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A soft start: Modal logic

Propositional modal logic (in negation normal form, NNF) has the
following syntax, where p is a propositional symbol:

φ, ψ ::= p | ¬p | φ ∧ ψ | φ ∨ ψ | ♦φ | �φ

A Kripke model (or simply model) is a tuple M = (W ,R,V ) where W
is a set of worlds, R is a binary accessibility relation on W , and V
maps propositional symbols into subsets of W . The underlying graph
(W ,R) is called a frame. The relation M,w |= φ is defined inductively,
where w ∈W .

M,w |= p iff w ∈ V (p)
M,w |= ¬φ iff not M,w |= φ

M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ
M,w |= �φ iff for all v ∈W , if (w , v) ∈ R then M, v |= φ

♦ is dual of �. A formula φ is valid if M,w |= φ for allM,w . It is
satisfiable if M,w |= φ for someM,w , that is, if ¬φ is not valid.
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Applications of modal logic in computer science

Model logic has numerous applications in computer science. This is due
to the many possible interpretations of the model operators (♦ and �):

• Temporal: �φ means ”in the next step, φ” or ”always in the
future, φ”. Application examples: specification & verification.

• Epistemic: �φ means ”it is known that φ” (by some agent).
Application example: multi-agent systems (MAS).

• Temporal + Epistemic.

• Ontological: Student↔ Person ∧ ♦enrolledCourse. This gives
description logic. Application examples: ontological databases,
semantic web.

A major advantage over using first-order predicate logic is that modal
logics tend to be decidable.
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Decision procedures for modal logic

The main decision problem for a modal logic is satisfiability of formulas
(or, dually, validity).

Types of decision methods suitable for implementation: tableau
procedures, resolution procedures and automata-based procedures.

Here we consider tableau procedures.

We focus only on decidability, not complexity.
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A tableau calculus for modal logic

Given: a formula φ of modal logic, that we want to check whether is
satisfiable.

We build a completion tree (or tableau branch) T , a tree labelled with
sets of subformulas of φ (this is the description logic style of tableau).

Initialisation: A single node x0 with label LT (x0) = {φ}.
Then we iteratively apply the following expansion rules (or tableau
rules)—with the stipulation that no rule is applied twice to the same
premises:

∧-rule: If φ ∧ ψ ∈ LT (x) then set LT (x) = LT (x) ∪ {φ, ψ}.
∨-rule: If φ ∨ ψ ∈ LT (x) then set LT (x) = LT (x) ∪ {φ} or set

LT (x) = LT (x) ∪ {ψ}.
♦-rule: If ♦φ ∈ LT (x) then create child node y of x with

LT (y) = {φ}.
�-rule: If �φ ∈ L(x) and y is a child of x then set

LT (y) = LT (y) ∪ {φ}.
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A tableau calculus for modal logic

Recall the rules:

∧-rule: If φ ∧ ψ ∈ LT (x) then set LT (x) = LT (x) ∪ {φ, ψ}.
∨-rule: If φ ∨ ψ ∈ LT (x) then set LT (x) = LT (x) ∪ {φ} or set

LT (x) = LT (x) ∪ {ψ}.
♦-rule: If ♦φ ∈ LT (x) then create child node y of x with

LT (y) = {φ}.
�-rule: If �φ ∈ LT (x) and y is a child of x then set

LT (y) = LT (y) ∪ {φ}.

A completion tree T is called saturated (or fully expanded) if no more
rule applies. It is called closed if p,¬p ∈ LT (x) for some
p, x—otherwise it is called open (or clash free).

Tableau algorithm: Construct all possible saturated completion trees
of the input-formula φ (note the nondeterminism of the ∨-rule). If all
close, declare φ unsatisfiable, otherwise, if at least one is open, declare it
satisfiable.
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Soundness, completeness and termination of the
calculus

Termination: If y is a child of x in a completion tree T then
max{|φ| | φ ∈ LT (y)} < max{|φ| | φ ∈ LT (x)}. (+ König’s Lemma).

Soundness (if algorithm says “φ is satisfiable” then it is): We can
immediately read of a model from any open, saturated completion tree.

Completeness (if φ is satisfiable, algorithm will say so): The
non-deterministic choices can be made so that every rule preserves the
property that the completion tree can be extended into a model of φ.
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Extending modal logic

Many applications require more than the basic modal logic. There are (at
least) two ways to extend it (make it more expressive):

• Extending the language: nominals, multiple modalities, modalities
of arbitrary arity, inverse modalities, graded modalities (number
restrictions), transitive closure operator, fixed-point operators, etc.

• Imposing frame conditions (on one or all modalities): global
modality (everywhere), difference modality (everywhere else),
transitive modalities, reflexive modalities, irreflexive modalities,
asymmetric modalities, etc.

Sound and complete tableau calculi for most of these extensions are easy
to formulate. In particular for the frame conditions, as it is proven in
[Blackburn, 2000] that the tableau calculus for hybrid logic extended
with any class of frame defining axioms is automatically sound and
complete with respect to the class of frames defined by those axioms.
This covers e.g. all frame conditions mentioned above.

However, in most cases termination is lost...
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Modal logic with the global modality

One of the simplest extensions that produce non-termination is modal
logic extended with the global modality A with semantics defined by:

M,w |= Aφ iff for all v ∈W, M, v |= φ

This logic is an extension of the description logic ALC (in disguise).

The global modality can be handled by adding the following rule to our
previous calculus:

A-rule: If Aφ ∈ LT (x) and y is any node in the completion tree
then set LT (y) = LT (y) ∪ {φ}.

Termination is lost. How can it be regained?
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Blocking

Termination is usually regained by imposing a blocking condition (also
called loop-check condition) to avoid repeating worlds. The following
works for modal logic with the global modality.

A node x in a completion tree T is called directly blocked if it has an
ancestor y with LT (y) = LT (x). A node is called blocked if it is directly
blocked or if it has an ancestor that is directly blocked.

When constructing completion trees we now impose the following
condition:

Blocking condition: No expansion rule is allowed to be applied to a
blocked node.

This type of blocking is called equality blocking and was first introduced
in [Halpern & Moses, 1992] (decision procedures for epistemic logics).
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Soundness, completeness and termination with
blocking

Termination: Since all labels are sets of subformulas of the
input-formula, there can only be finitely many distinct labels, and thus
only finitely many unblocked nodes on any branch.

Soundness (if algorithm says “φ is satisfiable” then it is): We can build
a model from an open, saturated branch by redirecting edges leading to
directly blocked nodes to their corresponding blocking nodes.

Completeness (if algorithm says “φ is not satisfiable” then it isn’t):
Reduces to the unblocked case. Blocking just makes it harder for a
completion tree to close, so if the algorithm answers “no” with blocking
in place, it will also answer “no” without it.
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Extensions of the result

The equality blocking method doesn’t only work for the global modality.
It works for all of the following extensions of modal logic and their
combinations: global modality, transitive modalities, nominals and
satisfaction operators (that is, hybrid logic), multiple modalities,
inverse modalities, modalities of arbitrary arity [Bolander &
Blackburn, 2007].
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Further extensions

In a number of recent paper [2008–2010], Kaminski and Smolka have
shown how to furthermore extend the terminating tableau calculus with:
graded modalities; difference modality; role hierarchies; reflexive
modalities. This gives an extension of the description logic SHOQ.

In description logic, the most expressive logic for which a terminating
tableau calculus has been given is SROIQ [Horrocks, Kutz & Sattler,
2006]. It includes: complex role inclusions; reflexive, antisymmetric,
and irreflexive modalities; disjoint modalities; global modality;
inverse modalities; graded modalities; and even more.

SROIQ is the logical bases of the Web Ontology Language ver. 1.1
(OWL 1.1).

Note, however: Most of the results on this slide need more than just
equality blocking.
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A new approach to soundness and termination

The non-trivial part in all the above results is to prove soundness (in the
case of satisfiability checking), that is, how to construct a model from an
open, saturated completion tree.

It is particularly tricky when we impose frame conditions: consider e.g.
the case of I4 (model logic on transitive, irreflexive frames).
Redirecting edges from blocked to blocking nodes will destroy
irreflexivity!

The case of I4 can be solved: redirect as usual, then unravel, then take
transitive closure. But it can get even worse with more complicated
frame conditions, and for many of these, no terminating tableau calculi
are yet known.

I therefore propose a different approach to termination and soundness of
tableau calculi, which I dub the reduction method. It is based on an
idea introduced in [Fitting, 1983].
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Blocking techniques from a general perspective

Assume the following are given:

• C: a sound and complete non-terminating tableau calculus wrt. some
class of models M.

• C’: the result of adding some blocking mechanism to C that ensures
termination (C’ is the restricted calculus).

How do we prove that C’ is still sound and complete wrt. M?

Completeness is trivial (if a completion tree closes with blocking in place,
it will also close without it).

Soundness is the (potentially) hard part. We need to prove that the
following implication holds for all formulas φ:

there exists a saturated, open completion tree in C’

with input-formula φ
⇓

φ is satisfiable in M.
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Two approaches to soundness and termination

As mentioned, we need to prove:

there exists a saturated, open completion tree in C’

with input-formula φ
⇓

φ is satisfiable in M.

Two different possible approaches:

• Direct method. Show how a model of φ can be built directly from
the open, saturated branch in the calculus C’. This requires a
completely new soundness proof for C’, independent of the
soundness proof for C.

• Reduction method. Prove that the open, saturated branch in the
restricted calculus C’ can be extended into an open, saturated
branch in the unrestricted calculus C. Soundness of C’ is thus
reduced to soundness of C.

In all results mentioned above, the direct method has been used. We will
now explore the reduction method...
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Blocking revisited

We define blocking of tableaus in the following generalised way.

Let C be a tableau calculus. A blocking operator for C is a mapping ∼
that to each completion tree T of C assigns an equivalence relation ∼T

on the nodes of T .

Let C be a tableau calculus, and ∼ a blocking operator for it. A node x
in a completion tree T of C is directly blocked wrt. ∼ if it has an
ancestor y with y ∼T x . A node is blocked if it is directly blocked or if
it has an ancestor that is directly blocked.

Any blocking operator on C now induces a blocking condition on
completion trees: no expansion rule is allowed to be applied to a blocked
node.

Example. If we define ∼ by x ∼T y ⇔ LT (x) = LT (y), then the
induced blocking condition is simply equality blocking as considered
above.
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Subtrees and acceptable blockings

Let T be a completion tree. A possible subtree of x in T is any subtree
of x in a completion tree extending
T ′ = T − {y | y is a descendant of x in T}.
A blocking operator ∼ for a tableau calculus C is said to be acceptable
if the following holds:
• For all completion trees T of C, and all nodes x , y in T , if x ∼T y

then x and y have the same set of possible completion subtrees in T
up to isomorphism (renaming of nodes).

• For all completion trees T , the number of equivalence classes in ∼T

is bounded by some function in the root formula of T .

If C is a tableau calculus and ∼ is a blocking operator for it, we use C∼
to denote the calculus obtained by adding the blocking condition induced
by ∼ to the calculus C.

Theorem. Let C be a tableau calculus, and let ∼ be an acceptable
blocking operator for it. Then C∼ is terminating as well as sound and
complete wrt. the same class of models as C.
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Application examples of the reduction method

Consider the following blocking operator:

x ∼T y ⇔ LT (x) = LT (y) ∧
∪{LT (x ′) | x ′ is ancestor of x in T} = ∪{LT (y ′) | y ′ is ancestor of y in T}.

This operator is acceptable e.g. for tableau calculi for irreflexivity +
transitivity (I4).

More generally, define n-to-m transitivity to be defined by the following
formula: ♦np → ♦mp. Then the following operator is acceptable for
tableau calculi for irreflexivity + n-to-1 transitivity:

x ∼T y ⇔ LT (x) = LT (y) ∧
∧

0<i<n

∪{LT (x ′) | x ′ is ancestor of x in T and (distT (x ′, x)− 1) mod (n − 1) = i } =
∪{LT (y ′) | y ′ is ancestor of y in T and (distT (y ′, y)− 1) mod (n − 1) = i }.

A small modification of the blocking operator will make it work also for
n-to-m transitivity for any n > m. This solves an open problem in
temporal logic concerning the decidability of modal logic extended with
weak transitivity: ♦3p → ♦2p.
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Further perspectives

Recall the ”automatic sound and completeness” result of Blackburn
concerning tableau calculi for axiom definable frames. Combining this
with the reduction method has the perspective of providing general
results on terminating tableau calculi for a wide range of frame classes.
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Conclusion and future work

• We have presented blocking techniques in tableau calculi for
modal/hybrid/description logics.

• For the richer logics, the soundness proof usually gets tricky (how to
build a model from an open, saturated branch).

• To (partly) solve this problem, we have proposed a new approach:
the reduction method.

• The reduction method is particularly useful for logics/modalities
with frame conditions, and has promising perspectives in hybrid
logic in connection with the result of Blackburn.
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