value of k−n. The base case is k−n = 0.
So suppose M = (W,∼, L, w), M′ = (W ′,∼′, L′, w′) and E = (E,∼, pre, post, e)
are given, satisfying the assumptions of the proposition, where k−n = 0. We need
to prove that M⊗E and M′⊗E are 0-bisimilar. As we have assumed M↔kM′,
we immediately get that M ↔0 M′. This means w ↔0 w

′, in other words that
L(w) = L(w′). Hence, clearly, we must also have L((w, e)) = L((w′, e)), as (w, e)
and (w′, e) are two worlds with identical labels that have been updated with the
same event. Hence (w, e) ↔0 (w

′, e), i.e., M⊗ E ↔0 M′ ⊗ E , as required. This
covers the base case.
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For the induction step, suppose the conclusion holds for k − n = m and
consider the case of k − n = m + 1. Since m + 1 > 0, we must have k − n > 0
and hence k − n− 1 ≥ 0. Suppose M = (W,∼, L, w), M′ = (W ′,∼′, L′, w′) and
E = (E,∼, pre, post, e) are given, satisfying the assumptions of the proposition,
where k − n = m + 1. Suppose further that M ⊗ E = (W̄ , ∼̄, L̄, (w, e)) and
M′ ⊗ E = (W̄ ′, ∼̄′, L̄′, (w′, e)). We need to prove M ⊗ E ↔k−n M′ ⊗ E , i.e.,
(w, e) ↔k−n (w′, e). That (w, e) ↔0 (w′, e) holds is proved exactly as in the
base case. So we only need to prove [forthk−n] and [backk−n] of Definition 7 for
the pair of worlds (w, e) and (w′, e). [backk−n] and [forthk−n] are symmetric,
so it suffices to prove [forthk−n]. To prove [forthk−n], suppose (v, f) ∼̄i (w, e).
We then need to find a (v′, f ′) ∼̄′

i (w
′, e) such that (v, f) ↔k−n−1 (v

′, f ′). Since
(v, f) ∼̄i (w, e), we get v ∼i w and f ∼i e, by the definition of product update.
Since we have assumed M ↔k M′, we must have w ↔k w

′. Hence, by [forthk]
of the bisimilarity between w and w′, there exists v′ ∼′

i w
′ such that v ↔k−1 v

′.
Let N = (W,∼, L, v), N ′ = (W ′,∼′, L′, v′) and F = (E,∼, pre, post, f). Then
N ↔k−1 N ′. Since v↔k−1 v

′, the two worlds v and v′ satisfy the same formulas
up to modal depth k−1, by Proposition 3. Since k−n−1 ≥ 0, we have k−1 ≥ n.
The two worlds v and v′ must hence also satisfy the same formulas up to modal
depth n, in particular we get N |= pre(f) iff N ′ |= pre(f). Since (v, f) ∼̄i (w, e),
necessarily we must have N |= pre(f). Hence also N ′ |= pre(f). We therefore
have N ′ ⊗ F = (W̄ ′, ∼̄′, L̄′, (v′, f)). We now have that N ↔k−1 N ′, that F has
preconditions of modal depth at most n, and that N |= pre(f) and N ′ |= pre(f).
Since k − 1 − n = (k − n) − 1 = (m + 1) − 1 = m, we can apply the induction
hypothesis to conclude that N ⊗F ↔k−1−nN ′⊗F . Hence (v, f)↔k−1−n (v

′, f).
Since v′ ∼′

i w
′, f ∼i e, N ′ |= pre(f) and N ′ |= pre(e), we get (v′, f) ∼̄′

i (w
′, e).

Letting f ′ = f , we have then found the required (v′, f ′) ∼̄′
i (w

′, e) such that
(v, f) ↔k−n−1 (v

′, f ′). This completes the proof.

This result above is new. It is perhaps not a surprising result, but it might still
be of independent interest outside of the study of DBU. In particular, the original
version, Proposition 5, was the main ingredient in proving decidability of the plan
existence problem in epistemic planning with propositional preconditions [23].
Our generalised result could potentially be applied to the study of the complexity
of the corresponding bounded plan existence problem.

The result above can be applied as follows. Consider a DBU instance where
o as usual denotes the modal depth of the goal formula, c denotes the maximal
length of its event preconditions and u denotes the number of event models. Note
that c is also an upper bound on the modal depth of the event preconditions.
We can now reason as follows, recalling that k-bisimilarity implies n-bisimilarity
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for all n < k:

M⊗E1 ↔o+(u−1)c M⊗o+uc E1 by Proposition 4
⇓
M⊗ E1 ⊗ E2 ↔o+(u−2)c M⊗o+uc E1 ⊗ E2 by Proposition 6

⇓
M⊗ E1 ⊗ E2 ↔o+(u−2)c M⊗o+uc E1 ⊗o+uc E2 by Proposition 4

⇓
M⊗ E1 ⊗ E2 ⊗ E3 ↔o+(u−3)c M⊗o+uc E1 ⊗o+uc E2 ⊗ E3 by Proposition 6

⇓
· · ·

⇓
M⊗ E1 ⊗ · · · ⊗ Eu ↔o M⊗o+uc E1 ⊗o+uc · · · ⊗o+uc E3

Hence, since we are checking a goal formula of modal depth o, we can replace
the original sequence of updates (left) by a sequence where after each update, we
take the (o + uc)-bisimulation contraction (right). What is left is only to prove
that taking the (o+ uc)-bisimulation contraction after each update is sufficient
for tractability when the parameters include a, c, f, p and u.

4.2 Partition refinements

Bisimulation contractions can be computed using a partition refinement algo-
rithm [1]. We will here slightly generalise this to computing k-bisimulation con-
tractions. A partition of a setW is a set P = {W1, . . . ,Wn} withW1∪· · ·∪Wn =
W and all Wi being non-empty and pairwise disjoint. The elements Wi of the
partition are called blocks. To split a block Wi in a partition P = {W1, . . . ,Wn}
means to replace the block Wi by a set of sub-blocks W 1

i , . . . ,W
m
i such that

{W 1
i , . . . ,W

m
i } forms a partition of Wi. The result of the split is hence the new

partition P ′ = {W1, . . . ,Wi−1,W
1
i , . . . ,W

m
i ,Wi+1, . . . ,Wn}. A refinement step

consists in splitting one or more blocks of a partition.
Our partitions and refinements will be on the set of worlds W of epistemic

models M = (W,∼, L, w). For any subset W ′ ⊆ W and agent a ∈ A, we are
going to use the notation w ∼a W

′ to denote the existence of a v ∈ W ′ with
w ∼a v. When W ′ is a block of a partition, w ∼a W

′ simply means that agent
a has an (indistinguishability) edge to the block W ′.

Partition refinement algorithms are algorithms that start with an initial par-
tition that is then iteratively refined through a series of refinement steps (usually
until a fixed-point is reached). We here sketch one of the standard partition re-
finement algorithms, but refer to Paige and Tarjan [19] or Aceto et al. [1] for
a more thorough introduction to partition refinements. For all k > 0, we build
partition Pk from Pk−1 by the following refinement step:

Refinement step. Each blockWi of Pk−1 is split into sub-blocksW
1
i , . . . ,W

m
i

defined as follows. Any pair of worlds w, v ∈Wi belong to the same sub-
blockW j

i iff for every agent a ∈ A and every blockWb of Pk−1, w ∼a Wb

iff v ∼a Wb.
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Example 6. Let us illustrate partition refinement on the models Mn of the coor-
dinated attack problem (Figure 3). Consider the particular case ofM4. There are
three different labels in M4, the label {d,mj} of w1, the label {d} of the worlds
w2–w5, and the empty label of w6. Hence, the initial partition P0 of M3 will con-
tain three blocks W1 = {w1}, W2 = {w2, w3, w4, w5} and W3 = {w6}. Now con-
sider what happens when we apply the refinement step to P0 = {W1,W2,W3}.
Nothing can happen to W1 and W3 as these are already singletons. So consider
W2. We need to split worlds of W2 into separate sub-blocks if they differ on
which agents have edges to which blocks of P0. Since w2 has an i-edge to block
W1 and w3 doesn’t, w2 and w3 will end in distinct sub-blocks. A similar argu-
ment gives that w4 and w5 will end in distinct sub-blocks, since w5 ∼j W3, but
w4 ̸∼j W3. We hence only need to check whether w3 and w4 will also end in sepa-
rate sub-blocks. For k = i, j, we have w3 ∼k Wl iff l = 2. The same holds with w3

replaced by w4. Hence w3 and w4 will still end in the same sub-block. Hence the
refinement step will result in the partition P1 = {W1,W

′
1,W

′
2,W

′
3,W3} where

W ′
1 = {w2}, W ′

2 = {w3, w4} and W ′
3 = {w5}.

The following result is according to our knowledge also new, however it is
probably at least implicitly known by experts on bisimulation and partition
refinement, even if not explicitly spelled out in the existing literature.

Proposition 7. Let M be an epistemic model. After performing k refinement
steps on the initial partition of M, two worlds are in the same block iff they are
k-bisimilar.

Proof. Suppose M = (W,∼, L, v). For each k, we let Pk denote the kth partition
of W , that is, the result of performing k refinement steps on the initial partition
P0. We need to prove that two worlds are in the same block of Pk iff they are
k-bisimilar. The proof is by induction on k. The base case is k = 0. By definition,
we have that two worlds are in the same block of P0 iff they are 0-bisimilar. This
covers the base case.

For the induction step, suppose the claim holds for k and consider k + 1.
Suppose Pk+1 = {W1, . . . ,Wn}. Let w,w′ ∈ W be chosen arbitrarily. We need
to prove that w↔k+1w

′ iff w,w′ ∈Wi for some i ∈ {1, . . . , n}. First we prove the
“if” direction. So suppose w,w′ ∈Wi. Since the initial partition only puts worlds
in the same block if they have the same label, and since each refinement step
only splits existing blocks into sub-blocks, also w and w′ will necessarily have
the same label. This proves w↔0w

′. We then only have to prove [forthk+1] and
[backk+1]. We only prove [forthk+1], the other one being symmetric. So suppose
v ∼a w for some agent a ∈ A. We then need to find a v′ ∼a w

′ such that v↔k v
′.

Since Pk+1 is the result of applying a refinement step to Pk, by definition of the
refinement step we have that for all blocks Wb of Pk, w ∼a Wb iff w

′ ∼a Wb. Let
Wj denote the block of Pk containing v. Then w ∼a Wj , and hence w′ ∼a Wj .
From w′ ∼a Wj we get the existence of a v′ ∈ Wj satisfying w′ ∼a v

′. We now
only need to prove v ↔k v

′. However, this trivially follows from the induction
hypothesis, as Pk is the partition after k refinement steps, and v and v′ both
belong to the same block Wj of that partition.
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We now prove the “only if” direction of the induction step. So suppose
w ↔k+1 w

′. We need to show that w and w′ belong to the same block of Pk+1.
Since w↔k+1w

′ implies w↔kw
′, the induction hypothesis immediately implies

that they belong to the same block of Pk. So we only need to show that w and
w′ are not split into separate blocks when performing the refinement step on
Pk. This amounts to proving that for every agent a ∈ A and every block Wb of
Pk, we have w ∼a Wb iff w′ ∼a Wb. So let a and b be chosen, we then need to
prove w ∼a Wb iff w′ ∼a Wb. We only prove the “only if” direction, the other
being symmetric. So suppose w ∼a Wb. Then there exists a v ∈ Wb such that
w ∼a v. Since w ↔k+1 w

′, by [forthk+1] we get the existence of a v′ ∼a w
′ such

that v↔k v
′. By induction hypothesis again, we get that v and v′ belong to the

same block of Pk, in other words, both v and v′ belong to Wb. Since w
′ ∼a v

′,
we get w′ ∼a Wb, as required.

It follows from Proposition 7 that the quotient model made from the blocks
after having performed k partition refinement steps is identical to the k-bisimula-
tion contraction of the model. The following two results, of which the first is from
the existing literature, address the complexity of k-bisimulation contractions.

Proposition 8. [1, Theorem 0.2.6] The k-bisimulation contraction of M can be
computed in quadratic time in the size of M.

Proposition 9. The k-bisimulation contraction of M has a size bounded by a
computable function h(k, a, p), where a is the number of agents in M and p is
the number of propositional variables.

Proof. In the following, we will refer to the number of blocks in a partition as
the size of the partition (not to be confused with its size in terms of the memory
required to store it). For all k ≥ 0, we let Pk denote the kth partition of M,
that is, P0 is the initial partition of M, and for all k > 0, Pk is the result of
performing a single refinement step on Pk−1.

If we can show that the number of worlds of ⌊M⌋k is bounded by a function
in k, a and p, so will the size of the model itself: the number of edges is bounded
by n2a, where n is the number of worlds of the model; and the length of the
world labels is bounded by p. The number of worlds of ⌊M⌋k is by Proposition 7
equal to the size of Pk. It hence suffices to find a function g(k, a, p) that provides
an upper bound on the size of Pk. We define g by:

g(0, a, p) = 2p

g(k + 1, a, p) = 2ag(k,a,p)g(k, a, p)

We then only need to prove that Pk has a size bounded by g(k, a, p). The proof
is by induction on k.

The base case is k = 0. We here need to show that P0 has size at most
g(0, a, p) = 2p. However, this is trivial, as the initial partition consists of a single
block for each label of M, and the number of labels is bound by 2p. For the
induction step, suppose the claim holds for k and consider k + 1. By definition,
Pk+1 is the result of performing a refinement step on Pk = {W1, . . . ,Wn}. By
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induction hypothesis, we have n ≤ g(k, a, p). Let the signature of a world w (wrt.
Pk) be the set {(a, j) ∈ A×N | w ∼a Wj}. Now note that two worlds in the same
block of Pk are split into distinct sub-blocks by the refinement step iff they have
distinct signatures. Hence, the number of sub-blocks created by a split of a block
is bounded by the number of signatures, which in turn is bounded by 2an. Since
we are starting out with n blocks, and each block is split into at most 2an sub-
blocks, the size of Pk+1 is bounded by 2ann ≤ 2ag(k,a,p)g(k, a, p) = g(k + 1, a, p),
as required.

4.3 The tractability result

With all the above results on k-bisimulations and partition refinements in place,
we are finally ready to prove our main positive result, fixed-parameter tractabil-
ity of acfpu-DBU.

Theorem 4. acfpu-DBU is fixed-parameter tractable. In other words, the Dy-
namic Belief Update problem becomes tractable when restricting the number of
propositional variables and agents (p,a), the number of event models (u), the
maximum length of event preconditions (c), and the length of the goal formula
(f).

Proof. To prove that acfpu-DBU is fixed-parameter tractable, we need to find an
fpt-algorithm that solves it. The algorithm is the one we have already sketched
above: After each product update, we take the (o+ uc)-bisimulation contraction
of the resulting model. As already shown, the goal formula will hold in this
contracted update sequence iff it holds in the original update sequence. What is
left is then only to show that this algorithm is fpt. To show this, we need to find
a computable function g : N5 → N and a polynomial P such that the running
time of the algorithm for an input where the main part has length n is at most
g(a, c, f, p, u)·P(n) (we choose to keep the different parameters separate, to make
the role of each independent parameter more clear).

Let us compute an upper bound on the time it takes to compute the product
update of an epistemic model with at most m worlds with one of the event
models in the input. The number of events in the event models is limited by n
(the input size). So to compute the product update, we need to create at most
mn world-event pairs, and for each of these we need to check a precondition of
size at most c. Model checking is polynomial in the sum of the size of the model
and the formula to be checked [21], so checking each precondition is polynomial
in m + c. For each world-event pair that survives (where the precondition of
the event is satisfied in the world), we need to enforce the postcondition in the
resulting world. This can be done in time p. So handling each world-event pair
takes time at most p(m + c)O(1), and since there are at most mn such world-
event pairs, the total time to compute the worlds of the updated model (and
their labels) is at most mnp(m+ c)O(1). In addition to computing the worlds of
the updated model, we need to compute the indistinguishability relations. We
can do this by iterating through each of the at most am2 indistinguishability
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edges of the epistemic model and the at most an2 indistinguishability edges of
the event model. For each such choice of two indistinguishability edges w ∼i v
and e ∼j f , we add an indistinguishability edge (w, e) ∼i (v, f) to the updated
model if i = j and both (w, e) and (v, f) exist in the model. This can hence be
done in time at most a2n2m2. So the total time it takes to compute the product
update is at most mnp(m+ c)O(1) + a2n2m2. The conclusion is that computing
the product update is polynomial inm, n, c, a and p, and the size of the resulting
model is polynomial in the same parameters.

After each product update, we need to compute the (o + uc)-bisimulation
contraction of the updated model. According to Proposition 8, this can be done
in quadratic time in the size of the model. Hence, the time it takes to compute
the product update and the following contraction is still polynomial in m, n,
c, a and p. We now take a closer look at the value of m. In the initial product
update, m is bounded by n. So computing the first contracted update, ⌊M ⊗
E1⌋o+uc, is polynomial in n, c, a and p. In all the following product updates, m
is bounded by the size of the (o+ uc)-bisimulation contracted model. According
to Proposition 9, the (o + uc)-bisimulation contraction of a model has a size
bounded by h(o + uc, a, p) for some computable function h. Since o < f (the
modal depth of the goal formula is lower than its length), its size is also bounded
by h(f + uc, a, p). So each of the following contracted updates can be done in
polynomial time in h(f + uc, a, p), n, c, a and p.

We need to perform u contracted updates in total. As each of these are
polynomial in h(f + uc, a, p), n, c, a and p, the total sequence of contracted
updates can be done in polynomial time in h(o+ uc, a, p), n, c, a, p and u. The
final step is model checking of a formula of size at most f in a model of size
at most h(f + uc, a, p). This is polynomial in f and h(f + uc, a, p). Hence, the
entire algorithm runs in polynomial time in h(f + uc, a, p), n, and the complete
sequence of parameters acfpu. In other words, it runs in time

h(f + uc, a, p)O(1)aO(1)cO(1)fO(1)pO(1)uO(1)nO(1).

It immediately follows that we can find a computable function g : N5 → N and
a polynomial P such that the running time is at most g(a, c, f, p, u) · P(n). This
completes the proof.

Note the role played by the different parameters in the proof above. All 5 pa-
rameters are included in the expression h(f + uc, a, p) providing a bound on the
size of the contracted updates. The parameter p is required to make sure that
the initial partition doesn’t become too big, and a is required to make sure that
a block can’t be split into too many sub-blocks. The parameters f, u and c of
the first argument to h are required to give an upper bound on the k for which
we need to do k-bisimulation contractions. It is crucial that this upper bound
doesn’t depend on n, as h is not polynomial in its first argument. So this account
for the role of all 5 parameters. And, indeed, we already formally proved that
all 5 of them are needed to ensure tractability, as can be seen from Figure 5.

The tractability result above is proven for a restricted version of DEL where
we consider all agent relations to be equivalence relations. However, note that
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we never use the assumption that the relations are equivalence relations, so the
theorem above immediately generalises to arbitrary frame classes.

5 Discussion and future work

We managed to solve all of the remaining 14 open tractability problems for the
dynamic belief update problem. In most cases, our results were negative, i.e.,
we proved fixed-parameter intractability. Out of the original 27 = 128 problems,
the 128 − 14 = 114 was already previously solved, but we actually ended up
providing new proofs of 84 of them, if we count all our results and corollaries.

The short Turing machine acceptance problem (STMA) is the acceptance
problem of single-tape nondeterministic Turing machines with bound k on the
number of computation steps. It is a parameterized problem with parameter k
known to be W[1]-complete, i.e., fixed-parameter intractable [8]. The proof of
Theorem 1 gives us a construction allowing us to encode an instance of STMA as
a DBU instance. Since the parameter k is the number of computation steps, which
translates into the parameter u in the DBU instance, we can do an fpt-reduction
from STMA to acfou-DBU, i.e., we can replace e, p by u in the fixed-parameter
intractability result of Theorem 1. We have to drop the parameters e and p
as their sizes depend on the alphabet of the Turing machine. This reduction
then immediately gives W[1]-hardness of acfou-DBU. This result was already
established by van de Pol et al. [20], but with our Turing machine construction
in Theorem 1, we get this additional result essentially for free.

Our tractability result of Section 4 ties back to the opening discussion of
this paper. We wrote that “a conjecture is that higher-order thinking is the
most prominent source of intractability, and situations requiring modest depth
of reasoning are the easiest to untangle.” It is often not clear what depth of
reasoning is required in a given situation, e.g. what depth of reasoning is required
to solve a given DBU instance. However, our results of Section 4 shed some light
on it. We showed that the depth of reasoning required is never higher than o+uc,
since we can always iteratively replace each model by its (o+uc)-contraction and
still arrive at the same result (and the (o + uc)-contraction is only guaranteed
to preserve modal equivalence up to modal depth o + uc). So if we use all of
o, u and c as fixed parameters, we are guaranteed to have fixed bound on the
required depth of reasoning. It then turns out that this in itself is not sufficient
to guarantee tractability, as we can still exploit the complexity coming from
using very long goal formulas (as in the proof of Theorem 3), many agents (as
in the proof of Theorem 2) or many propositions (as in the fixed-parameter
intractability proof for acfou-DBU by van de Pol et al. [20]). However, if we
bound all of these parameters, we get tractability.

We could also turn things around and define a depth-limited version of DBU
where we put a bound on the depth of reasoning that the algorithm is allowed to
make use of. Let us use DBU(d) to denote the depth-limited version of DBU with
depth parameter d. There are multiple possible ways to formally define DBU(d),
but one would be to preserve the same input as for DBU and then require the
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output to be yes iff M⊗d E1 ⊗d · · · ⊗d Eu |= ϕg. The complication is of course
that DBU and DBU(d) are not in general guaranteed to give the same answer
for a given input, except if d satisfies certain restrictions, like d ≥ o + uc that
according to the results of Section 4 will suffice. It might seem to be a bug if
DBU(d) gives a different answer than DBU, since the real problem we are trying
to solve is clearly DBU. However, it shouldn’t necessarily be considered a bug.
For instance, an agent with no Theory of Mind will normally answer a first-
order false-belief task incorrectly, since it requires a first-order Theory of Mind
to do the required reasoning (it requires depth 1 reasoning). Similarly, an agent
with a first-order Theory of Mind can not be expected to respond correctly to
a second-order false-belief task (it requires depth 2 reasoning). In other words,
if we put a limit on the depth of reasoning of a given agent or algorithm, then
of course if a certain problem requires reasoning of higher orders than that, the
agent or algorithm might come up with a wrong answer to the problem.

Let us consider the complexity of DBU(d). First of all, it is not tractable.
Had it been tractable, then also cou-DBU would be tractable, as when d ≥
o+uc, the two problems DBU and DBU(d) coincide. The question is then, which
additional parameters do we need to make DBU(d) tractable? Consider the proof
of Theorem 4. If we replace the expression o + uc by d, it actually provides us
with a proof that we can check whether M ⊗d E1 ⊗d · · · ⊗d Eu |= ϕg holds in
time h(d, a, p)O(1)aO(1)cO(1)fO(1)pO(1)uO(1)nO(1), where n is the size of the main
part of the input. In other words, this is the time it takes to check an instance of
DBU(d). It hence follows that ap-DBU(d) is fixed-parameter tractable. If we are
looking for the source of complexity in the ability of humans to attribute mental
states to ourselves and others, it might be reasonable to assume a fixed upper
bound on the number of agent (a) and number of propositions (p), since we
are usually reasoning about a fixed environment (the world of agents and facts
around us). And then, indeed, if we fix those, the depth-limited dynamic belief
update problem becomes tractable. In this sense, there is in fact some evidence
that the actual source of complexity in epistemic reasoning is the depth of the
required reasoning, and that as long as we put a limit on that depth, epistemic
reasoning is tractable. This informal discussion of course needs to be turned into
a more thorough and formal investigation, including a proper investigation of
the most correct way to define the depth-limited DBU problem. We leave this
for future work.

Other ideas for future studies include considering the plan synthesis problem
instead of the plan verification problem, and for instance then to include variants
of the additional parameters introduced for the classical planning problem by
Kronegger et al. [18].
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