
Parameterized Complexity of Dynamic
Belief Updates

Thomas Bolander1 and Arnaud Lequen2(B)

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
tobo@dtu.dk

2 Univ Rennes, ENS Rennes, Bruz, France
arnaud.lequen@ens-rennes.fr

Abstract. Dynamic Belief Update (DBU) is a model checking problem
in Dynamic Epistemic Logic (DEL) concerning the effect of applying a
number of epistemic actions on an initial epistemic model. It can also
be considered as a plan verification problem in epistemic planning. The
problem is known to be PSPACE-hard. To better understand the source
of complexity of the problem, previous research has investigated the com-
plexity of 128 parameterized versions of the problem with parameters
such as number of agents and size of actions. The complexity of many
parameter combinations has been determined, but previous research left
a few combinations as open problems. In this paper, we solve most of the
remaining open problems by proving all of them to be fixed-parameter
intractable. Only two parameter combinations are still left as open prob-
lem for future research.

Keywords: Parameterized complexity · Model checking · Dynamic
Epistemic Logic · Plan verification

1 Introduction

In the fields of psychology, ecology, economy, and various areas of computer
science like automated planning and distributed systems, the need often arises
to model multi-agent systems and reason about the knowledge of the involved
agents. Indeed, situations where multiple human or artificial agents interact with
their environment, and have to update their knowledge accordingly, are ubiqui-
tous. Dynamic Epistemic Logic (DEL) is a well-suited framework to model such
situations, as it is a family of modal logics that allow not only to reason about
(higher-order) knowledge, but also to represent how such knowledge is dynam-
ically updated through the occurrence of events. Unfortunately, many decision
problems associated with DEL are provably hard [7,12]. Despite that, in real-
life situations humans manage to reason fairly effectively about the knowledge of
themselves and other agents (at least to modest depths of reasoning). Moreover,
certain tasks involving DEL can be carried out fairly easily [12].

In this paper, we study the Dynamic Belief Update (DBU) problem, which
boils down to verifying whether an epistemic formula holds in a model after a
c© Springer Nature Switzerland AG 2020
M. A. Martins and I. Sedlár (Eds.): DaĹı 2020, LNCS 12569, pp. 87–102, 2020.
https://doi.org/10.1007/978-3-030-65840-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65840-3_6&domain=pdf
http://orcid.org/0000-0003-1551-1703
http://orcid.org/0000-0003-0339-0967
https://doi.org/10.1007/978-3-030-65840-3_6

88 T. Bolander and A. Lequen

series of epistemic updates, i.e., whether a certain epistemic fact holds after a
sequence of (epistemic) events have occurred in an initial (epistemic) situation.
The events can also be thought of as actions executed by agents, and hence DBU
can equivalently be thought of as a plan verification problem in an epistemic
setting. We extend the efforts of van de Pol et al. [12] to identify which aspects
of DBU make it intractable. Of the set of sub-problems of DBU identified by
van de Pol et al., we manage to settle the tractability question of most problems
previously left open, leaving only two undecided.

In Sect. 2, we present the DEL framework of this paper, and after recalling
notions of parameterized complexity, we present DBU and its parameters. In
Sect. 3, we prove our new fixed-parameter intractability results of DBU.

2 Background

2.1 Dynamic Epistemic Logic

Dynamic Epistemic Logic (DEL) is a modal logic focused on reasoning about
knowledge, which can be revised according to the evolution of the situation [7].
In this paper, we use a variant of DEL that allows multi-pointed epistemic
models and has propositional postconditions [3]. While various other variants
of DEL exist, we present here a simple version, that can be readily extended
into a version of DEL with more general preconditions, postconditions, or frame
conditions. As we only present intractability results, our work still holds for more
complex versions of DEL.

The language LK(P,A) of multi-agent epistemic logic is defined as follows,
where p ranges over a finite set of propositional variables P , and i over a finite
set of agents A:

ϕ := � | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ,

The intended meaning of Kiϕ is “agent i knows ϕ”. We will often use the abbre-
viated notation K̂iϕ = ¬Ki¬ϕ, which reads “agent i considers ϕ possible”. Other
symbols such as ∨ and → can be defined by abbreviation as usual. The semantic
of the language is defined through epistemic models (Kripke models).

Definition 1. (Pointed Epistemic Model) A pointed epistemic model for the
language LK(P,A) is a pair (M,Wd) where M = (W,R, V) and:

– W is a finite, non-empty set of worlds
– Wd ⊆ W is the non-empty set of the designated worlds
– R : A → 2W×W is a function assigning an equivalence relation Ri to every

agent i, called the indistinguishability relation for agent i
– V : P → 2W is a valuation function that assigns to every propositional vari-

able the set of worlds in which it is true

Definition 2. (Truth in a pointed epistemic model) Let (M,Wd) be a pointed
epistemic model, where M = (W,R, V), and let ϕ ∈ LK(P,A), and w ∈ W . The
truth conditions for ϕ are the standard propositional ones plus:

(M, {w}) |= Kiϕ iff for all w′ s.t. Ri(w,w′), (M, {w′}) |= ϕ
(M,Wd) |= ϕ iff for all w ∈ Wd, (M, {w}) |= ϕ

Parameterized Complexity of Dynamic Belief Updates 89

Fig. 1. A pointed epistemic model
(M, {w1}) for LK({p, q}, {i}) with
M = (W, R, V), W = {w1, w2}, Ri =
{(w1, w1), (w1, w2), (w2, w1), (w2, w2)}
and V (p) = {w1}, V (q) = {w1, w2}.
Reflexive edges are generally omitted.

Fig. 2. A pointed event model
(E , {e1}) for LK({p, q}, {i}) with E =
(E, Q, pre, post), E = {e1, e2}, Qi =
{(e1, e1), (e1, e2), (e2, e1), (e2, e2)},
pre(e1) = p, pre(e2) = Kip,
post(e1) = ¬q and post(e2) = �.

Example 1. Figure 1 shows an epistemic model where agent i can not make the
distinction between worlds w1 and w2. Thus, it does not know whether p is true
or not, as it holds in the “actual” world w1, but not in w2. As such, (M, {w1}) �|=
Kip, although (M, {w1}) |= p. As q is true in both worlds, (M, {w1}) |= Kiq.

Event models, defined next, represent changes to the situation, which lead agents
to update their knowledge.

Definition 3. (Pointed Event Model) A pointed event model for LK(P,A) is
a pair (E , Ed) where E is a tuple E = (E,Q, pre, post), such that

– E is a non-empty finite set of events
– Ed ⊆ E is a non-empty set of designated events
– Q : A → 2E×E is a function assigning an equivalence relation Qi to every

agent i, called the indistinguishability relation for agent i
– pre : E → LK(P,A) is a function assigning to each event a precondition
– post : E → LK(P,A) is a function assigning to each event a postcondition,

which is a conjunction of literals (propositional variables and their negations,
including �)

One could also define a precondition as a formula of the language LDK(P,A),
which extends LK(P,A) with the modality [E ′, E′

d]ϕ, where (E ′, E′
d) is a pointed

event model and ϕ a formula of LDK(P,A). Intuitively, this new modality means
that, after the (applicable) events of (E ′, E′

d) occurred, ϕ is true. In this paper,
we do not consider this modality, even though our results would still apply, as
we only show intractability results.

When no confusion can arise, we will use the abbreviated notation M for
pointed epistemic models (M,Wd), and similarly for pointed event models. Epis-
temic models can be updated with the application of event models through prod-
uct updates, defined as follows.

Definition 4. The product update of the (pointed) epistemic model (M,Wd)
with the (pointed) event model (E , Ed) is the (pointed) epistemic model
(M,Wd) ⊗ (E , Ed) = (M′,W ′

d), such that M′ = (W ′, R′, V ′) and

– W ′ = {(w, e) ∈ W × E | M, w |= pre(e)}
– R′

i = {((w, e), (v, f)) ∈ W ′ × W ′ | Ri(w, v) and Qi(e, f)}

90 T. Bolander and A. Lequen

– V ′(p) = ({(w, e) ∈ W ′ | M, w |= p}∪{(w, e) ∈ W ′ | post(e) |= p})−{(w, e) ∈
W ′ | post(e) |= ¬p}

– W ′
d = {(w, e) ∈ W ′ | w ∈ Wd and e ∈ Ed}

Example 2. Figure 2 shows an event model where event e1 or e2 can occur, and
agent i cannot distinguish which event actually happens. Event e1 can only occur
in worlds where p is true, and updates them by making q false. Event e2 can
only occur in worlds where agent i knows p, and does not change the truth
value of any variable. If we take the product update (M, {w1}) ⊗ (E , {e1}) of
the epistemic model of Fig. 1 with the event model of Fig. 2, we get a model
containing only a single world satisfying p ∧ ¬q: the only world satisfying any
of the event preconditions is w1 and it only satisfies the precondition of e1.
So only the world-event pair (w1, e1) “survives” the product update, and the
postcondition of e1 enforces q to become false (but otherwise preserves the truth-
values from w1).

2.2 Parameterized Complexity

In this section, we recall some notions of parameterized complexity. Parame-
terized complexity is a branch of complexity theory whose aim is to offer a
finer-grained analysis of a computational problem, taking into account some
characteristics of each instance. It studies parameterized problems, which resem-
ble classical decision problems. Given an alphabet Σ, a parameterized problem
L is a subset of Σ∗ × N. Given an instance 〈x, k〉 of L, we call x the main part
and k the parameter. The parameter k is a metric that gauges one dimension of
x. For instance, if our problem is to model-check formulas of LK(P,A), then x
consists of a formula φ and a model M, while k can e.g. be the modal depth of
φ or the number of agents mentioned in φ and M.

In classical complexity theory, the class of tractable problems is P. The corre-
sponding class in parameterized complexity theory is the class of fixed-parameter
tractable problems, which is denoted FPT. It encompasses all parameterized
problems that can be solved by an fpt-algorithm, defined as follows.

Definition 5. (Fpt-algorithm) Let L be a parameterized problem. An algorithm
A is an fpt-algorithm for problem L if it solves L, and there exists a computable
function f : N → N and a polynomial P, such that the running time of A on any
instance 〈x, k〉 ∈ L is at most

f(k) · P(|x|)

For instance, the problem SAT is notoriously intractable [6]. However, its param-
eterized variant p-SAT, where p is the number of propositional variables, is
fixed-parameter tractable. Indeed, checking all 2p assignments of the p variables
against a formula ϕ can be done in time 2p · P(|ϕ|), for some polynomial P.
Intuitively, this means that a set of instances of SAT, where all formulas have a
number of variables bounded by some constant p, forms a tractable problem.

Parameterized Complexity of Dynamic Belief Updates 91

Proving that a parameterized problem is not fixed-parameter tractable can be
done through fpt-reductions, defined next. They can be seen as the parameterized
complexity counterpart of classical polynomial-time reductions, and are useful
for proving membership and hardness results for parameterized problems.

Definition 6. (Fpt-reduction) Let L and L′ be two parameterized problems. An
fpt-reduction from L to L′ is a mapping R : L −→ L′ such that:

– 〈x, k〉 ∈ L iff 〈x′, k′〉 = R(〈x, k〉) ∈ L′.
– R is computable by an fpt-algorithm, i.e., there is a computable function f

and a polynomial P such that R(〈x, k〉) can be computed in time f(k) ·P(|x|).
– There exists a polynomial g such that, if 〈x, k〉 ∈ L and 〈x′, k′〉 = R(〈x, k〉) ∈

L′, then k′ ≤ g(k).

When there exists an fpt-reduction from L to L′, we write L ≤fpt L′.

It follows from the way fpt-reductions are defined that FPT is closed by fpt-
reduction. More specifically, suppose L ≤fpt L′. Then if L′ belongs to FPT, then
so does L. Hence, to prove that a problem L′ is not fixed-parameter tractable,
it suffices to find an fpt-reduction to L′ from a problem L known to be not
fixed-parameter tractable (we call such problems fixed-parameter intractable). In
this paper, we consider two complexity classes that are deemed fixed-parameter
intractable, namely W[1] and para-NP [8]. W[1] is the class of problems that can
be fpt-reduced to k-W2SAT, which is the problem where, given a 2CNF formula
ϕ and a parameter k, one has to decide if there exists a valuation satisfying ϕ
in which at most k variables are true. Para-NP is the class of parameterized
problems that can be solved by a nondeterministic fpt-algorithm. Para-NP-hard
problems are deemed fixed-parameter intractable, as W[1] ⊆ para-NP [9].

In the remaining of this paper, we will allow problems to have multiple param-
eters. If a problem L has a set of parameters {k1, . . . , kn}, then its instance are
of the form 〈x, k1 + · · ·+ kn〉. A problem L with parameters {k1, . . . , kn} is often
denoted {k1, . . . , kn}-L. When adding further parameters to a parameterized
problem, we of course make it more constrained. That is, for any problem L and
parameter sets X and Y , the problem (X ∪ Y)-L is at least as constrained as
X-L. Hence the following is easily proved.

Proposition 1. Let X and Y be sets of parameters of a decision problem L.
Then (X ∪ Y)-L ≤fpt X-L.

2.3 Dynamic Belief Update

The decision problem considered in this paper is presented in Fig. 3, following van
de Pol et al. [12]. It is the problem of checking whether a certain epistemic for-
mula is true after having updated an initial epistemic situation (epistemic model)

92 T. Bolander and A. Lequen

Fig. 3. The decision problem DBU considered in this paper

Table 1. Parameters for DBU

Param. Description

a Number of agents

c Max. length of event preconditions

e Max. no. of events per event model

f Length of goal formula

Param. Description

o Goal formula’s modal depth

p Number of prop. variables

u Number of event models

with a sequence of epistemic actions (event models).1 So it is about the complex-
ity of keeping track of “who knows what” when observing a sequence of actions
taking place, where these actions can both change ontic facts and what the differ-
ent agents know. Such problems occur e.g. in the coordinated attack problem, the
consecutive number puzzle, the muddy children puzzle, board games like Hanabi
and Clue and the false-belief tasks studied in cognitive psychology [1,2,4]. We
can also think of the problem as the plan verification problem in epistemic plan-
ning [3]: Given an initial state (epistemic model), a sequence of actions (event
models) and a goal formula, does the action sequence achieve the goal from the
initial state?

DBU is PSPACE-complete, as proven by van de Pol et al. [12]. Their paper
proposes various parameters as an attempt to identify the mechanisms that
make DBU hard. Those parameters are given in Table 1, and any combination
of those form a parameterized version of DBU. This leads us to the class of
problems of the form X-DBU, where X is a subset of the 7 parameters. For
instance, {a, c, p}-DBU is the dynamic belief update problem where the param-
eters are the number of agents, the length of the preconditions and the number
of propositional variables. There are 27 = 128 problems of this form. Prior to
our work, the (fixed-parameter) tractability or intractability of 114 of them was
already known [12]. We show intractability results for an additional 12 prob-
lems, thus leaving only 2 (closely related) problems unsettled. Table 2 summa-
rizes the known results, including the new ones of this paper. It only mentions

1 A better name would probably be “Dynamic Knowledge Update” as we are here
only considering models where the underlying accessibility relations are equivalence
relations (i.e., S5). However, since all our results are intractability results, these still
hold if we generalise to arbitrary accessibility relations, including ones representing
beliefs.

Parameterized Complexity of Dynamic Belief Updates 93

Table 2. Complexity results for the most general parameterized variants of DBU, from
which all other results for our set of parameters can be immediately deduced. Results
on the left table originate from [12], while results on the right table constitute the
original contributions of this paper.

Param. for DBU Complexity

{a, c, f, o, u} W[1]-hard

{a, f, o, p, u} W[1]-hard

{e, u} FPT

Earlier known results [12]

Param. for DBU Complexity

{a, c, e, f, o, p} para-NP-hard

{c, f, o, p, u} W[1]-hard

{a, c, o, p, u} W[1]-hard

New results of this paper

the strongest ones, as all other results can be immediately deduced from them
through Proposition 1, and the observation that, for any set of parameters X of
DBU, (X ∪ {f})-DBU ≤fpt (X ∪ {f, o})-DBU (if we constrain the length of the
goal formula, we are also constraining its modal depth).

It can be hard to keep track of 128 different versions of the same prob-
lem. However, many are obviously interdependent in the sense that the
(in)tractability of one immediately implies the (in)tractability of the other, e.g.
through Proposition 1. To keep track of dependency and which problems are
still open, we developed a small script, which can be found at https://github.
com/arnaudlequen/dbuproblemfinder. The script allowed us to find the open
problems that would solve most other open problems, and keeping track of the
remaining open problems as we gradually settled more cases.

3 Complexity Results

Theorem 1. {a, c, e, f, o, p}-DBU is fixed-parameter intractable (more precisely,
para-NP-hard). In other words, the Dynamic Belief Update problem is intractable
even when restricting the number of propositional variables and agents (p,a), the
maximum number of events in event models (e), the maximum length of event
preconditions (c), and the length and modal depth of the goal formula (f,o).

Proof. In this proof, we build an fpt-reduction from an NP-hard problem to an
instance of {a, c, e, f, o, p}-DBU with fixed values of a, c, e, f, o and p, thus prov-
ing para-NP-hardness of the latter (since the NP-hard problem doesn’t have any
parameter, the reduction is also a regular polynomial reduction). The construc-
tion used in the proof is an adaptation of the proof of Theorem 19 of Bolander
et al. [3]. The general idea is to simulate, through an instance of DBU, the
execution of a fixed nondeterministic Turing machine M that solves a given
NP-hard problem (any NP-hard problem will do). We begin by encoding the
initial configuration of the machine (i.e., its tape, the position of its head and its
internal state) into the initial epistemic model. Then, we build a series of event
model updates, such that the epistemic model after n product updates contains
the representation of every configuration of M that can be reached in exactly

https://github.com/arnaudlequen/dbuproblemfinder
https://github.com/arnaudlequen/dbuproblemfinder

94 T. Bolander and A. Lequen

Fig. 4. Two information cells for agent k, both representing the ID
x1 · · · xn−1qsxn · · · xm of the Turing machine M = (S, Γ, q0, δ, qf), where xi ∈ Γ
and qs ∈ S. This ID represents the configuration of M where the word on the tape is
x1 · · · xm, where M is in state qs, and the head is at the nth symbol xn of the word
on the tape. Recall that Rk = Ri ∪ Rj and Rg = W × W is implicitly assumed, where
W is the set of all worlds.

Fig. 5. The initial epistemic model M0 for the Turing machine M with input word
ω = x1 · · · xm. It consists of the represented ID of the initial configuration of M plus
an additional designated world wt only accessible from the other worlds by the Rg

relation (recall that Rk = Ri ∪ Rj and Rg = W × W is implicitly assumed).

n transitions (computation steps). Finally, we build a goal formula that checks
whether an accepting configuration was encountered in the process or not. Thus,
the DBU instance is positive if and only if M accepts the word in the input.

Let M = (S,Γ, q0, δ, qf) be any nondeterministic Turing machine that solves
an NP-hard problem in polynomial time, with states S = {q0, q1, . . . , qf}, where
q0 is the only initial state, qf is the only accepting state, Γ is the set of tape
symbols including the blank symbol # and δ is the transition function [11].

The DBU instance we build has agents A = {i, j, k, g} and propositional
variables P = Γ∪S ∪{ri, rj , t}. Information cells for agent k (i.e., sets Wk ⊆ W
of maximum size that are closed under Rk) are used to encode configurations of
M , and agents i and j are used to distinguish the right and the left of each cell
of the tape that we encode. We will in all epistemic models enforce Rk = Ri ∪Rj

by having Rk = Ri ∪ Rj in the initial model, and Qk = Qi ∪ Qj in all event
models. We will similarly enforce Rg to be the universal relation—i.e., make
any two worlds indistinguishable—by making all pairs of worlds in the initial
model indistinguishable, and by making all pairs of events of all event models
indistinguishable. For simplicity, the Rk and Rg indistinguishability relations
will not be explicitly drawn. Furthermore, the reflexive and transitive closure of
all indistinguishability relations drawn is implicitly assumed.

A configuration of the machine can be represented by an Instantaneous
Description (ID) [11]. Following Bolander et al. [3], we represent IDs by epistemic
models as illustrated in Fig. 4. This pair of information cells for agent k offers
two unique representations of an ID [3], and we call represented ID an informa-
tion cell for k that has the form of either (4.1) or (4.2). Each world represents
one cell of the tape of the machine, and is marked with a propositional variable

Parameterized Complexity of Dynamic Belief Updates 95

Fig. 6. The transition component τ i
l , for a transition l of the form δ(qs, xn) = (qt, y, R),

where xn �= y.

representing the symbol in the cell. One world is marked with two additional
propositions: one for the current state of the machine (qs), as well as either ri

or rj . This world represents the current position of the head and is called the
current world. The propositions ri and rj are used to distinguish between the
right and the left of the current cell. If ri (resp. rj) is true, then the cell at the
right of the current one is reachable through an i-edge (resp. j-edge).

We proceed to show how to build the initial epistemic model and event
models. Suppose that in its initial configuration, M is in state q0 and with
the word ω = x1 · · · xm on its tape. Then the initial epistemic model M0 is the
represented ID of the initial configuration of M , as shown in Fig. 5. In addition
to that, we add a designated world wt only labeled by the prop. variable t. Its
purpose is to make sure the model doesn’t end up being empty, which could
otherwise happen if at some point no transition can be applied to any ID.

The next step consists in building the series of event models, which are all
copies of a single model Etrans. The aim of Etrans is to simulate one step of M ,
by applying all applicable transitions to each represented ID of the previous
epistemic model. The event model mainly consists in a disjoint union of sev-
eral sub-event models, that we call transition components, whose purpose is to
attempt to apply a transition of the Turing machine M to a represented ID.

For each transition l, i.e., each element of the transition function δ, we con-
struct an i-transition component τ i

l and a j-transition component τ j
l . We con-

struct these transition components such that given an ID s and valid transition
l for s, applying τ i

l (resp. τ j
l) to the represented ID of s, of the form (4.1) (resp.

(4.2)), will result in the represented ID of the successor of s after l was applied.
Applying to an ID s a transition component whose form does not match the
represented ID of s, or whose transition is not applicable to s, will yield no
worlds.

Figure 6 shows an example of an i-transition component. The j-transition
component can be obtained by swapping i and j everywhere. Other transitions,
such as δ(qs, xn) = (qt, y, L) or transitions satisfying xn = y, can be handled
similarly. Let us try to explain the intuition behind this construction. It is very
similar to the construction of Bolander et al. [3]. Event e1 makes sure that, after
the update, worlds that represent cells of the tape that are unaffected by the
transition are left unchanged. It copies into the updated model every world of

96 T. Bolander and A. Lequen

Fig. 7. Event model σ. The purpose of ef is to carry to the updated model any world
marked with qf , as it means that an accepting configuration has been reached. Event
et copies the world wt, as the only designated event.

the represented ID, except the world representing the current head position and
the one at its right. Event e2 copies the current world, noted w, but removes the
propositional variables that mark the head of the machine. It also updates the
tape symbol. If the cell on the right of the current position of the head is not
blank, then there exists a world w′ on the right of the current world w, i.e., such
that Ri(w,w′). Event e3 adds on w′ the propositional variables that make it the
current world of the updated model. It updates as well the current state of the
machine, from qs to qt. If the cell on the right of the current position of the head
is blank, then no world is on the right of the current world. Event e4 creates it
with a blank symbol, and sets it to be the current world of the updated model.
Applying the i-transition component of Fig. 6 to a represented ID s of the form
(4.2) results in no world. Indeed, in s, the current world is instead labeled by rj ,
and thus, no world verifies ri. Therefore, no event has its precondition satisfied,
as each of the four events e1, . . . , e4 has a precondition requiring ri to hold in at
least one world. Similarly, if the transition is not applicable to the ID represented
by s, then the current world of s is labeled by q′

s �= qs and/or x′
n �= xn, and thus

does not satisfy qs ∧ xn. And as before, each of the four events e1, . . . , e4 has a
precondition requiring qs ∧ xn to hold in at least one world.

In order to build Etrans, we need to introduce another component σ, which
consists of two events, ef and et. Those events, as depicted in Fig. 7, carry to the
updated model the information that will eventually allow the goal formula to
check whether the instance is positive or not. Building Etrans is then straightfor-
ward. In addition to σ, it consists in the disjoint union of the i- and j-transition
components τ i

l and τ j
l associated to every transition l of M . Recall again that

we implicitly assume to also add a g-edge between any pair of events. Applying
Etrans to an epistemic model that contains the representations of all IDs reach-
able in n transitions results in a model containing the representations of all IDs
reachable in n + 1 transitions. If the model contained any world where qf was
true, then in the updated model, there is also a world where qf if true.

By assumption, there exists a polynomial P such that, for any word ω′, M
accepts ω′ iff M accepts it in at most P(|ω′|) steps. Then, for our given input ω,
we only need to simulate P(|ω|) steps of M , and thus create a series of P(|ω|)
product updates of M0 with the event model Etrans. In the final model, the only
designated world is wt, which is linked by a g-edge to every other remaining
world. The goal formula K̂gqf must thus be true in the final model iff a world
verifying qf has been reach after some initial sequence of product updates, i.e.,
if M can reach an accepting state in at most P(|ω|) steps. Thus, M accepts
input ω iff the instance of DBU with initial state M0, with P(|ω|) copies of
the event model Etrans and with goal formula K̂gqf is positive. We have now

Parameterized Complexity of Dynamic Belief Updates 97

fpt-reduced the problem “Does M accept input ω?”, where M is fixed and ω is
the input, to the problem {a, c, e, f, o, p}-DBU. We comply with the conditions
of Definition 6: we respectively satisfy the second and third conditions as the
reduction is polynomial, and all parameters of {a, c, e, f, o, p}-DBU are constants,
by construction. In particular, p and e are constants as they only depend on
M , which is fixed and not part of the input. Finally, as M solves an NP-hard
problem, {a, c, e, f, o, p}-DBU is para-NP-hard.

Corollary 1. {a, c, p}-DBU, {a, c, p, e}-DBU and {a, c, p, f}-DBU are all fixed-
parameter intractable.

The corollary is by Proposition 1. In addition to settling those four open prob-
lems, Theorem 1 shows a stronger result, which is that all parameterized versions
of DBU that do not have u as a parameter are fixed-parameter intractable. This
settles in itself the fixed-parameter intractability of 64 problems, out of the 128
total. It also constitutes an alternative proof of the intractability of three different
problems shown separately by van de Pol et al. [12], which are {a, c, e, f, o}-DBU,
{c, e, f, o, p}-DBU and {a, e, f, o, p}-DBU.

We now prove fixed-parameter intractability of two further problems that
were left open by van de Pol et al. [12]: {c, f, o, p, u}-DBU and {a, c, p, u}-DBU.
We here show that both are fixed-parameter intractable, which implies the
fixed-parameter intractability of {c, f, p, u}-DBU and {a, c, p}-DBU. Our proofs
of both theorems are adaptations of the fixed-parameter intractability proof of
{c, o, p, u}-DBU by van de Pol et al. [12]. In addition to strengthening their con-
struction to be able to generalize their intractability results, we also simplify
their construction in a few places. The general point is to show W[1]-hardness
by a reduction from the earlier mentioned W[1]-complete problem k-W2SAT:
Given a 2CNF input formula ϕ and a parameter k, decide whether there exists
a valuation satisfying ϕ in which at most k variables are true.

In the following we assume the variables of ϕ are named x1, . . . , xm. The
general trick in constructing an fpt-reduction from k-W2SAT to a parameterized
DBU problem is as follows. First we define epistemic (sub)models that can be
used to encode propositional valuations over {x1, . . . , xm}. We call these valua-
tion gadgets and use Mv to denote the valuation gadget encoding the valuation
v. The initial model of the DBU instance is then the model M0 where 0 denotes
the valuation with 0(xi) = 0 for all i (the valuation that sets every variable false).
We then construct an event model that can take any set of valuation gadgets
and for each gadget Mv it constructs m new gadgets Mv[x1 �→1], . . . , Mv[xm �→1]

(where v[x �→ t] is the mapping that is as v except v(x) = t). After updating
k times with this event model, we are guaranteed to have gadgets representing
all valuations where at most k variables are true. If we have no bound on f,
we can now directly use the goal formula of the DBU instance to check that
there exists a gadget making ϕ true. This is what we do for the intractability
proof of {a, c, p, u}-DBU. If we have a bound on f, as in the intractability proof
of {c, f, o, p, u}-DBU, we need to perform product updates with additional event
models that mark the gadgets making ϕ true.

98 T. Bolander and A. Lequen

Fig. 8. Left: A valuation gadget for
m = 4 representing the valuation 0
in which all xi, i = 1, . . . , m, are
false. Right: The gadget for the valu-
ation where x2 and x4 are true (since
the outgoing 2- and 4-edges have been
deleted).

Fig. 9. The pointed event model E for
m = 4. The unlabelled events are
implicitly labelled 〈�, �〉.

Theorem 2. {c, f, o, p, u}-DBU is fixed-parameter intractable (W[1]-hard). In
other words, the Dynamic Belief Update problem is intractable even when
restricting the number of propositional variables (p), the number of event models
(u), the maximum length of event preconditions (c), and the length and modal
depth of the goal formula (f,o).

Proof. The main contribution of this proof over the proof of the fixed-parameter
intractability of {c, o, p, u}-DBU by van de Pol et al. [12] is the construction
of an additional event model (Eϕ) that allow us to only consider a goal for-
mula of fixed length (while still preserving the fixed bound on the event pre-
conditions). Let ϕ and k be given (an instance of k-W2SAT), where ϕ has vari-
ables var(φ) = {x1, . . . , xm}. We will now create an instance of DBU that can
decide the k-W2SAT instance, i.e., whether there exists a valuation satisfying
φ and setting at most k variables true. The DBU instance will be using agents
A = {1, . . . ,m, a, b}. For each valuation v over var(ϕ), we define the gadget Mv

as the star-shaped model with a single root world satisfying proposition r, and
for each xi with v(xi) = 0 it has an outgoing i-edge to a unique world satisfying
no propositions. The construction is illustrated for m = 4 in Fig. 8. Now consider
the event model E illustrated for m = 4 in Fig. 9. The events with no label are
implicitly labelled 〈�,�〉, i.e., they are events that preserve any world to which
they are applied. The events labelled 〈r,�〉 only apply to the roots of gadgets.
When E is applied to a gadget Mv, it creates m copies of the gadget, where in
the first gadget x1 is made true (by removing the outgoing 1-edge), in the sec-
ond x2 is made true (by removing the outgoing 2-edge), etc. These gadgets are
furthermore connected by a-edges via their root worlds. When this event model

Parameterized Complexity of Dynamic Belief Updates 99

is applied k times to the initial gadget model M0, we achieve a model with mk

gadgets connected by a-edges via their root worlds. Each gadget is obtained by
starting with the initial gadget representing the valuation 0, and then making at
most k variables true by consecutively removing k edges from the gadget model.
Since we might attempt to remove the same edge multiple times, this construc-
tion gives us a representation of all valuations where at most k variables are true
(except the valuation 0 that can be checked separately). Hence the final model
M0 ⊗ Ek contains a gadget for each valuation with at most k variables set true
(except the valuation 0).

Note that a clause (¬)xi ∨ (¬)xj is true in a valuation v iff the formula
(¬)Kir ∨ (¬)Kjr is true at the root of the gadget Mv. We now construct an
additional event model Eϕ as follows. It has a single designated event labelled
〈r,�〉. For each clause (¬)xi ∨ (¬)xj of ϕ, it has an additional event labelled
〈r ∧ ¬((¬)Kir ∨ (¬)Kjr), f〉, where f is a new propositional variable denoting
“failure”. All events of Eϕ are connected by b-edges. Each event with postcon-
dition f checks whether a particular clause of ϕ is false in the gadget to which
it is applied. If it is, a b-accessible world satisfying f is created. When Eϕ is
applied to a valuation gadget, it will hence preserve the root (due to the event
〈r,�〉), and additionally it will add a b-accessible f -world for each unsatisfied
clause. If there are no unsatisfied clauses, it will only preserve the root. Hence,
if we apply Eϕ to the model M0 ⊗ Ek containing gadgets for all the relevant
valuations, the resulting model M0 ⊗ Ek ⊗ Eϕ will contain an r-world with no
b-accessible f -worlds iff ϕ is true in one of the valuations. Hence, we can check
whether ϕ is true in one of the relevant valuations by checking the goal formula
ϕg := K̂a(r ∧ Kb¬f) in the model M0 ⊗ Ek ⊗ Eϕ.

To sum up, given a k-W2SAT instance ϕ with parameter k, we reduce it to
the DBU instance with initial model M0, with k copies of the event model E
followed by the event model Eϕ and with goal formula ϕg. We now only have to
verify that the reduction is an fpt-reduction from k-W2SAT to {c, f, o, p, u}-DBU.
Building the epistemic model M0 and the k copies of the event model E is clearly
polynomial in m and k and hence in the input size of the k-W2SAT instance.
Building Eϕ is polynomial in the formula ϕ and hence also in the input size of
the k-W2SAT instance. Finally, the goal formula has a fixed length. This shows
that the reduction is computable by an fpt-algorithm. We then only need to
show that the parameters of the translated {c, f, o, p, u}-DBU instance can be
bound by a computable function in k. The parameters c, f, o, p all have a fixed
value independent of the k-W2SAT instance, and u is k + 1. So the parameters
are clearly bound by a computable function in k, and the proof is complete.

Theorem 3. {a, c, o, p, u}-DBU is fixed-parameter intractable (W [1]-hard).

Proof. The main contribution of this proof over the proof of the fixed-parameter
intractability of {c, o, p, u}-DBU by van de Pol et al. [12] is that we show how to
create gadgets that encode the truth value of the different variables via worlds
at different depths of the model rather than via different agents. This is neces-
sary since we have a as a parameter, so we need to put a bound on the number

100 T. Bolander and A. Lequen

Fig. 10. Left: A valuation gadget for
m = 4 representing the valuation 0 in
which all xi, i = 1, . . . , m, are false.
Right: The gadget for the valuation
where x2 and x4 are true (since the
worlds in distance 2 and 4 from the root
have label t).

Fig. 11. The pointed event model E
for m = 4. The unlabelled events are
implicitly labelled 〈�, �〉.

of agents. When referring to worlds at different depths of a model, and with no
bound on the depth of a model, we usually also need preconditions of unbounded
length. But our construction shows that it is possible to still do with only pre-
conditions of bounded length. In our proof, in order to encode a valuation, we
use chains of worlds linked by alternating agents. This trick, central to our proof,
resembles a trick used by de Haan and van de Pol [10]. The main difference is
that they encode the truth-value of a single variable as a chain, and create as
many chains as there are true propositional variables in the encoded valuation,
whereas we encode an entire valuation in a single chain.

Essentially, the structure of this proof is as the previous, except we need a
different type of gadgets. Let ϕ and k be given with var(ϕ) = {x1, . . . , xm}. Let
A = {1, 2, a}. For each valuation v, we define the gadget Mv as an alternating
1, 2-chain of worlds with a root world satisfying r, and where the world at dis-
tance i from the root makes t true iff v(xi) = 1. The construction is illustrated
for m = 4 in Fig. 10. Now consider the event model E illustrated for m = 4 in
Fig. 11. As in the previous proof, when this event model is applied to a gadget
Mv, it creates m copies of the gadget, where in the first gadget x1 is made true
(by adding t to the world at distance 1 from the root), in the second x2 is made
true (by adding t to the world at distance 2 from the root), etc. As before, these
gadgets will be connected by a-edges via their root worlds. Also as before, when
this event model is applied k times to the initial gadget model M0, we achieve a

Parameterized Complexity of Dynamic Belief Updates 101

model with mk gadgets containing at least one gadget for each valuation making
at most k variables true (again except the valuation 0 that can be treated sepa-
rately). The only essential difference is that instead of making use of agents to
encode the truth value of the different variables, we use the depth of the event
model. This means we can use a as a parameter in our reduction (the number
of agents is fixed independently of the input).

Let ψ1 := K̂1t, ψ2 := K̂1K̂2t, ψ3 := K̂1K̂2K̂1t, etc. Then note that ϕ is true
in the valuation v iff the formula ϕ[ψi/xi] is true in the root of the gadget Mv.
Hence, to check whether ϕ is true in a valuation making at most k variables
true, we can check whether the formula ϕg := K̂aϕ[ψi/xi] is true in M0 ⊗ Ek.
To sum up, given a k-W2SAT instance ϕ with parameter k, we reduce it to
the DBU instance with initial model M0, with k copies of the event model E
and with goal formula ϕg. Building M0 and the k copies of E is polynomial in
m and k, and building ϕg is polynomial in m and the length of ϕ. Hence the
DBU instance can be computed in polynomial time in the size of the k-W2SAT
instance, and is hence computable by an fpt-algorithm. We then only need to
show that the parameters of the translated {a, c, o, p, u}-DBU instance can be
bound by a computable function in k. This trivially holds, as the parameters a,
c, o, p all have fixed value independent of the k-W2SAT instance, and u is k.

4 Discussion and Future Work

We managed to solve most of the open tractability problems for the dynamic
belief update problem. In all cases, our results were negative, i.e., we proved
fixed-parameter intractability. When entering the new results into our previously
mentioned tool, we get that tractability of the following parameter combinations
is still open: {a, c, f, p, u} and {a, c, f, o, p, u}.

The short Turing machine acceptance problem (STMA) is the acceptance
problem of single-tape nondeterministic Turing machines with bound k on the
number of computation steps. It is a parameterized problem with parameter k
known to be W[1]-complete, i.e., fixed-parameter intractable [5]. The proof of
Theorem 1 gives us a construction allowing us to encode an instance of STMA as
a DBU instance. Since the parameter k is the number of computation steps, which
translates into the parameter u in the DBU instance, we can do an fpt-reduction
from STMA to {a, c, f, o, u}-DBU, i.e., we can replace e, p by u in the fixed-
parameter intractability result of Theorem1. We have to drop the parameters
e and p as their sizes depend on the alphabet of the Turing machine. This
reduction then immediately gives W[1]-hardness of {a, c, f, o, u}-DBU. This result
was already established by van de Pol et al. [12], but with our Turing machine
construction in Theorem1, we get this additional result essentially for free.

In the proof of Theorem 2, we introduced the trick of checking each clause of
the 2CNF formula with a single event model, hence allowing us to put a bound
on the length of the goal formula. One might be tempted to try out the same
trick in the proof of Theorem3, however that would blow up the length and
modal depth of the preconditions, since we need a formula of modal depth i to

102 T. Bolander and A. Lequen

check whether xi is true in a valuation gadget. If we found a way to preserve
the bound on c, we would achieve a proof of the fixed-parameter intractability
of {a, c, f, o, p, u}-DBU.

As future work, we hope to extend our results to epistemic planning, i.e, the
problem of plan synthesis rather than plan verification as considered here, and
we would at the same time consider additional relevant parameters.

Acknowledgement. The authors would like to thank the anonymous reviewers for
their meticulous reading of our paper, as well as for their numerous and valuable
suggestions that helped improve this manuscript.

References

1. Baral, C., Bolander, T., van Ditmarsch, H., McIlrath, S.: Epistemic planning
(dagstuhl seminar 17231). In: Dagstuhl Reports, vol. 7. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2017)

2. Bolander, T.: Seeing is believing: formalising false-belief tasks in dynamic epistemic
logic. In: van Ditmarsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and
Game-Theoretical Semantics. OCL, vol. 12, pp. 207–236. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-62864-6 8

3. Bolander, T., Andersen, M.: Epistemic planning for single- and multi-agent sys-
tems. J. Appl. Non-classical Logics - JANCL 21, 9–34 (2011). https://doi.org/10.
3166/jancl.21.9-34

4. Bolander, T., Charrier, T., Pinchinat, S., Schwarzentruber, F.: DEL-based epis-
temic planning: decidability and complexity. Artificial Intelligence (2020, to
appear). https://doi.org/10.1016/j.artint.2020.103304. http://www.sciencedirect.
com/science/article/pii/S0004370219301146

5. Cesati, M.: The turing way to parameterized complexity. J. Comput. Syst. Sci. 67,
654–685 (2003). https://doi.org/10.1016/S0022-0000(03)00073-4

6. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–
158. Association for Computing Machinery, New York (1971). https://doi.org/10.
1145/800157.805047

7. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, 1st edn.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-4020-5839-4

8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-29953-X

10. de Haan, R., van de Pol, I.: On the computational complexity of model checking
for dynamic epistemic logic with s5 models. arXiv abs/1805.09880 (2018)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co.
Inc., Boston (2006)

12. van de Pol, I., van Rooij, I., Szymanik, J.: Parameterized complexity of theory of
mind reasoning in dynamic epistemic logic. J. Logic Lang. Inform. 27(3), 255–294
(2018). https://doi.org/10.1007/s10849-018-9268-4

https://doi.org/10.1007/978-3-319-62864-6_8
https://doi.org/10.3166/jancl.21.9-34
https://doi.org/10.3166/jancl.21.9-34
https://doi.org/10.1016/j.artint.2020.103304
http://www.sciencedirect.com/science/article/pii/S0004370219301146
http://www.sciencedirect.com/science/article/pii/S0004370219301146
https://doi.org/10.1016/S0022-0000(03)00073-4
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/s10849-018-9268-4

	Parameterized Complexity of Dynamic Belief Updates
	1 Introduction
	2 Background
	2.1 Dynamic Epistemic Logic
	2.2 Parameterized Complexity
	2.3 Dynamic Belief Update

	3 Complexity Results
	4 Discussion and Future Work
	References

