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Running example: Birthday present
Automated planning: Computing plans (sequences of actions) leading
to some desired goal.

Planning example. A father ordered a present for his daughter’s
birthday. It is now at the post office. His goal is to give it to her on her
birthday the following day.

Epistemic planning example. The father might be uncertain about
which post office the parcel is at. He might also want to ensure that his
daughter doesn’t get to know about the parcel.
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Structure of this talk

From classical planning to planning based on dynamic epistemic logic
(DEL):

1. Classical planning domains and planning tasks.

2. STRIPS planning.

3. Propositional planning.

4. Belief states, partial observability and conditional actions.

5. (Dynamic) epistemic logic (DEL).

6. Epistemic planning tasks.

7. Types of epistemic planning tasks and types of solutions.

8. Complexity issues.

9. Alternative approaches to epistemic planning.
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Automated planning

Automated planning (or, simply, planning):

• Aims at generating plans (sequences of actions) leading to desired
outcomes.

• More precisely: Given a goal formula, an initial state and some
possible actions, an automated planner outputs a plan that leads
from the initial state to a state satisfying the goal formula.

Example.
Goal: Get A on B on C .
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A

initial state

B

C A

C A B

B

C A

A

B

C

goal

· · ·

Put(C,table)

Put(B,table)

Put(B,C) Put(A,B)

Put(B,C)

· · ·
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Birthday example (non-epistemic version)

• Initial state:
• Father at home.
• Present at post office.
• Present not wrapped.

• Goal:
• Father at home.
• Father has present.
• Present wrapped.

• Actions:
• Go from location from to location to.
• Pick up object obj at location from.
• Wrap object obj .

To formally reason about such planning tasks, we need an appropriate
formalism. The must basic approach is to use state-transition systems...

Thomas Bolander, Epistemic Planning, M4M, 8–9 Jan 2017 – p. 5/67



State-transition systems

Definition ([Ghallab et al., 2004])

A (restricted) state-transition system (also called a a classical
planning domain or simply a state space) is Σ = (S ,A, γ), where:

• S is a finite or recursively enumerable set of states.

• A is a finite or recursively enumerate set of actions.

• γ : S × A →֒ S is a computable partial state-transition function.

When γ(s, a) is defined, a is said to be applicable in S .
When π = a1; · · · ; an let γ(s, π) := γ(· · · γ(γ(s, a1), a2), . . . , an).
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Classical planning tasks

Definition ([Ghallab et al., 2004])

A classical planning task is a triple (Σ, s0, Sg ), where

• Σ = (S ,A, γ) is restricted state-transition system (a classical
planning domain).

• s0 ∈ S is the initial state.

• Sg ⊆ S is the set of goal states.

A solution to a classical planning task ((S ,A, γ), s0, Sg ) is a finite
sequence of actions (a plan) π = a1; · · · ; an from A such that
γ(s0, π) ∈ Sg .
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Put(C,table)

Put(B,table)

Put(B,C) Put(A,B)

Put(B,C)

· · ·
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Classical planning task example: Birthday present

The birthday present example can be represented as the classical
planning task ((S ,A, γ), s0, Sg ) with

• S = {s1, s2, s3, s4, s5, s6}.
• A = {go post office, go home, get present, wrap present}.
• γ as given below.
• s0 = s1.
• Sg = {s5}.

A solution is π = go post office; get present; go home; wrap present.

s1

go home

s2
go post office

go home

s3get present

go post office

s4

go home

go home

go post office

s5

go home

wrap present

s6

wrap present
go post office

go home

go post office
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Weaknesses of planning via state-transition systems
• Unmanageable state space sizes. With n parcels to take home
from the post office, the state space would be of size ≥ 2n. But
shortest solution still linear in n.

• No structure on states and actions to guide search. To avoid
computing the entire state space, we need heuristics (e.g. number of
parcels still at post office = goal count heuristics). To compute
these automatically, we need structure on states and actions...

43 ∗ 1018 states
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Logical structure on states/actions: STRIPS

STRIPS [Fikes and Nilsson, 1971]: The classical language for describing
states and actions in the field of automated planning.

• STRIPS state: Set of ground atoms of a function-free first-order
language L.

• STRIPS action: Ground instance of an action schema specified
by name, precondition and effect. Precondition and effects:
conjunctions of literals of L.

Example (birthday pres.). State s0 and action schemas Go and PickUp:

s0 = {At(Father,Home),At(Present,PostOffice), IsAgt(Father),
IsLoc(Home), IsLoc(PostOffice), IsObj(Present)}

Action : Go(agt, from, to)
Precond : At(agt, from) ∧ IsAgt(agt) ∧ IsLoc(from) ∧ IsLoc(to)
Effect : At(agt, to) ∧ ¬At(agt, from)

Action : PickUp(agt, obj, from)
Precond : At(agt, from) ∧ At(obj, from) ∧ ¬Has(agt, obj) ∧ IsAgt(agt) ∧

IsObj(obj) ∧ IsLoc(from)
Effect : Has(agt, obj) ∧ ¬At(obj, from)
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Example: Application of a STRIPS action in a state

Recall action schema for Go:
Action : Go(agt, from, to)
Precond : At(agt, from) ∧ IsAgt(agt) ∧ IsLoc(from) ∧ IsLoc(to)
Effect : At(agt, to) ∧ ¬At(agt, from)

Example of ground instance (= action):

Action : Go(Father,Home,PostOffice)
Precond : At(Father,Home) ∧ IsAgt(Father) ∧ IsLoc(Home) ∧ IsLoc(PostOffice)
Effect : At(Father,PostOffice) ∧ ¬At(Father,Home)

Then:

At(Father,Home),At(Present,PostOffice), IsAgt(Father),
IsLoc(Home), IsLoc(PostOffice), IsObj(Present)

s0

At(Father,PostOffice),At(Present,PostOffice), IsAgt(Father),
IsLoc(Home), IsLoc(PostOffice), IsObj(Present)

s1

Go(Father,Home,PostOffice)
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State-transition system induced by action schemas

Any finite set of STRIPS action schemas A induce a state-transition
system Σ = (S ,A′, γ) by:

• S = 2P , where P is the set of ground atoms of L.

• A′ = {all ground instances of action schemas in A}.

• γ(s, a) =






(s − {φ | ¬φ is a neg. literal of Effect(a)) ∪

{φ | φ is a pos. literal of Effect(a)} if s |= Precond(a)

undefined otherwise

At(F,H)
At(P,PO)

Go(F,H,H)

At(F,PO)
At(P,PO)

Go(F,H,PO)

Go(F,PO,H)

At(F,PO)
Has(F,P)

PickUp(F,P,PO)

Go(F,PO,PO)

At(F,H)
Has(F,P)

Go(F,H,H)

Go(F,PO,H)

Go(F,H,PO)

At(F,H)
Has(F,P)
Wrapped(P)

Go(F,H,H)

Wrap(F,P)

At(F,PO)
Has(F,P)
Wrapped(P)

Wrap(F,P) Go(F,PO,PO) Go(F,PO,H)

Go(F,H,PO)
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Compactness of STRIPS representation

STRIPS representation is compact: We can add any number of
parcels, locations and agents without any change in the size of the
STRIPS planning domain (no change to the action schemas). But the
induced state-transition system is exponential in each of these.
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STRIPS planning tasks and solutions
Definition. A STRIPS planning task on a function-free first-order
language L is (A, s0, φg ) where

• A, the set of actions, is a set of STRIPS action schemas over L.

• s0, the initial state, is a set of ground atoms over L.

• φg , the goal formula, is a conjunction of ground literals over L.

Any STRIPS planning task (A, s0, φg ) induces a classical planning task
(Σ, s0, Sg ) by letting Σ be the state-transition system induced by A and
letting Sg = {s ∈ S | s |= φg}. A solution to a STRIPS planning task is
then a solution to the induced classical planning task.

Example (birthday present). STRIPS planning task (A, s0, φg ) where

• A contains action schemas for Go, PickUp and Wrap.

• s0 is the earlier shown initial state.

• φg = At(Father,Home) ∧ Has(Father,Present) ∧Wrapped(Present).

Solution π = Go(F,H,PO); PickUp(F,P,PO); Go(F,PO,H);Wrap(F,P).
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Propositional planning tasks
Definition. A propositional planning task on a finite set of atomic
propositions P is (A, s0, φg ), where
• A is a finite set of actions a = 〈pre(a), post(a)〉. pre(a), the
precondition of a, and post(a), the postcondition of a, are
conjunctions of propositional literals over P .

• s0 ⊆ P is the initial state (a propositional state over P).
• φg is the goal formula, a propositional formula over P .

A propositional planning task (A, s0, φg ) on P induces a classical
planning task ((S ,A, γ), s0, Sg ) in the expected way:

• S = 2P (all propositional states over P)
• γ(s, a) =






(s − {p | ¬p is a negative literal of post(a)) ∪

{p | p is a positive literal of post(a)} if s |= pre(a)

undefined otherwise
• Sg = {s ∈ S | s |= φg}.

A solution to a propositional planning task is any solution to the induced
classical planning task. Thomas Bolander, Epistemic Planning, M4M, 8–9 Jan 2017 – p. 15/67



Grounding: Propositional planning tasks induced by
STRIPS planning tasks

For any function-free first-order language L, let PL denote the set of
ground atoms of L.

Any quantifier-free ground formula of L is then at the same time a
formula of propositional logic over PL.

Any STRIPS planning task (A, s0, φg ) on L induces a propositional
planning task (A′, s0, φg ) on PL by simply letting:

A′ = {〈Precond(a),Effect(a)〉 | a is a ground instance of
an action schema in A}.

It is easy to show that the STRIPS planning task (A, s0, φg ) and its
induced propositional planning task (A′, s0, φg ) both induce the same
classical planning task.

STRIPS plann. task classical plann. task

propositional plann. task
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Propositional plann. task example: Birthday present

The birthday present example can be represented as the propositional
planning task (A, s0, φg ) where (omitting the Wrap action):

Agt ⊇ {Father} is a set of agent names, Loc ⊇ {Home,PostOffice} is a
set of locations, and Obj ⊇ {Present} is a set of objects.

A = {Go(agt, from, to) | agt ∈ Agt & from, to ∈ Loc} ∪
{PickUp(agt, obj, from) | agt ∈ Agt & obj ∈ Obj & from ∈ Loc}

where, for all agt ∈ Agt, all from, to ∈ Loc and all obj ∈ Obj,

Go(agt, from, to) = 〈At(agt, from),At(agt, to) ∧ ¬At(agt, from)〉

PickUp(agt, obj, from) =
〈At(agt, from) ∧ At(obj, from) ∧ ¬Has(agt, obj),Has(agt, obj)〉

s0 = {At(Father,Home),At(Present,PostOffice)}.

φg = At(Father,Home) ∧ Has(Father,Present) ∧Wrapped(Present).
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Plan existence problem in propositional planning

• Propositional planning tasks (A, s0, φg ) can be exponentially more
succinct than their induced classical planning tasks/state spaces
((S ,A, γ), s0, Sg ): Most often A is polynomial in P and S
exponential in P .

• We want to do planning directly based on the compact propositional
planning task descriptions.

Definition. The plan existence problem in propositional planning is
the following decision problem: “Given a propositional planning task
(A, s0, φg ), does it have a solution?”

Theorem [Bylander, 1994]. The plan existence problem in
propositional planning is PSPACE-complete.

• Note that this is the complexity measured in terms of the succinct
task description.

• In planning based on temporal epistemic logics, e.g. ATEL
[van der Hoek and Wooldridge, 2002], planning is measured in size
of state space.
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Belief states

?
Loc = {Home,PostOffice1,PostOffice2}.

The father doesn’t know in which post office the parcel is. Uncertainty
represented by belief states: sets of propositional states.

The initial belief state of the father:

s0 = {{At(Father,Home),At(Present,PostOffice1)},
{At(Father,Home),At(Present,PostOffice2)}}.

In line with modal logic, we call the elements of belief states (possible)
worlds.
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Truth in belief states and internal perspective

For belief states s and prop. formulas φ:

s |= φ
def
⇔ φ is true in all states of s

Example (birthday present). Let again

s0 = {{At(Father,Home),At(Present,PostOffice1)},
{At(Father,Home),At(Present,PostOffice2)}}.

Then

(1) s0 |= At(Father,Home)

(2) s0 6|= At(Present,PostOffice1)

(3) s0 6|= At(Present,PostOffice2)

(4) s0 |= At(Present,PostOffice1) ∨ At(Present,PostOffice2).

s0 represents the father’s internal perspective on the initial state: He
can verify (knows) that he is home (1) and can verify (knows) that the
present is in PostOffice1 or PostOffice2 (4), but doesn’t know which
(2–3).

Thomas Bolander, Epistemic Planning, M4M, 8–9 Jan 2017 – p. 20/67



Planning under partial observability and conditional
actions

Planning in the space of belief states is called planning under partial
observability.

• Actions also need to be represented from the internal perspective of
the planning agent.

• In s0, the father doesn’t know whether attempting to pick up the
parcel at PostOffice1 will be succesful.

• He has two represent multiple possible outcomes of executing the
action. It is a conditional action.

• Conditional actions can be represented by sets of pairs
〈pre(a), post(a)〉 (called events in line with dynamic epist. logic).

Example.

TryPickUp(agt, obj, from) = {
〈At(agt, from) ∧ At(obj, from) ∧ ¬Has(agt, obj),Has(agt, obj) ∧ ¬At(obj, from)〉,
〈At(agt, from) ∧ ¬At(obj, from),⊤〉

}
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From propositional states and actions to belief
states and conditional actions

Note how we got from propositional states to belief states:

propositional state epistemic state

propositional valuation set of such valuations

We applied the exact same trick to actions:

propositional action conditional action

pair 〈pre, post〉 where pre is
propositional formula and post is
conjunction of propositional literals

set of such pairs
〈pre, post〉
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Generalised transition function

Given a belief state (set of worlds) s and a conditional action (set of
events) a, we can define a generalised transition function by:

γ(s, a) = {γ(w , e) | w ∈ s, e ∈ a,w |= pre(e)}.

{At(Father,Home),At(Present,PostOffice1)},
{At(Father,Home),At(Present,PostOffice2)}

s0

{At(Father,PostOffice1),At(Present,PostOffice1)},
{At(Father,PostOffice1),At(Present,PostOffice2)}

s1

{At(Father,PostOffice1),Has(Father,Present)},
{At(Father,PostOffice1),At(Present,PostOffice2)}

s2

Go(Father,Home,PostOffice1)

TryPickUp(Father,Present,PostOffice1)

What is the problem in the belief state representation above?
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Run time versus plan time uncertainty
Consider the partial state-transition system from before:

{At(Father,Home),At(Present,PostOffice1)},
{At(Father,Home),At(Present,PostOffice2)}

s0

{At(Father,PostOffice1),At(Present,PostOffice1)},
{At(Father,PostOffice1),At(Present,PostOffice2)}

s1

{At(Father,PostOffice1),Has(Father,Present)},
{At(Father,PostOffice1),At(Present,PostOffice2)}

s2

Go(Father,Home,PostOffice1)

TryPickUp(Father,Present,PostOffice1)

In s0, the father has run time uncertainty about which of the two
worlds is the actual: Even at execution time he can not distinguish.

In s2, the father should only have plan time uncertainty: At plan time
he can not distinguish, but at execution time he can.

We need to formally be able to distinguish...
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Models of observability

We need a way to model observability: which worlds and events are (run
time) distinguishable by the planning agent.

Standard approaches in the planning literature:

(1) Observability is a static partition on the set of possible worlds (e.g.
[Ghallab et al., 2004]). Worlds in the same partition are
indistinguishable. Example: I always see my cards, but never your
cards.

(2) Each possible world determines a percept (or observation) (e.g.
[Russell and Norvig, 1995, Ghallab et al., 2004]). Worlds with
identical percepts are indistinguishable. Equivalent to (1).

Not sufficient for our purposes. Why not?

We need a more expressive framework for clearly separating run time vs
plan time indistinguishable worlds and events. We move to (dynamic)
epistemic logic...
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Epistemic language and epistemic models

The epistemic language on propositions P and agents A, denoted
LKC(P ,A) (or simply LKC), is generated by the following BNF:

φ ::= ⊤ | ⊥ | p | ¬φ | φ ∧ φ | Kiφ | Cφ,

where p ∈ P and i ∈ A.

Definition. An epistemic model on P ,A isM = (W , (∼i )i∈A, L)
where

• The domain W is a non-empty finite set of worlds.

• ∼i ⊆W ×W is an equivalence relation called the
indistinguishability relation for agent i ∈ A.

• L : W → 2P is a labelling function assigning a propositional
valuation (a set of propositions) to each world.
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Local and global (epistemic) states
Epistemic state (or simply state): A pair (M,Wd) for some set of
designated worlds Wd ⊆W (will be denoted ).

Global state: A state (M,Wd) with Wd = {w} for some w called the
actual world.

Local state for agent i : A state (M,Wd) where Wd is closed under ∼i .

Associated local state of agent i of state s = (M,Wd):

s i
def
= (M, {v | v ∼i w and w ∈Wd}).

Example. Global state representing situation after Go(F,PO1) from
initial state (with parcel at PO2):

s1 =
w1 : At(F,PO1),At(P,PO1) w2 : At(F,PO1),At(P,PO2)

Father

Associated local state of Father (internal representation of father):

sFather1 =
w1 : At(F,PO1),Has(F,P) w2 : At(F,PO1),At(P,PO2)

Father
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Run time vs plan time indistinguishability

Before attempting to pick up the parcel at PostOffice1:

sFather1 =
w1 : At(F,PO1),At(P,PO1) w2 : At(F,PO1),At(P,PO2)

Father

Plan time representation of the result of executing
TryPickUp(Father,Present,PO1):

sFather2 =
w1 : At(F,PO1),Has(F,P) w2 : At(F,PO1),At(P,PO2)

Let s = (M,Wd) be local state of agent i and w1,w2 ∈Wd . Worlds w1

and w2 are run time indistinguishable to agent i if w1 ∼i w2.
Otherwise plan time indistinguishable (or run time distinguishable).
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Epistemic states induced by belief states

Any belief state
B = {w1, . . . ,wn}

canonically induces an epistemic state ((W ,∼, L),Wd) with

• W = {w ′
1, . . . ,w

′
n}.

• ∼ = W ×W .

• L(w ′
i ) = wi for all i = 1, . . . , n.

• Wd = W .
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Truth in epistemic states

Let (M,Wd) be a state on P ,A withM = (W , (∼i )i∈A, L). For i ∈ A,
p ∈ P and φ, ψ ∈ LKC(P ,A), we define truth as follows:

(M,Wd) |= φ iff (M,w) |= φ for all w ∈Wd

(M,w) |= p iff p ∈ L(w)
(M,w) |= ¬φ iff M,w 6|= φ

(M,w) |= φ ∧ ψ iff M,w |= φ andM,w |= ψ

(M,w) |= Kiφ iff (M, v) |= φ for all v ∼i w
(M,w) |= Cφ iff (M, v) |= φ for all v ∼∗ w

where ∼∗ is the transitive closure of
⋃

i∈A ∼i .

Example. Let

sFather2 =
w1 : At(F,PO1),Has(F,P) w2 : At(F,PO1),At(P,PO2)

In this state, the father knows whether the parcel is at PostOffice1:

sFather2 |= KFatherAt(P,PO2) ∨ KFather¬At(P,PO2)
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Planning with multiple agents and epistemic goals

The generalisation from belief states to epistemic states: multi-agent
planning, epistemic goals.

Example. The father might want to make sure his daughter doesn’t
come to know about the present (it’s meant to be a surprise):

φg = At(Father,Home) ∧ Has(Father,Present) ∧
Wrapped(Present) ∧ ¬KDaughterHas(Father,Present).
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Action models

Definition. An action model on P ,A is E = (E , (∼i )i∈A, pre, post)
where

• The domain E is a non-empty finite set of events.

• ∼i ⊆ E × E is an equivalence relation called the
indistinguishability relation for agent i ∈ A.

• pre : E → LKC(P ,A) assigns a precondition to each event.

• post : E → LKC(P ,A) assigns a postcondition to each event. For
all e ∈ E , post(e) is a conjunction of literals over P .

Epistemic action (or simply action): A pair (E ,Ed) for some set
Ed ⊆ E of designated events (will be denoted ).

Global action: An action (E ,Ed) with Ed = {e} for some e called the
actual event.

Local action for agent i : An action (E ,Ed) where Ed is closed under ∼i .

Associated local action of agent i of action a = (E ,Ed):

ai
def
= (E , {f ∈ E | f ∼i e for some e ∈ Ed}).

Thomas Bolander, Epistemic Planning, M4M, 8–9 Jan 2017 – p. 35/67



Epistemic actions induced by conditional actions

Any conditional action

a = {〈pre(a1), post(a1)〉, . . . , 〈pre(an), post(an)〉}

canonically induces an epistemic action ((E ,∼, pre, post),Ed) with

• E = {a′1, . . . , a
′
n}.

• ∼ = E × E .

• pre(a′i ) = pre(ai ) for all i = 1, . . . , n.

• post(a′i ) = post(ai ) for all i = 1, . . . , n.

• Ed = E .
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Epistemic action example: Birthday present

We can now finally, using action models, give a satisfactory formal
representation of the TryPickUp action.

TryPickUp(agt, obj, from) =

e1 : 〈At(agt, from) ∧ At(obj, from) ∧ ¬Has(agt, obj),Has(agt, obj) ∧ ¬At(obj, from)〉

e2 : 〈At(agt, from) ∧ ¬At(obj, from),⊤〉

Note that there is no edge between e1 and e2: they are run time
distinguishable (using the same definition as for epistemic states).

At run time the father will observe whether the action is succesful (e1) or
not (e2).
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Product update

State-transition function of dynamic epistemic logic: product update

denoted by an infix ⊗ symbol. So γ(s, a)
def
= s ⊗ a.

Definition. Let a state s = (M,Wd) and an action a = (E ,Ed) be given
withM = (W , (∼i )i∈A, L) and E = (E , (∼i )i∈A, pre, post). Then the
product update of s with a is s ⊗ a = ((W ′, (∼′

i )i∈A, L
′),W ′

d) where

• W ′ = {(w , e) ∈W × E | (M,w) |= pre(e)}

• ∼′
i = {((w , e), (w

′, e ′)) ∈W ′ ×W ′ | w ∼i w
′ and e ∼i e

′}

• L′((w , e)) = (L(w)− {p | ¬p is a negative literal of post(e)) ∪
{p | p is a positive literal of post(e)}

• W ′
d = {(w , e) ∈W ′ | w ∈Wd and e ∈ Ed}.

(E ,Ed) is applicable in (M,Wd) if for all w ∈Wd there is e ∈ Ed such
that (M,w) |= pre(e).

if s ′ is the epistemic state induced by a belief state s, and a′ is the action
model induced by a conditional action a, then s ′ ⊗ a′ is the epistemic
state induced by γ(s, a).
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Product update example: Birthday present

At(F,PO1)
At(P,PO1)
At(F,PO1)
At(P,PO1)

At(F,PO1)
At(P,PO2)
At(F,PO1)
At(P,PO2)

Father

sFather1

〈At(F,PO1)∧
¬At(P,PO1),
⊤〉

〈At(F,PO1)∧
At(P,PO1)∧
¬Has(F,P),
Has(F,P)∧
¬At(P,PO1)〉

〈At(F,PO1)∧
At(P,PO1)∧
¬Has(F,P),
Has(F,P)∧
¬At(P,PO1)〉

〈At(F,PO1)∧
¬At(P,PO1),
⊤〉

TryPickUp(F,P,PO1)

=

At(F,PO1)
Has(F,P)
At(F,PO1)
Has(F,P)

At(F,PO1)
At(P,PO2)
At(F,PO1)
At(P,PO2)

At(F,PO1)
At(P,PO2)

⊗
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From belief states and conditional actions to
epistemic states and actions

Note how we got from belief states to epistemic states:

belief state epistemic state

set of propositional
valuations

multi-set of such valuations with an
indistinguishability relation for each
agent

We applied the same trick to actions:

conditional action propositional epistemic action

sets of pairs 〈pre, post〉
where pre is
propositional and post is
conjunction of literals

multi-set of pairs 〈pre, post〉 where pre
is epistemic and post as before—and
with an indistinguishability relation for
each agent
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Epistemic planning tasks

Definition
An epistemic planning task (or simply planning task) is
Π = (A, s0, φg ), where

• A (actions) is a finite set of epistemic actions.

• s0 (initial state) is an epistemic state.

• φg (goal formula) is a formula of epistemic logic.

Global planning task: A planning task (A, s0, φg ) where s0 is global.

Planning task for agent i (or i-local planning task): A planning task
(A, s0, φg ) where s0 and all a ∈ A are local for i .

Associated local planning task of agent i of a planning task

Π = (A, s0, φg ): a
i def
= ({ai | a ∈ A}, s i0, φg ).
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Induced classical planning tasks

Epistemic planning tasks (A, s0, φg ) induce classical planning tasks
((S ,A, γ), s0, Sg ) in a similar way to propositional planning tasks:

• γ(s, a) =

{

s ⊗ a if a is applicable in s

undefined otherwise

• S = {s0 ⊗ a1 ⊗ · · · ⊗ an | n ≥ 0, ai ∈ A}

• Sg = {s ∈ S | s |= φg}

A solution to an epistemic planning task (A, s0, φg ) is a solution to
the induced classical planning task, that is, a sequence of actions
a1; · · · ; an from A such that

• Each ai is applicable in s0 ⊗ a1 ⊗ · · · ⊗ ai−1.

• s0 ⊗ a1 ⊗ · · · ⊗ an |= φg .

[Bolander and Andersen, 2011]
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Planning task example: Birthday present

s1 = sFather0 ⊗ Go(F,H,PO1) = At(F,PO1),
At(P,PO1)

At(F,PO1),
At(P,PO2)

Father

s2 = s1 ⊗ TryPickUp(F,P,PO1) = At(F,PO1),
Has(F,P)

At(F,PO1),
At(P,PO2)

s3 = s2 ⊗ Go(F,PO1,PO2) = At(F,PO2),
Has(F,P)

At(F,PO2),
At(P,PO2)

s4 = s3 ⊗ TryPickUp(F,P,PO2) = At(F,PO2),
Has(F,P)

At(F,PO2),
Has(F,P)

s6 = s4 ⊗ Go(F,PO2,H)⊗Wrap(F,P) =
At(F,H),
Has(F,P)
Wrapped(P)

At(F,H),
Has(F,P)
Wrapped(P)
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Adding questions

More appropriate solution to the birthday present task: Instead of
TryPickUp, then Ask (possibly) followed by PickUp.

We can make a general action for agent i at location loc asking agent
j about whether φ:

Ask(i , j , φ, loc) =

yes : 〈At(i , loc) ∧ At(j , loc) ∧ Kjφ,⊤〉

no : 〈At(i , loc) ∧ At(j , loc) ∧ Kj¬φ,⊤〉

? : 〈At(i , loc) ∧ At(j , loc) ∧ ¬Kjφ ∧ ¬Kj¬φ,⊤〉

We can then e.g. add an agent Employee to our birthday present
planning task and add the proposition At(Employee,PostOffice1) to the
initial state of the task.
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Example with questions
Consider the new initial state of the birthday present task (from the
internal perspective of the father):

s0 =
At(F,H)
At(P,PO1)
At(E,PO1)

At(F,H)
At(P,PO2)
At(E,PO1)

Father

None of the actions Ask(F,E, ·, ·) are applicable (F and E not in same
location). But after going to PO1 the father can ask:

At(F,H)
At(P,PO1)
At(E,PO1)

At(F,H)
At(P,PO2)
At(E,PO1)

Father ⊗ Go(F,H,PO1)⊗ Ask(F,E1,At(P,PO1),PO1) =

At(F,PO1)
At(P,PO1)
At(E,PO1)

At(F,PO1)
At(P,PO2)
At(E,PO1)

Father ⊗ Ask(F,E1,At(P,PO1),PO1) =

At(F,PO1)
At(P,PO1)
At(E,PO1)

At(F,PO1)
At(P,PO2)
At(E,PO1)

What is the father to do next? We need conditional plans...
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Approaches to conditional epistemic planning

Epistemic plans as (knowledge-based) programs
[Andersen et al., 2012]:

Go(Father,H,PO1); TryPickUp(Father,Present,PO1);
if KFatherHas(Father,Present) then Go(Father,PO1,H);Wrap(Father,Present)
else Go(Father,PO1,PO2); . . .

Epistemic plans as PDL programs [van Eijck, 2014]: The program
if φ then π1 else π2 is shorthand for the PDL program
(φ?;π1) ∪ (¬φ?;π2)

Epistemic plans as policies/strategies/protocols: Mappings from
epistemic states to epistemic actions.

Here we consider only policies.
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i-local epistemic policies
We use Sgl to denote the set of global epistemic states. For any state
s = (M,Wd), we let Globals(s) = {(M,w) | w ∈Wd}.

Definition. Let Π = (A, s0, φg ) be a planning task and i ∈ A be an
agent. An i-local policy π for Π is a partial mapping π : Sgl →֒ A:

(knowledge of preconditions) If π(s) = a then a is applicable in s i .

(uniformity) If s i = t i then π(s) = π(t).

Definition. An execution of a policy π from a global state s0 is a
maximal (finite or infinite) sequence of alternating global states and
actions (s0, a1, s1, a2, s2, . . . ) such that for all m ≥ 0,

(1) π(sm) = am+1, and

(2) sm+1 ∈ Globals(sm ⊗ am+1).

An execution is called successful for a global planning task
Π = (A, s0, φg ) if it is a finite execution (s0, a1, s1, . . . , an, sn) such that
sn |= φg .
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i-local epistemic policies
Definition. A policy π for a planning task Π = (A, s0, φg ) is called a
solution to Π if Globals(s0) ⊆ dom(π) and for each s ∈ dom(π), any
execution of π from s is successful for Π.

Example (birthday present). The father can now branch on the
outcome of asking about the location of the parcel:

π(
At(F,PO1)
At(P,PO1)
At(E,PO1)

At(F,PO1)
At(P,PO2)
At(E,PO1)

) = PickUp(F,P,PO1)

π(

At(F,PO1)
At(P,PO1)
At(E,PO1)

At(F,PO1)
At(P,PO2)
At(E,PO1)

) = Go(Father,PO1,PO2).

We could also add an action CallAsk(i , j , φ) where agent i calls agent j
to ask whether φ: As Ask but without At-atoms in the precondition.
Then the father’s first action could be a phone call, and he would branch
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More complicated actions: (semi-)private actions
A phone call is normally only observable to the agents involved in the
call. Improved version of CallAsk (A is set of agents):

CallAsk(i , j , φ) =
〈Kjφ,⊤〉 〈Kj¬φ,⊤〉 〈¬Kjφ ∧ ¬Kj¬φ,⊤〉

〈⊤,⊤〉

A − {i , j}
A − {i , j} A − {i , j}

Note that the accessibility relation is no longer an equivalence relation!

We could also include that all agents at the location of the caller get to
hear the question, but not the answer. Then CallAsk(i , j , φ, loc) =

〈Kjφ,⊤〉 〈Kj¬φ,⊤〉 〈¬Kjφ ∧ ¬Kj¬φ,⊤〉

〈⊤,⊤〉

A− {j} − {k :At(k , loc)}k∈A

· · ·

A − {j} − {k :At(k , loc)}k∈A

{k :At(k , loc)}k∈A {k :At(k , loc)}k∈A

Edge-conditioned event models: [Bolander, 2014]. Relates to
[Kooi and Renne, 2011]. Thomas Bolander, Epistemic Planning, M4M, 8–9 Jan 2017 – p. 49/67



Achieving the epistemic goal in the birthday example

Suppose wrapping a present is observed exactly by those in the same
location (those who are copresent with the acting agent):

Wrap(agt, obj, loc) =

〈At(agt, loc) ∧ Has(agt, obj) ∧ ¬Wrapped(obj),Wrapped(obj)〉 〈⊤,⊤〉

{i : ¬At(i , loc)}i∈A

For the planning problem with initial state

s0 = At(Father,Home),At(Present,PostOffice1),At(Daughter,Home)

and goal formula

φg = At(Father,Home) ∧ Has(Father,Present) ∧
Wrapped(Present) ∧ ¬KDaughterHas(Father,Present).

it is then easy to show that:

Not solution: Go(F,H,PO1); PickUp(F,P,PO1); Go(F,PO1,H);Wrap(F,P,H)

Solution: Go(F,H,PO1); PickUp(F,P,PO1);Wrap(F,P,H); Go(F,PO1,H)
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Different types of epistemic planning: Centralised
Centralised planning: One omniscient agent planning for everyone.

01

s0 =

C

B

A

C

A

B0A

B

C

B

A

C
1 1

A

C

B

B

C

A

0 01

Centralised planning means global planning task.
Example. Π = (A, s0, φg ) with global s0 as above and goal formula
φg = On(A,B) ∧ On(B ,C ) ∧ On(C ,Table).

Solution. π = Put(Blue,Table); Put(Green,Blue); Put(Orange,Green)
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Different types of epistemic planning: i-local
i-local planning: One agent, i , planning from its local perspective in the
system. What we’ve considered so far.

01

s00 =

C

B

A

C

A

B
0A

B

C

B

A

C
1 1

A

C

B

B

C

A

0 01

i-local planning means local planning tasks for agent i .
Example. The 0-local planning task Π0 = (A, s00 , φg ), where A, s0 and
φg are as on the previous slide.

π is no longer a solution. In γ(s00 , π), both
A

B

C

and
B

A

C

will be designated.
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i-local planning cont’d

01

s00 =

C

B

A

C

A

B
0A

B

C

B

A

C
1 1

A

C

B

B

C

A

0 01

As in the birthday present example we can introduce an action Ask(i , j , φ)
for agent i asking agent j whether φ (and getting a sincere reply).

Then a solution to the 0-local planning task (A, s00 , φg ) is:

π0 = Put(Blue,Table); Ask(0, 1, Label(Green,A)); if K0Label(Green,A)
then Put(Green,Table); Put(Orange,Blue); Put(Green,Orange)
else Put(Green,Blue); Put(Orange,Green)
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i-local planning cont’d

01

s00 =

C

B

A

C

A

B0, 2A

B

C

B

A

C
1, 2 1, 2

A

C

B

B

C

A

0, 2 0, 21, 2

2

π0 is no longer a solution if Ask(0, 1, Label(Green,A)) is
replaced by Ask(0, 2, Label(Green,A)).

Agent 0 has a Theory of Mind (ToM)
[Premack and Woodruff, 1978] of agents 1 and 2 allowing
him to infer who to ask. Epistemic planning is planning
with ToM capabilities.
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i-local planning cont’d: one agent planning for many

i-local planning can also be one agent planning for many.

We can define an owner function ω : A→ A mapping actions to
agents. ω(a) = i means that the action a is owned by agent i : only
agent i can execute it.

We could e.g. have
ω(Put(Blue, ·)) = 0
ω(Put(Green, ·)) = 1
ω(Put(Orange, ·)) = 2.

A 0-local plan would then be computed by agent 0, from agent 0’s
perspective, and agent 0 would distribute the actions of the plan to the
respective owners (agent 0 is the leader).
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Diff. types of epist. planning: implicit coordination
Planning with implicit coordination: All agents plan for all agents,
and plan for how and when to interact. They have a joint goal.

01

s00 =

C

B

A

C

A

B0, 2A

B

C

B

A

C
1, 2 1, 2

A

C

B

B

C

A

0, 2 0, 21, 2

2

Implicitly coordinated plans and policies will be treated
in the contributed talk...
Simple example. The mother tells the father at
which post office the parcel is and leaves it to him to
pick it up.
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Observability

Like in the automated planning literature (e.g. [Rintanen, 2006]), we can
distinguish between scenarios that are fully observable, unobservable
or partially observable. In the single-agent case of epistemic planning:

• Unobservable states/actions/planning tasks: All pairs of nodes are
connected by an indistinguishability edge. For instance a coin toss
under a dice cup (h for landing heads):

hidden coin toss :
〈⊤, h〉 〈⊤,¬h〉

• Fully observable states/actions/planning tasks: No
indistinguishability edges between distinct nodes. For instance lifting
the cup to observe the outcome of the coin toss:

lift cup :
〈h,⊤〉 〈¬h,⊤〉

• Partially observable: Anything else.
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Plan existence problem in epistemic planning

The plan existence problem in epistemic planning is the following
decision problem: “Given an epistemic planning task (A, s0, φg ), does it
have a solution?”

Theorem ([Jensen, 2013])

Complexities of the plan existence problem in single-agent epistemic
planning:

• Arbitrary planning tasks (part. observability): 2EXPTIME-complete.

• Fully observable planning tasks: EXPTIME-complete.

• Unobservable planning tasks: EXPSPACE-complete.

These results match, as could be expected, the results from
nondeterministic propositional planning (Rintanen, 2006).

Theorem ([Bolander and Andersen, 2011])

The plan existence problem in multi-agent epistemic planning with at
least 3 agents is undecidable (on S5 frames).
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Generalised results on (un)decidability of plan
existence in epistemic planning

L transitive Euclidean reflexive
K
KT X

K4 X

K45 X X ← belief
S4 X X

S5 X X X ← knowledge

Theorem
([Aucher and Bolander, 2013])

The figure to the right
summarises results on decidability
(D) and undecidability (UD) of
the plan existence problem in
purely epistemic planning (all
postconditions are ⊤).

1 agent ≥ 2 agents
K UD UD
KT UD UD
K4 UD UD
K45 D UD
S4 UD UD
S5 D UD
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Infinite state spaces in epistemic planning

The following example is based on the coordinated attack problem
(Byzantine generals problem). Define

s0 =
m, p m0, 1

m means “the messenger is alive”. Let A contain the two actions send01
and send10 given by:

send01 =
〈m ∧ p,⊤〉 〈⊤,¬m〉0

send10 =
〈m ∧ p,⊤〉 〈⊤,¬m〉1

sendij represents agent i sending the message p to agent j via the
messenger. Either the message arrives at its destination (the left event)
or the messenger gets killed on the way (the right event).

Let φg = Cp. Then Π = (A, s0, φg ) is a global planning task (centralised
planning).
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Infinite state spaces cont’d
Recall:

s0 =
m, p m0, 1

send01 =
〈m ∧ p,⊤〉 〈⊤,¬m〉0

send10 =
〈m ∧ p,⊤〉 〈⊤,¬m〉1

It is easy to show that
s0 ⊗ send01 ⊗ send10 ⊗ · · · ⊗ send01 ⊗ send10 ⊗ send01 is the following
model:

m, p p p p1 0 1 p p1 p0

0 0, 1

Each new application of send01 or send10 extends the depth of the model
by 1, and it is not bisimilar to any smaller model. Π has no solution.
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Fragments of epistemic planning

The undecidability result shows that allowing arbitrary levels of
higher-order reasoning leads to undecidability of planning. We
should look for decidable fragments.

Theorem ([Yu et al., 2013])

The plan existence problem for (multi-agent) epistemic planning with
only propositional preconditions and no common knowledge is decidable
(in NON-ELEMENTARY). More precisely, in (n + 1)-EXPTIME for
planning tasks in which the goal formula has modal depth n.

Other decidable fragments are found in
[Löwe et al., 2011, Bolander and Andersen, 2011, Yu et al., 2013,
Maubert, 2014, Bolander et al., 2015].

E.g. planning where the frames of the action models are chains is
NP-complete. This covers, among others, private and public
announcements, and hence e.g. the actions in the games Cluedo (Clue)
and Hanabi. [Bolander et al., 2015].
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Alternative approaches to epistemic planning

We can distinguish between:

• Semantic approaches (states are semantic objects) and Syntactic
approaches (states are knowledge-bases).

• Action model based approaches and state-transition system
based approaches.

Epistemic planning based on DEL is semantic and action model based.

• Syntactic approaches to epistemic planning:
• The (single-agent) PKS planner [Petrick and Bacchus, 2004].
• The (multi-agent) planning framework of [Muise et al., 2015].
• The compilation approach of [Kominis and Geffner, 2014].

• State-transition system based approaches in logics of strategic
ability:

• ATEL [van der Hoek and Wooldridge, 2002]. Cannot express de re
knowledge of a strategy.

• Constructive Strategic Logic (CSL) [Jamroga and Aagotnes, 2007].
Cannot express implicit coordination.

Thomas Bolander, Epistemic Planning, M4M, 8–9 Jan 2017 – p. 63/67



Implemented epistemic planners

• The PKS planner [Petrick and Bacchus, 2004].

• The multi-agent planner of [Muise et al., 2015].

• Epistemic planning based on DEL:
https://gkigit.informatik.uni-freiburg.de/tengesser/planner
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Extensions of epistemic planning

There are 4 main ingredients in planning: states, actions, plans and
goals. We have shown how to generalise the states and actions of
classical propositional planning, but not talked about generalised plans
and goals:

• Generalised plans in DEL-planning: Weak and strong
conditional plans [Andersen et al., 2012]; Plausibility plans
[Andersen et al., 2015]. Implicitly coordinated plans/policies
[Engesser et al., 2017].

• Generalised goals in DEL-planning (extended goals): 1) Via
constructive model checking of CTL formulas on induced classical
planning tasks; 2) using DEL∗; 3) Using temporal epistemic logics
(e.g. ATEL [van der Hoek and Wooldridge, 2002] and CSL
[Jamroga and Aagotnes, 2007]).
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Summary

• I have presented a framework for epistemic planning based on DEL.

• It very naturally generalises classical propositional planning and
planning under partial observability with conditional actions.

• Epistemic planning is undecidable when no bound can be put on the
depth of reasoning required to reach a goal.

• Lots of interesting future work is left, e.g. finding fragments of
reasonable complexity and devising suitable domain description
languages.
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Application example: robotic bartender

A robotic bartender planning using the PKS planner. Reported in
[Petrick and Foster, 2013] (best paper award at ICAPS 2013).
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Two-counter machines

The undecidability proof is by a reduction of the halting problem for
two-counter machines:

Configurations: k l m , where k , l ,m ∈ N.

IR0R1

register 0register 1Instruction set: inc(0), inc(1), jump(j), jzdec(0, j), jzdec(1, j), halt.

Computation step example:

k l m k+1 l+1 m
inc(0)

IR0R1 IR0R1

The halting problem for two-counter machines is undecidable
[Minsky, 1967].
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Proof idea for undecidability of epistemic planning

Our proof idea is this. For each two-register machine, construct a
corresponding planning task where:

• The initial state encodes the initial configuration of the machine.

• The epistemic actions encode the instructions of the machine.

• The goal formula is true of all epistemic states representing halting
configurations of the machine.

Then show that the two-register machine halts iff the corresponding
planning task has a solution. (Execution paths of the planning task
encodes computations of the machine).
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Encodings

Encoding configurations as epistemic states:

k l m y

p1

p1

p1

p1

p1

k + 1
states

p2

p2

p2

p2

p2

l + 1
states

p3

p3

p3

p3

p3

m + 1
states

Encoding instructions as epistemic actions (note: only
preconditions!):

inc(0) y

¬(p1 ∨ p2 ∨ p3)

p1 ∧ ♦⊤

p1 ∧ ♦�⊥

p1 ∧�⊥

p2 ∧ ♦⊤

p2 ∧ ♦�⊥

p2 ∧�⊥

p3
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The computation step k l m k + 1 l + 1 m
inc(0)

is
mimicked by:

encoding( k l m )⊗ encoding(inc(0)) =

p1

p1

p1

p1

k
+
1

p2

p2

p2

p2

l
+
1

p3

p3

p3

p3

m
+
1
⊗

¬(p1 ∨ p2 ∨ p3)

p1∧♦⊤

p1∧♦�⊥

p1∧�⊥

p2∧♦⊤

p2∧♦�⊥

p2∧�⊥

p3 =

p1

p1

p1

p1

p1

k
+
1

p2

p2

p2

l
+
1

p2

p2

p3

p3

p3

p3

m
+
1

= encoding( k + 1 l + 1 m )
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Epistemic planning task example

Initial state s0:
¬b

Goal φg : K0b
︸︷︷︸

I know b

∧ ¬K1b
︸ ︷︷ ︸

You don’t know b

Epistemic actions:

• noop:
〈⊤, ∅〉

• turn coin:
〈⊤, {b := ¬b}〉

• lift cup:
〈¬b, ∅〉 〈b, ∅〉

(a public sensing action)

• hidden toss:
〈⊤, {b := ⊥}〉 〈⊤, {b := ⊤}〉

0, 1

• peek:
〈¬b, ∅〉 〈b, ∅〉

1
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Epistemic planning task example (cont’d)

¬b

s0

⊗
〈⊤, {b := ⊥}〉 〈⊤, {b := ⊤}〉

hidden toss

0, 1 =
¬b b0, 1

s1

¬b b0, 1

s1

⊗
〈¬b, ∅〉 〈b, ∅〉

1

peek

=
¬b b1

s2

¬b b1

s2

⊗

〈K0¬b, {b := ¬b}〉 〈K0¬b, ∅〉

〈¬K0¬b, {b := ¬b}〉 〈¬K0¬b, ∅〉

1 1

if K0¬b then turn else noop

=

b ¬b

¬b b

1 1

s3

-

b

¬b

1

Goal achieved in s3! Plan:

hidden toss; peek; if K0¬b then turn else noop.
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