
3D building application for children

Problem presented by

Olga Timcenko

LEGO

LEGO is developing a 3D building application for children please see the current
version on www.lego.com/ldd. We are now looking for possibilities to improve
performances and functionality of the application. Classical LEGO bricks are
building blocks which connect to each other in well-defined manner, and allow
for making rigid structures of arbitrary shape (see Figure 1).

Figure 1: Typical rigidly-connected LEGO model

Recent development added different types of joints to bricks assortment (see
Figure 2). So a typical LEGO construction consists of several rigidly connected
blocks, connected together via different types of joints. (see Figure 3).

Unfortunately, as the construction is a result of a child s imagination, it is
impossible to say anything about its structure kinematically, it could be anything,
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Figure 2: Typical LEGO joints

Figure 3: Typical construction with several rigidly connected parts connected via
joints

Figure 4: Changing kinematical structure of the previous model by adding a single
brick
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including both open chains and closed loops. Moreover, adding or deleting a
single brick to a structure could completely change kinematical properties of the
construction, as illustrated on Figure 4. The added/deleted brick could be very far
from the joint itself, and not directly connected to any of the bricks forming the
joint.

Computer game we are developing tries to mimic as faithfully as possible the
process of building in real world.

What concerns us most is a data structure and set of algorithms that would
allow us to update the structure of the digital model as fast as possible on-line
i.e. a data structure that would allow for efficient adding/deleting a brick on-line
(or with minimal delay for the user for the case of more complicated models)
and would describe correct kinematical model at each moment as the child could
decide at any moment that the model is finished, and then start adjusting joint
positions, then continue building again, and so on. We would like to be able to
build digital models with 200-500 bricks (current application significantly slows
down at about 50 bricks).

Screen shot from existing application together with an example of a digital
construction with several joints is on Figure 5.

Figure 5: Screen shot of the current application - open chains work fine, but there
are some problems with parallel hinges
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1 Description of the problems

The LEGO problem was divided into several subproblems: Development of effi-
cient datastructures is treated in Section 3. In Section 4, we handle the problem of
improving speed for finding feasible docking points for a new brick. In Section 5
and 6, we handle different approaches for the automatic and efficient determina-
tion of whether a LEGO structure or substructure is rigid.

2 Notation used

We use in particular in Section 3 and 5 the following notation
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• We let D be the dimension of the system (D=2 for planar systems, else
D=3)

• N is the total number of subunits in the system, which have been determined
to be rigid. We note arbitrary subunits by preferably i, j and k.

• We describe the position and orientation of the i’th rigid subunit by respec-
tively the position Ri and orthonormal vectors ui1, ui2, ui3 (only the two
first orthonormal vectors for planar systems).

• We note plug positions of the i’th rigid subunit by p
(i)
s s = 1, . . . , Si.

Arbitrary plugs are numerated by s, t, u, v. The local coordinates of plug
positions are written as p

(i)
s = Ri +

∑D

e=1 X
(i)
se uie. If the plug can be used

as a revolute joint, we denote the axis of rotation at the plug by q
(i)
s . Local

coordinates of the joint axis are q
(i)
s =

∑D

e=1 Y
(i)
se uie. Spherical joints need

no axis.

• We denote the set of all ND(D + 1) coordinates by x.

• We let M be the total number of constraints in the system and index arbi-
trary constraints by greek letters, preferably fα(x) = 0,fβ = 0,fγ(x) = 0.

3 Program and Data Structure

3.1 Program Structure

In order to determine what program functions are time critical a discussion of the
response time expected by the user was done. The findings of this discussion are
listed below. It should be noted here that the discussion group was rather small,
so a more through investigation might be appropriate. For an explanation of what
a connection point is see section 3.2

1 Add:

– Search for compatible connection points - Fast

– Update model - Plenty of time

2 Remove:

– Visible response time - Fast

– Updating the model - Plenty of time
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3 Changing the camera position:

– Visible response time - Fast

– Updating the model - Plenty of time

4 Moving a hinge:

– Collision detection - Fast

– Visible response - Fast

– Updating the model - Plenty of time

Conclusions:

• Fast:

– Visible response

– Search for compatible connection points

– Collision detection

The common reason why these program functions should be fast is that the
user does something to the model and he or she should be able to see the
effect of that almost immediately.

• Plenty of time:

– Updating the model

The reason why there is enough time to update the model in general is that
the user has to choose something else (a brick, a tool, etc.) and while he
or she is doing this there is plenty of time for the computer to update the
model.

Computer graphics cards are today powerful enough to ensure that it is no prob-
lem to make the visible response time fast, so the main focus should be on making
a data structure that enables the search for compatible connection points and col-
lision detection to be fast. There is a fast and well developed method for collision
detection based upon a hierarchic of oriented bounding boxes (OBB’s), this will
be discussed in section 4. For further comments about the search for compatible
connection points see section 3.2.
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3.2 Data structure

A Lego model is a collection of Lego bricks which can be connected in a multitude
of different ways. A point on a Lego brick that can be connected to another Lego
brick is called a connection point (see the next section for more detail). In order
to get some structure on this a Lego model is split into:

• Rigid structures:
A rigid structure is a collection of connected Lego bricks that, because of
the constraints of the system, can only be translated or rotated as a whole
(as long as no Lego bricks are added or removed).

• Connected hinges:
A connected hinge is a collection of connection points that connects two
different rigid structures with one or more degrees of freedom.

Determining whether or not a collection of connected Lego bricks is rigid will be
discussed in section 4. The data structure of a rigid structure has to include:

• Data on connection points: This is used for adding and deleting bricks.

• Data on bounding boxes: This is used for collision detection (see section 4).

• Data on geometry: This is used for rendering.

And the data structure of a connected hinge has to include:

• Data on which rigid structures it connects.

• Data on which connection points are involved.

It should be noted the data structure presented in the following has been made
without any thought about how to remove a brick from the Lego model. The
reason why removing a brick has been neglected is that it was the impression that
this was actually working with out any problems in the current implementation.

Connection point data

Assuming that it is possible for all connection structures (knobs, anti-knobs, etc.
) to define a point, a direction, a axis of rotation (in case there is one degree of
freedom) and a connection type such that they contain all the information neces-
sary to determine how different rigid structures can be connected (this is to our
knowledge the case for all the connection structures on Lego bricks used today).
The only information needed, in addition to this, is knowledge about where the
rigid structure is located in the global coordinate system (the coordinate system
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of the whole Lego model) and its orientation. This is then the information that the
connection point data should contain.

Letting N denote the number of rigid structures, the connection point data of
the i’th rigid structure will then be given as follows (this will at least be one way of
representing it, there are definitely others). The representation of the connection
point data will be exemplified with the simplified two dimensional brick shown in
figure 6.

Figure 6: The two dimensional brick under investigation.

• Base point: Ri.
The base point of the rigid structure is an arbitrary but known point in the
structure. The vector Ri is then the position vector of this point in the global
coordinate system, i. e., Ri points from the origin of the global coordinate
system to the base point of of the i’th rigid structure. This gives the position
of the i’th rigid structure in the global coordinate system (see figure 7).

• Orientation (Local coordinate system): ui1, ui2, and ui3.
The orientation of the rigid structure is given by the three vectors ui1, ui2,
and ui3 with Ri as base point (see figure 7). They rotate and translate with
the rigid structure. Using these as the basis vectors of the local coordinate
system and writing the rest of the data structure with respect to this coordi-
nate system insures that it is only necessary to rotate ui1, ui2, and ui3 and
possibly translating the base point when the rigid structure is rotated.

Ru

u

2i

1i

i

Figure 7: Base point and local coordinate system.

• Connection point vectors: X (i)
s

The position vector in the local coordinate system of the s’th connection
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point is given by the connection point vector X (i)
s , where s = 1, . . . , Si. Si

being the number of connection points of the i’th rigid structure. The s’th
connection point is then in the global coordinate system given by

p(i)
s = Ri +

3
∑

e=1

X(i)
se uie.

X (i)
s

Figure 8: Connection point vectors.

• Connection vectors: d(i)
s

In order to specify how two connection points should be oriented with re-
spect to each other in order to fit together, the connection vector d(i)

s is
needed. This unit vector gives the direction of the connection in the local
coordinate system. In order for two connections to fit together there con-
nection vectors should be equal in the global coordinate system, where the
connection vector in the global coordinate system is given by

w(i)
s = Ri +

3
∑

e=1

d(i)
se uie.

d(i)
s

Figure 9: Connection vectors.

• Axis of rotation: Y (i)
s

For the kind of connections where there is one degree of freedom the axis
of rotation is also needed. This is represented by the unit vector Y (i)

s in the
local coordinate system (see figure 10) and in the global coordinate system
it is given by

q(i)
s = Ri +

3
∑

e=1

Y (i)
se uie.
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Y(i)
s

Figure 10: Axis of rotation.

• Connection type: CTi ∈ {Knob, Anti-knob, etc}
The last piece of information needed is the connection type. This is used
to determine whether or not two connection points fit together. A Knob fit
together with a Anti-knob for example.

Remark about the search for compatible connection points

One of the time critical program functions is the search for compatible connection
points when adding a brick to the Lego model, i. e., a search for where a Lego
brick can be added to the Lego model. So in order to make this fast it is important
to reduce the set of connection points that the program has to search through. In
the above representation of the data structure this can be done by either defining
a connection type as occupied or by only including the connection points that
are available for other Lego bricks. In addition to this it is a good idea to order
the connection points according to how close they are to the Lego brick the user
is trying to add and also whether the connection points are visible or not, i. e.,
whether they are in front of or behind the Lego model. This will be discussed in
more detail in section 5.

4 Hierarchical Collision Detection

The problem of checking collisions between two objects has been studied quite
intensively in the literature for applications within e.g. robotics and computer
games. There exists very efficient methods based on hierachies of bounding sets.
Two types of basic sets have been considered: Spheres and Oriented Bounding
Boxes (OBB’s). In [1], a hierachy of spheres is used and in [2], a hierachy of
OBB’s is used. Using spheres has the advantage, that it is efficient to compute
wheter two spheres overlap, but the disadvantage that the spheres often do not give
a tight bound of the object leading to unnecessary deep searches in the search tree.
On the other hand, OBB trees are a little more expensive to check for overlap, but
they bound the objects more efficiently. Experiences have shown that using OBB
trees is for most applications to prefer. However, the method based on OBB trees
is somewhat complicated to implement. In addition to these two methods, we give
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below a method that is not quite so efficient, but straightforward to implement and
will give an improvement over the existing brute force method used by LEGO.

4.1 Problem Formulation

Given are n three-dimensional objects (bricks) Bi, i = 0, . . . , (n−1). and another
object Bnew. The task is, to check whether Bnew intersects one of the Bi, i =
0, . . . , (n − 1).

The brute force solution is to check Bnew against all Bi, i = 0, . . . , (n−1). The
time needed to check whether two objects Bnew and Bi intersect is longer if the
objects are more complex. For n checks this can be intolerably long. Therefore,
one should single out a “few” objects Bi on which the full collision test is run.

4.2 First Step

For every geometrical object Bi, i = 0, . . . , (n − 1) determine a small (as small
as possible) sphere enclosing the whole object. Let ci denote its center and ri its
radius. The radius is fixed once and for ever, the center depends on the current
location of the object. Then one compares the distance between the two sphere
centers ci = (xi, yi, zi) and cnew = (xnew, ynew, znew) and the sum of the radii.

√

(xi − xnew)2 + (yi − ynew)2 + (zi − znew)2 > (ri + rnew)

If this test is positive then the spheres around the objects do not intersect, hence
the objects themselves do not. One might want to avoid the use of the square and
use the following test instead

(xi − xnew)2 + (yi − ynew)2 + (zi − znew)2 > (ri + rnew)2

Only those objects Bi not passing the test get into Step 2.

4.3 Second Step

For all remaining objects Bi and Bnew compute an axis-aligned bounding. The
box depends on the spacial orientation of the object and has to re-computed ev-
ery time. Then the maximal (minimal) coordinates of Bnew in every direction
are compared the minimal (maximal) coordinates of Bi. Only those Bi whose
bonding boxes overlap that of Bnew in all directions get into step 3.

4.4 Third Step

Run the full collision test on the remaining Bi and Bnew.

69



4.5 Remarks

For elongated objects (a 16 technic bar) one can use two or more small spheres.
The object has to be enclosed in the union of them.

5 Improve speed of finding feasible docking posi-
tions

In the current version of the LEGO Digital Designer it could take a long time
before the program decides where a new brick can be added to the already existing
structure. This document serves to explain a decent way to quickly find the closest
point where a new brick may be connected.

This chapter is composed as follows. In the next section the program charac-
teritics and the current implementation of the docking procedure are drawn. This
is followed by five sections, which are devoted to recommendations to make the
docking procedure faster.

5.1 Program characteristics and current implementation

As was seen in the program structure the time-critical actions of the program are:

• Searching for compatible connection points

• Collision detection while moving rigid structures

• The visible response on whatever action made

Because the scene is pretty static, there is enough time to update the model.
Hence, the solution strategy in this chapter will be to find fast ways to search
through a static model.

The current version of the program considers a cone around the brick to be
added. This cone has its top at the camera position and contains a certain sphere
around the brick. All bricks of the structure which lie in this cone, and so has
approximately the same 2D screen coordinates, are then considered. The docking
position which is closest in 3D is taken as the candidate for connection: the brick
to be added moves slightly to this position and turns from transparent into its
normal color.
A disadvantage of this method is that all the connection points in this cone are still
to be considered, both occupied and free, which can be quite a lot. This results in
a slow adding procedure when the structure consists of 50 bricks. Currently it is
not possible to handle structures which have more than 100 bricks. Furthermore,
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it is possible at present to place bricks behind other objects, which is an unwanted
feature. For very large structures it also apparent that the computer does not find
a position, to place the new brick at all.

5.2 Projection of a 3D scene on a plane

Suppose we already have a built structure. The structure is viewed from a fixed
camera position. This means that every 3D point is projected onto a 2D image
space, see Figure 11. For every 3D-coordinate of the structure, it is very easy to

Figure 11: The camera position and the 2D image

calculate the 2D-screen coordinates. The three-dimensional volume under con-
sideration is limited by a near-plane at w = −n, a far plane at w = −f and a
maximum viewing angle α. This leads to a truncated pyramid, see Figure 12.
This viewing volume is projected onto some backplane with a distance d from
the camera, the image plane. In Figure 12 the projection of the point (u, v, w) it
taken as an example. The u-axis is pointed out of the paper in our direction. By
similarity of triangles we have for the screen-coordinates (x, y) that:

x =
ud

w
(1)

y =
vd

w
(2)

It can be seen that u and v are always multiplied by a fixed constant. The z

coordinate is always equal to −d, but we want to preserve the information of what
is close to us and what is far away, so we will use the third coordinate to give
us this information. We will continue using homogeneous coordinates, every 3D-
coordinate (u, v, w) can be written in homogeneous coordinates as (u, v, w, 1).
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Figure 12: Definition of the viewing domain

The following operator projects the geometrical coordinates of (u, v, w, 1) into
the geometrical image space coordinates (x, y, z, s) with −1 ≤ x, y, z ≤ 1 [5]:

A =









cot(α
2
) 0 0 0

0 cot(α
2
) 0 0

0 0 f+n

f−n

2fn

f−n

0 0 −1 0









(3)

The operator defined here is invertible, so we can transform our image space back
to the real 3D coordinates (u, v, w).

5.3 Viewing cone

Since the transformation described above is very cheap, we can calculate it our-
selves, without making use of the graphics tool. Hence, we propose to consider
only the connection points in a cone. These are all the available connection points
with screen coordinates in the circle around the brick to be added.
To rigidly define what should be done, we define the cone that is considered.
There exists a sphere in IR3 with minimal radius in which the brick to be added is
contained, see Figure 13. Associated with this there exists a cone in IR3 with its
top at the position of the camera and the minimal sphere enclosed in it:

5.4 Direction elimination

Another thing that could speed up the process is coming from back-face elimina-
tion [6]. There the information of the direction of a plane is used, to determine if
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Figure 13: Sphere around brick to be added
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Figure 14: The viewing cone around the brick to be added

it has to be rendered or not. This is done by calculating the inner product between
the viewing direction and the normal to the plane. If this is a negative number the
plane should be drawn.
The idea can be used to divide all available connection points into groups accord-
ing to their direction. Because the brick to be added can only be turned over a
limited range (in the current implementation this is 60°) and therefore, groups of
directions can be eliminated from consideration.

5.5 Visibility

When a 3D object is rendered, only the visible part has to be rendered. The same
holds for adding a new brick to the structure; it is reasonable to say that a brick
can only be added to visible connection points. In Figure 11 this would mean that
the light grey brick at the backside of the structure is not available for connecting
a new brick to. In some graphical tools, like OpenGL [3] or DirectX [4], informa-
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tion about visibility can be retrieved. This makes it possible to consider only the
visible available connection points. A connection point is defined visible if a part
of the connection point is visible. The list of visible available connection points is
a subset of the available connection points and it changes every time the camera
is moved.

In this way a small selection of possible connection points can be made. Once
this is done the current algorithm for finding the exact docking place for connect-
ing blocks can be applied as is done now.

OpenGL picking

In order to explain the picking algorithm, we assume that the LEGO program
makes use of a graphical package like OpenGL. In OpenGL it is possible to as-
sign numbers to individual objects in a name stack. One can return the numbers of
the objects which are partially in a user defined region. This function of OpenGL
is called picking. This function could be used to identify if an object is visible or
not. If we define all knobs, anti-knobs, etc. being objects, we can determine if
this object is visible: if there is a connection possible.

One method to reduce the amount of work done by the OpenGL pipeline dur-
ing picking operations is to use a simplified form of the object in the picking
computations. For example, individual objects can be replaced by geometry rep-
resenting their bounding boxes. The accuracy of the picking operation is traded
for increased speed. Some of the accuracy can be improved by adding a second
pass in which the objects which are selected using their simplified geometry are
reprocessed using their real geometry.

This picking feature can be used in two different ways:

• Every time the camera position changes, we update the list of all the visible
available connection points in the scene.

• At the moment a brick to be added is moved around, the visible connection
points are selected from the available connection points in the cone.

The method used depends on the speed of the picking algorithm. It should be
fast, because the picking takes place every time the brick to be added is moved.
Otherwise, the first method is a good alternative.

For many applications it may prove advantageous not to use the OpenGL pipeline
at all to implement picking. For example, an application may choose to organize
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its geometric data spatially and use a hierarchy of bounding volumes to efficiently
prune portions of the scene without testing each individual object.

5.6 Geometrical division of the LEGO scene in Octrees

The idea is to subdivide the scene into geometrically based cubes containing some
of the objects of the scene. As was mentioned before searching for places to
connect a rigid structure and collision-detection while moving some bricks must
be very fast. So the idea is to maintain a model at all times, that makes these two
actions very fast.

A very commonly used method of keeping track of a big scene in 3D-computer-
games is to divide the scene into an Octree. Search google for ”octrees” to get
access to some very good introductions to octree’s.

The idea is to make a big cube containing the whole scene and then divide this
into 8 smaller cubes by adding planes that divides the parent cube in half. This is
done recursively for every cube containing more than one object or until a upper
limit of recursive steps has been reaches or a maximum number of cubes has been
reached.

In this case we can say that every brick is an object, or maybe the smaller
atomic geometrical parts of the bricks are the objects, so that the knobs are con-
sidered being an object and a planar side of a brick is an object. If we use the latter
approach a normal 2 by 1 brick (see Figure 15) can be divided into the following
object:

• 2 knobs

• 2 anti knobs (below)

• 5 sides

Figure 15: A 2 by 1 brick.

What approach that is chosen does not seem to be that important. The most
important gain from this approach is that given a point or a line in space you
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can very fast eliminate all the cubes that are not containing that point or line.
Let’s try to illustrate the ”search for a place to connect the brick” action in the
2-dimensional case.

Figure 16: Partition of a two dimensional area

The scene containing two rectangles and a sphere is divided into cubes until
every cube contains at most 1 object or until an upper limit of number of cubes is
reached (see figure 16). In this case we do not reach this limit. All the cubes are
added to a tree where the biggest cube contains the cubes that is positioned within
that.

So, for this scene we get a tree with 25 cubes. Every cube holds references
to its neighbors. These neighbors can be at the same level or one level up, which
come down to at most 8 neighbors (see figure 17).

Figure 17: Octree

A search for a point in the octree (or here quadtree) is done by running through
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the tree from the root down figuring out what sub-cube the point belongs to using
this recursive algorithm starting from the cube surrounding the whole cube.

1. For all the separating planes find out what side the point is on. All the planes
are defined by a point in the plane P0 plus a normal vector N . The way we
can figure out whether a point in 3D space P is on one or another side of
a plane, is by taking the inner product of the normal vector and the vector
going in the direction from P0 to P . If the result is positive then the point
is on the same side as the direction of the normal vector, if the result is 0
then the point is placed on the plane, else it is placed on the other side of
the plane.

2. If the resulting cube are subdivided into smaller cubes continue this algo-
rithm. Else return the cube.

So for every level in the octree we have to do a few vector calculations which
is very fast. So a guess is that for a tree with 10 level we have a maximum of
1.073.741.824 cubes (8 to the power of 10), which gives a nice detailed scene
partition, with very few objects in every cube and the time it takes to search for a
cube is 10 * 8 = 80 vector calculations.

Adding a brick

What we really need is to find the cubes that are on a line going perpendicular
from screen projection all the way through the whole 3D scene. This can be done
by finding the first cube that the line hits. This is done by finding the point where
the line hits the first plane in the cube covering the whole scene and then find
the smallest possible cube that contains this point. From this cube we find the
neighbor that the line visits next. Since every cube has a list of its neighbors
its possible to find the next cube from that list using the direction-vector and the
starting point of the line simply by finding what separating plane the line reaches
first on its way through the 3D space.

The neighbor is of the same size or bigger than the cube we leave, so in order
to find the smallest possible cube we have to go downwards through the tree from
the cube in focus.

Once we have found the next cube visited by the line it’s time to check whether
there is any connection points in the cube or whether the cube is totally covered
by bricks so that there’s no point in continuing.

If the cubes are very small it could be necessary to check for connection points
in a radius around the line, so that not only the cubes containing the line but also
a range of neighbors around it should be checked for possible connection points.
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Figure 18: Line through a 2D example scene

Let us try to run through a visual example in 2D, where we find the cubes
containing a line through the scene (see figure 18).

First we find the point where the line hits the outermost left plane (P1). This
point is within the upper leftmost cube, so that is checked for connection points.
It is empty so there are no connection points and the cube is not covered totally,
so we continue our search through space along the line. We find the neighbors of
the upper left cube in the direction of the line by finding the first plane hit by the
line and moving our attention to the cube on the other side of that plane. Since
every cube holds a reference to its neighbors this cube can be found very fast.

If the cube is divided into smaller cubes we search down through the tree to
find the smallest possible cube surrounding the line. This is continued until the
line has passed all the way through the scene.

This will result in a list of cubes containing the line. Each of these contains
a limited number of objects. Which makes the search for available connection
points within the cubes found quite fast.

LEGO bricks, connection points and object size

How do we define a connection point?
Two LEGO bricks are connected if and only if they touch each other at least

3 places so that one of them can move in only 1 direction and only by applying a
minimum amount of force.

If a plane on one brick touches another brick it is impossible for the other brick
to move in a direction pointing towards that plane. Calling N the normal vector
of plane pointing towards the brick it touches, we can say that movement in the
direction v is only allowed if N · v ≥ 0.

We have the following LEGO-connection objects:

• Knob. Solid and with: diameter = 10 LEGO units

• Anti-knob. Not solid and with an inner diameter of 10 LEGO units
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• Planes

We have the following types of connections:

• knob - anti-knob (see figure 19)

Figure 19: The knob - anti-knob connection type

• 3 knobs in the same plane pointing in the same direction in a square with
side-lengths = 10 LEGO units and an anti-knob in the middle (see figure
20).

Figure 20: An anti-knob in the middle

• As above, but this time with a plane with width=5 LEGO units (see figure
21).

Figure 21: A side in between two knobs

• There could be more types. (There probably is), but the example above
gives enough information to exemplify the proposed solution.

So to search for the available connection points we simply have to list all the:

• Knobs
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• Anti-knobs

• 3 knobs in the same plane with distance = 10 LEGO units

• Planes with width = 5 LEGO units

This should be done so that each cube in the octree holds a list for each of the
connection types.

As we want to find available connection points for one particular LEGO struc-
ture we find the connection points on that and for each of these find the nearest
connection points that matches this type of connection point using the search for
a line through 3D space algorithm listed above.

From this list of matching connection points we check whether connection
makes a collision detection. If that is the case, the connection point is removed
from the list of available connection possibilities, else it is chosen.

Local changes

As a brick / structure is added to a LEGO structure the changes are very local
geometrically. This means that updating the octree can be done very efficiently
and fast, since it is very few cubes that must be updated. The cubes are located
nearby, so by using the fast algorithm for finding neighbors of cubes we can find
the cubes very fast. The search for available connection points is also very fast.
The user drags a brick over the 2D projection. The cubes to search through can
be found by first finding the cubes on the line from the 2D projection through the
3D scene and then for all user-movements of the brick, to find the new cubes by
navigating to the neighbors of the cubes. Collision detection can be performed
using the cubes to find objects, that might collide, so as a structure is moved,
the cubes where the structure is moved to are investigated for collision between
objects in the structure moved and objects in the 3D scene.

If we make the cubes of a size, so that each hold at most 15 objects and so that
the octree has at most 10 levels. The different actions take approximately:

• Find the cube for a point in 3D:

– < 10 ∗ 8 = 80 vector calculations.

• Find the next neighbor cube in a line though 3D:

– 3 times the time it takes to find the point where a line goes through a
plane ∼ 9 vector calculations plus the time to go to the lowest level
possible from the neighbor found < 80 vector calculations.

• Find the cubes on a line through 3D:
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– The maximum number of cubes in one row of a scene divided into an
octree with 10 levels is 210 = 1024 cubes. The line can at most hit 2
times that = 2048 cubes. So in order to find a line through 3D, we have
to find a point in 3D (< 80 vector calculations) and perform at most
2048 neighbor searches (< 2048 ∗ 9 = 18432 vector calculations).

* If there is a need to find lower levels of cubes it means that the
cube we are in now is bigger, so time spent on finding smaller
cubes are saved before because the cube that we started with is
big. Therefore we can leave out the time spent on finding smaller
cubes.

– This all sums up to:

* Find point: 80 vector calculations

* Find line through neighbor search: 18432 vector calculations

– This is a worst case, so practically it might be fast enough.

• Collision detection

– This can be done by:

* Make a bounding box around the moving structure and then find
all the cubes within that.

* For all the cubes find the objects within these.

* If there are collisions between the bounding box and the objects
within the cubes, the actual objects in the structure moved are
compared with the objects in the cubes.

– In most cases the number of objects within the cubes are small. So this
algorithm should be sufficiently fast.

5.7 Recommendations

Our recommendations to speed up the process of finding possible docking posi-
tions are:

• Only consider the available connection points.
Given the data structure a list of all available connection points can be gen-
erated easily. This is a list of all connection points in the built structure
which are not occupied.

• Only consider the available connection points within the cone, around the
brick to be added.
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These are all the available connections points of which the screen coor-
dinates lie in the sphere around the screen coordinates of the brick to be
added.

• Only consider the groups of available connection points in approximately
the right direction.
Group the connection points according to their direction. Directions point-
ing away from the camera do not need to be considered.

• Only consider the visible available connection points.
A picking algorithm can be used to find the visible connection points in a
quick way.

• A geometrical hierarchy can be used to speed up the searching process.
Octrees are a suitable choice to divide the geometrical domain.

6 Determining rigid substructures

6.1 Rigidity of Truss Structures

We will follow [7] and consider structures T that can be modelled by graphs G(T )
such that the joints correspond to the points of G(T ) and two points are adjacent
if and only if there is a rod in T between the corresponding joints.
We assume that the rods are perfectly rigid and the joints are perfectly rotable.
Letv denote the number of points and e the number of edges.
Suppose the joints P1, P2, . . . have coordinates (x1, y1, z1), (x2, y2, z2), . . . respec-
tively, so we are working in 3D.
Let A = (akl) be the e × 3v matrix with

akl =















xi − xj if rod k is between joints i andj, and l = i

yi − yj if rod k is betweeen joints i and j, and l = i + v

zi − zj if rod k is between joints i and j, and l = i + 2v
0 otherwise

Definition 1 A 3D framework is rigid if rank(A) = 3v − 6, and a 2D framework
is rigid if rank(A) = 2v − 3.

Since rank(A) ≤ e we get in the 2D case:

1. If the framework is rigid then e ≥ 2v − 3.
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This condition is necessary but not sufficient, see later (.....should we give examples?—
-)
.

This means that if we know the positions of the joints we can determine rigid-
ity by linear algebra, however if we only know the graph we can not determine
the matrix A, or even rank(A).
On the other hand if one suppose that the framework is generic meaning that the
coordinates of the joints are algebraic independent over the rational numbers Q,
then the following theorem has been proved in [8].

Theorem 1 If a 2D framework T with v joints and e = 2v − 3 rods is generic
and G denotes the graph of T then T is rigid if and only if the edge set of Gx ,
obtained from G by doubling and edge x of G, can be covered by two edge disjoint
spanning trees for every x.

The nice thing is now that there is an efficient algorithm by Tarjan [9] for finding
two edge- disjoint spanning trees,if they exist with complexity O(vlogv + e) and
by using that e times rigidity can be determined.

For the 3D case nothing like the above seems to be known.

6.2 Using constraint dynamics to describe general 2D and 3D
structures

Consider first a planar system consisting of N rigid subunits. We then describe the
configuration of the system using the 6N dependent coordinates x ≡ (Ri, ui1, ui2 i =
1, . . . , N).

Definition 2 A planar system is said to be rigid at the point x if it has only the
three trivial degrees of freedom at x, namely translation of the whole system in the
two directions in the plane and a rotation in the plane of the whole system.

As mentioned, the coordinates are dependent. The coordinates ui1, ui2 of each
subunit i are subject to 3 orthonormality constraints

uie · uif = δef 1 ≤ e ≤ f ≤ 2 (4)

where δef is the socalled Kronecker δ defined by δef = 1 if e = f and zero
otherwise.

If the rigid subunits i and j are joined together at the point p
(i)
s = Ri +

∑D

e=1 X
(i)
se uie on subunit i and on p

(j)
t = Rj +

∑D

e=1 X
(j)
te uje on subunit j, we
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(j)

uj1
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(i) = Pt

(j)
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uj2

Figure 22: Constraints due to revolute joint in 2D

get furthermore two constraints (see Figure 22) p
(i)
s −p

(j)
t = 0 or described using

our coordinates

Ri +

D
∑

e=1

X(i)
se uie − Rj +

D
∑

e=1

X
(j)
te uje = 0 (5)

In the following, we let x ∈ R6N denote an arbitrary set of coordinates satis-
fying all the constraints.

Definition 3 A set of constraints fα(x) α = 1, . . . , M are called indepen-
dent at the point x if the set {∇f1(x), . . . ,∇fM(x)} is linear independent where
∇fα(x) is the gradient of fα(x) with respect to x.

A planar system with N rigid subunits and J joints thus is described by 6N coor-
dinates and 3N + 2J constraints. It is well known from classical mechanics[10]
that the system will be rigid at the point x if and only if

6N − M = 3 (6)
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where M is the number of independent constraints at x. (For readers not familiar
with classical mechanics, this can be seen by considering a virtual infinitely small
displacement δx away from x. This displacement must satisfy the M independent
linear equations given by the differential of the constraints ∇fα(x)δx = 0 α =
1, . . . , M . This leaves us with only the three independent parameters of x which
must correspond to translation and rotation of the whole system.)

We know that M ≤ 3N +2J and thus obtain a simple necessary condition for
a system to be rigid at some configuration

First necessary condition for rigidity of a structure: Consider a planar structure
with N rigid subunits and j joints. If the structure is rigid at some configuration
x, it satisfies the inequality

3N − 2J ≤ 3 (7)

This condition can be used in a search procedure for rigid structures together with
a second necessary condition

Second necessary condition for rigidity of a structure: Consider a planar structure
with N rigid subunits and j joints. If the structure is rigid at some configuration
x, every rigid subunit is joined to at least two other rigid subunits.

The second condition simply means that we can of course have no open ends in
a rigid structure. In the first step of a general search for rigid substructures, we
can search for structures satisfying the two necessary conditions. Having found a
candidate structure satisfying these two conditions, we should consider the inde-
pendency of the constraints more closely.

If we have candidates for rigid structures, we can check condition 6 in a stan-
dard procedure for checking linear independence. This procedure has an asym-
potic computational overhead O(M 2N). We have however no polynomial time
algorithm for finding all candidate structures except in the case described in the
previous section, where the overall structure can be mapped as a 2D truss struc-
ture.

The situation in 3D is more or less similar. Here we have 12N dependent
coordinates x ≡ (Ri, ui1, ui2, ui3 i = 1, . . . , N).

Definition 4 A spatial system is said to be rigid at the point x if it has only the
six trivial degrees of freedom at x, namely translation of the whole system in the
three directions in the plane and rotations around three fixed orthonormal axes.
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The coordinates are subject to 6 orthonormality constraints

uie · uif = δef 1 ≤ e ≤ f ≤ 3 (8)

If the rigid subunits i and j are joined together with a spherical joint at the
point p

(i)
s = Ri +

∑D

e=1 X
(i)
se uie on subunit i and on p

(j)
t = Rj +

∑D

e=1 X
(j)
te uje

on subunit j, we get three constraints as before p
(i)
s − p

(j)
t = 0 or described using

our coordinates exactly as before

Ri +
D

∑

e=1

X(i)
se uie − Rj +

D
∑

e=1

X
(j)
te uje = 0 (9)

R j

R i

P s
(i)

= P t
(j)

Rotation axis

Figure 23: Constraints due to revolute joint in 3D

However, if the joint is revolute, the coordinates are subject to two additional
constraints. Let the axis of rotation be described in local coordinates as the con-
stant unit vectors q

(i)
s =

∑D

e=1 Y
(j)
se uie and q

(j)
t =

∑D

e=1 Y
(j)
te uje respectively, we
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can write the additional constraints as (see Figure 23)

{(Ri − (Ri · qi)qi} · qj = 0 (10)
{

(Rj − (Rj · qj)qj

}

· qi = 0 (11)

where we for analysis purposes assume that we have chosen the representative
points Ri to not lie on any joint axis of the corresponding rigid subunit.

We thus get 6N+5J constraints and a necessary condition 6N−5J ≤ 6. There
is unfortunately no known polynomial-time algorithm for finding substructures
satisfying the necessary condition not even for 3D truss structures.

6.3 Two platform structures

We can however solve a special case completely, namely the case of two platform
structures (see Figure 24). A two platform structure is a closed structure, where all
rigid subunits except the two platforms have exactly two joints. Qualitatively one
can think of two platforms connected to each other through a number of multi-
joint limbs.

Figure 24: Two platform structures (left picture in 2D, right picture in 3D). Big
circles illustrate spherical joints.

Consider first the 2D case. Here we have the necessary condition 3N − 2J ≤
3. We thus get the following complete set of candidates for rigid structures

2 limbs: (1, 2) (12)

3 limbs: (2, 2, 2) (13)
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where e.g. (1, 2) means one limb with one 1DOF joint and one limb with two
1DOF joints. Similarly, we get in the 3D case the necessary condition 6N −5J ≤
6. We then get structures

2 limbs: (3, 3) (14)

3 limbs: (3, 4, 5) (15)

4 limbs: (3, 5, 5, 5); (4, 4, 4, 6); (4, 4, 5, 5) (16)

5 limbs: (4, 5, 5, 5, 5) (17)

6 limbs: (5, 5, 5, 5, 5, 5) (18)

6.4 21

2
D structures

Unfortunately, there are structures, which are neither purely 2D nor purely 3D.
We call them 2 1

2
D structures. Examples of these structures are shown in Figure

25.

Figure 25: 2 1
2
D structures

The structure to the left often occurs in LEGO models. We have one loop of J

joints in one direction and two joints in another direction. Then the substructure
consisting of the 3 units at the two joints in the second direction will always be
rigid. It thus reduces to a planar structure with J joints and N = J links. In
general, this will be non-rigid if and only if J ≥ 4. However, if there are colinear
joints as in the figure, it can be shown that there will be one dependent constraint
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for each pair of colinear joints. For the structure to the left in Figure 25, we thus
get M = 3N + 2 for J = 2 and M = 3N + 2(J − 1) for J ≥ 4 (notice that J is
even). For J = 2, we thus get 6N − M = 4 ≥ 3. This structure is thus non-rigid.
For J ≥ 4, we get 6N − M = 3N − 2(J − 1) = J + 2 ≥ 3 and thus again
non-rigid structures.

6.5 Determination of purely spatial mechanisms

A structure satisfying the second necessary condition for rigidity is purely spatial
if and only if there for any closed loop in the structure exists two rigid subunits
such that when considering only one of the two chains from the considered closed
loop between them, one of the subunits can move in all six degrees of freedom
with respect to the other one. Notice that this chain must contain at least six de-
grees of freedom. A way to determine whether this is true for any given subunits
with a given chain between them is to check whether the corresponding ”Manip-
ulator Jacobian” known from robotics (see e.g. [11]) has rank 6.

6.6 Recommendations for future work

We have completely solved the problem for purely planar or purely spatial 2 plat-
form structures. Moreover, we have a general method to determine if a structure
is purely planar or purely spatial. However, we may have 2 platform structures
that are neither purely spatial nor purely planar. Some of these have already been
shown in Section 6.4. However, one can also imagine other structures such as for
example a situation where some of the loops are spatial and others are planar !!!
What remains to be studied is

• To determine in general the ”dimensionality” of a structure (this can be
several numbers for mixed dimensionalities).

• To find inequalities such as those for the purely spatial and purely planar
structures that give necessary conditions for the structure to be rigid.

• To use these inequalities to search for efficient methods for searching for
candidates for rigid substructures.

7 Heuristic Approach to Rigidity Detection

7.1 Introduction

The LEGO Digital Designer is a program for constructing virtual LEGO models
on a computer. The user can interactively add or delete bricks. Figure 26 shows
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an example. A model constructed in this way may be flexible. By using hinges,

Figure 26: Screen shot of the LEGO Digital Designer.

parts of the model can be moved relative to others.
The problem is to

(i) Determine the (maximal) rigid substructures of a LEGO model.

(ii) Determine how these substructures can move relative to one another.

The point of solving these problems is to allow the constructor of a virtual LEGO
model to move the various parts of the model on the screen in the same way that
these parts would move in reality. In this report we will only explicitly consider
problem (i), but our approach to solving it is influenced by the ambition for the
solution to be fairly readily extensible into a solution of (ii).

The general problems of detecting the maximal rigid substructures of a truss
structure are know computationally hard. We propose a heuristic algorithm for
this problem, in the hope that LEGO models are not the “hard instances” for
rigidity detection.

We will first introduce the basic concepts involved in the problem. We take
the notion of when two (or more) bricks are connected to be given. There are two
basic types of connections between pairs of bricks: rigid and non-rigid.
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• A connection is rigid when the two bricks cannot be moved relative to one
another without destroying the connection.

• A connection is non-rigid (or flexible) if the bricks can be moved relative to
one another.

For standard LEGO bricks, the connection is non-rigid if the two bricks have only
one connection point (knob) in common (Figure 27).

Figure 27: A simple non-rigid connection

If they have more than one connection point in common, it is a rigid con-
nection (Figure 28). Generally, we assume it to be known when two bricks are

Figure 28: A simple rigid connection

connected rigidly and when they are connected non-rigidly.
A collection of connected bricks is called a structure. A structure is thus

simply a (connected) LEGO model. Structures obtained by removing some of the
bricks of a structure M are called substructures of M . A structure is called rigid
if no substructure of it can be moved relative to some other substructure (without
destroying any of the connections). In other words, if one brick of a rigid structure

91



is moved, all bricks of that structure moves along. Obviously, if all connections
of a structure are rigid, then the entire structure will be rigid. Given the above
definitions, the notion of a maximal rigid substructure is defined in the obvious
way. Note that rigid structures can contain flexible connections (see Figure 31
below).

The simplest rigid structures are those which do not contain any flexible con-
nection. A maximal substructure without any flexible links is called a superbrick.
A superbrick behaves as an ordinary (complex) brick in all respects apart from the
fact that a superbrick can be split into smaller parts (bricks). All notions defined
for bricks are inherited by superbricks, including the notions of when two super-
bricks are rigidly or non-rigidly connected. The two bricks in Figure 28 form a
superbrick. It could of course just as well have been a single brick (and it would
become one if we glued the two bricks together). Not all rigid structures are su-
perbricks. Figure 31 gives an example of a rigid structure which contains two
hinges and is thus not a superbrick.

For now, we will make a number of limiting assumptions concerning the bricks
available. These assumptions will exclude a number of LEGO bricks that actually
occur in some complex LEGO models, but the assumptions are necessary to make
an initial simplification of the problem at hand. The assumptions are:

• No single LEGO brick is flexible, that is, it cannot be bend, twisted or
elongated. When considering LEGO hinges, these are taken to consist of
two individual non-flexible bricks connected non-rigidly.

• All non-rigid connections form one-dimensional hinges. That is, there is a
single axis of rotation around which the two bricks can be rotated relative
to each other. Such situations are illustrated in Figure 27 and 29. We thus
exclude bricks with ball-links.

We propose to use graph models to describe LEGO structures. The model is
hierarchically structured. The fine structure of a LEGO model is described by
the brick graph. The component graph abstracts from the individual bricks and
provides the information in the flexibility of the model. We consider the static
situation in which a (maybe incomplete but fixed) structure is given. Later we
shall address the case where the structure is dynamically changed by adding or
removing bricks.

Brick graphs

Brick graphs contain the information on all individual connections, rigid and flex-
ible, of bricks in the model. A brick graph has a node for every brick in the model.
The edges correspond to connections. There are two types of edges:
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Figure 29: A LEGO hinge

• Rigid edges drawn as solid lines:

• Flexible edges drawn as dashed lines:

If two bricks are connected, an edge of the appropriate type is added between the
nodes.

The two types of edges are used at different levels in the modelling process.
First only the rigid edges are considered to detect the superbricks. It is easy to
see that the superbricks of a structure correspond to the maximal connected com-
ponents of the brick graph, when only the rigid edges are considered. The super-
bricks then replace the bricks, thus simplifying the graph model.

Component graphs

The component graph is used to detect the maximal rigid substructures. It is
dynamically changing in the computational process. The component graph is a
labelled multi-graph (parallel edges allowed). The following properties remain
invariant:

• The nodes correspond to (not necessarily maximal) rigid substructures. In
the following we will often refer to these as components.

• The edges correspond to flexible connections (dashed lines). Every edge is
labelled with the axis of rotation of the corresponding flexible connection.
The axis of rotation is taken to be a straight line in space, so it carries infor-
mation both about the orientation of the axis and of its position in space.
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• For every flexible connection in the structure, there is an edge between the
rigid components that it connects.

An example is shown in Figure 30.

1 2

3 4 5
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2

3

4

8 7

5

6

Figure 30: A LEGO model (top) and the induced brick graph (lower left) and the
component graph (lower right). Labelling of dashed edges is omitted.

7.2 Constructing the Graphs

We assume that the following information on the physical LEGO model is avail-
able:

• The number of bricks of the model.

• The connection structure, i.e., which brick are connected to which.

• The type of the connection, rigid or non-rigid. For non-rigid connections,
also the type of hinge as well as the position and orientation of its axis of
rotation.

The brick graph is constructed by inspecting the physical model. Let N be the
number of bricks and M be the number of connections. The time to build the
brick graph is O(N + M). Then the superbricks are found by a depth-first-search
algorithm in time O(N + M). 1 This algorithm only uses the rigid edges of the
brick graph, ignoring the flexible ones.

When this is done, we can build the component graph. The graph is initialized
as follows:

1For basic notions and results in algorithmics we refer to Cormen et al.: Introduction to Algo-
rithms.
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• For every superbrick in the structure, we put a corresponding node in the
graph. Superbricks and their corresponding nodes will be identified in the
following.

• For every flexible connection in the structure, we put an edge between the
superbricks that it connects and label the edge with the axis of rotation of the
connection. This is to be understood such that if there are, say, two non-rigid
connections between a pair of superbricks, then there are also two (parallel)
edges between the corresponding nodes. This information is derived from
the brick graph.

In an implementation, the component graph would probably be initialized in the
depth-first-search algorithm which determines the maximal connected compo-
nents.

The component graph is then simplified to find the maximal rigid components.
In this process nodes might be contracted (merged). Also a set of edges which rep-
resents co-linear hinges will be replaces by a single edge. We will now show how
to analyse and simplify the component graph to find the maximal rigid substruc-
tures (henceforth MRSs). The MRSs are to be collected in a list L. The graph is
simplified in a number of consecutive steps, and whenever a simplification step
leads us to find a new MRS, we will add this to the list L. The individual steps of
our simplification algorithm are sketched below.

Step 1: Merging connections

Consider all flexible edges in the component graph. Let GXY be the group of all
edges between node X and node Y . For each group check which of the following
cases applies:

X = Y Then do nothing.
(X 6= Y ) ∧ (|GXY | = 1) Then do nothing.
(X 6= Y ) ∧ (|GXY | > 1) If all flexible connections in GXY are co-linear,

i.e. all labels in GXY are identical, replace the
edges in GXY by a single edge. If, conversely,
there is a pair of non-identical labels in GXY ,
then contract the two nodes X and Y to a single
node. 2

Figure 31 shows an example.

2For a definition of ‘contraction’ and other basic notions in graph theory we refer to Béla
Bollobás: Modern graph theory.
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Figure 31: Two hinges with non-collinear axes form a rigid connection. The single
node to the right is the component graph after step 1 has been completed.

Step 2: Acyclic nodes

When a node in a graph is not contained in any cycles we call it an acyclic node.
Consider two adjacent nodes p and q of the component graph. If the edge con-
necting p and q is the only path from p to q then the corresponding substructures
are non-rigidly connected (since the edge between them represents a flexible con-
nection). From this it follows that all acyclic nodes are only involved in non-rigid
connections. In other words, all substructures corresponding to acyclic nodes con-
stitute maximal rigid substructures. We can therefore remove them from the graph
and put them into the list L of MRSs. This can all be completed in linear time:
We repeatedly find and remove all maximal paths starting in nodes of degree 1
and containing only nodes of degree ≤ 2. When step 2 is completed, all nodes of
the component graph are cyclic (contained in a cycle).

Step 3: Cycles of length 3

Note, that cycles of length 2 contain exactly two nodes. They are thus covered by
Step 1 above. Cycles of length 3 may or may not form rigid structures. Figure 32
shows examples for both. To check which situation we are in, we look at the labels
of the edges, i.e., the axes of rotation.

After every simplification, Steps 1 through 3 are repeated until no further sim-
plification is possible.

Step 4: Structures with at least 4 nodes

For structures with 4 or more nodes we propose to build a library in which labelled
component graphs and their simplifications are stored. An example can be seen
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aligned hinges

non/aligned hinges

Figure 32: An example for non-flexible hinges. The left column shows the phys-
ical arrangement, the middle column shows the brick graph, and the component
graph after the completion of step 3 is drawn at the right. The example in the first
row has three superbricks but only two MRSs. The hinge at the right can never be
moved. In the lower row only one MRS is present because the hinges at the left
are no longer co-linear.

in Figure 33. If the component graph contains a subgraph, which is stored in the
library, then it is replaced by its simplification.

Again, after every simplification, Steps 1 through 4 are repeated until no fur-
ther simplification is possible.

7.3 Work plan

• Specification of the graphs, e.g., what information has to be stored at the
nodes and edges.

• Building the library: Detection of (frequently occurring) substructures. Anal-
ysis of these substructures with respect to possible simplifications.

• Finding a appropriate representation of substructures which allows fast search
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Figure 33: An example for indirect coupling of flexible connections. An arrange-
ment of seven LEGO bars connected by eight hinges. The left column shows the
physical arrangement, the middle column shows the brick graph, and the compo-
nent graph is drawn at the right. In the upper row, the hinges between bars 1, 2
and bars 4, 5 can be moved. If the hinge between bars 1 and 2 is made rigid (lower
row), then the hinge between bars 4 and 5 becomes rigid as well. This happens
even though bars 1 or 2 do not have any direct connection to bars 4 or 5.

in the library. A “signature” representation might be promising.

• Development of a (may be interactive tool) for analysing substructures with
respect to rigidity and possible simplifications.

• Analysis of the simplification algorithm for the component graph. Is the
repetition of all previous steps really necessary after every replacement?
Are there situations which require a different treatment.

• Which effect does the order of simplifications have.

• Time analysis of the simplification algorithm.

• Implementation issues: Recommended data structures. Efficient implemen-
tation of the parts of the algorithms, etc.

• Making the data structures fully dynamic: Additions and deletions of bricks
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are allowed. Find efficient ways to update the brick graph and the compo-
nent graph.

• Analysis of other approaches than the combinatorial one:

– Algebraic representation: Angles as a system of quadratic equations.
A structure is non-rigid if there is a connected solution set. Rigid if
only isolated solutions exist.

– Logic representation: As a set of formulas. Which structures corre-
spond to solvable formulas (Horn clauses)?
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