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Automated planning

Automated planning (or, simply, planning):

• Given is a planning task: initial state + goal formula + finite set
of actions.

• Aim is to compute a solution: sequence of actions that leads from
the initial state to a state satisfying the goal formula.

Example.
Goal: On(A,B) ∧ On(B,C).

C

B

A

initial state

B

C A

C A B

B

C A

A

B

C

goal

· · ·

Put(c,table)

Put(b,table)

Put(b,c) Put(a,b)

Put(b,c)

· · ·

In automated planning, such a graph is called a state space (induced by
a planning task).
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From classical to epistemic planning

In many scenarios, classical (deterministic, fully observable, single-agent,

static) planning is not enough. Restack
C
B
A

as
A
B
C

:

0 0 01
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Epistemic planning

We will here use epistemic planning to refer to planning based on
Dynamic Epistemic Logic (DEL).

Essentially our framework of epistemic planning is obtained by replacing
the propositional logic underlying classical planning by Dynamic
Epistemic Logic (DEL).

Classical DEL-based
States models of prop. logic models of MA epist. logic
Goal formula formula of prop. logic formula of MA epist. logic
Actions induced by action schemas action models of DEL

Epistemic planning is a framework for multi-agent planning that allows
(arbitrary levels of) higher-order reasoning. Higher-order reasoning
here means reasoning about the beliefs of yourself and other agents (and
nesting of such).
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DEL by example: A private announcement

w1 :p
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w1 :p
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epistemic model

e1 :p

a

e1 :p

a

e2 :>

a, b

e2 :>

a, b

b

precond.
event

action model

=
w1e1 :p

a

w1e1 :p

a w1e2 :p

a, b

w1e2 :pw1e2 :p

w2e2

a, b

w2e2

b

b a, b

epistemic model

⊗

product update

• Action models: Only propositional preconditions and no
postconditions. Means: Purely epistemic planning, no change of
ontic facts.

• Action model above: Private announcement of p to agent a.
• Actual world/event: Colored black.
• Product update: As in [Baltag et al., 1998].
• In resulting model: Agent a knows p (�ap holds), but agent b
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Planning interpretation of DEL

w1 :p

a, b

w2

a, b
a, b

(epistemic) state

e1 :p

a

e2 :>

a, b

b

(epistemic) action

=
w1e1 :p

a w1e2 :p

a, b

w2e2

a, b

b

b a, b

resulting state

⊗

state transition function

• Epistemic states: Pointed, finite epistemic models.

• Epistemic actions: Pointed, finite action models.

• Result of applying an action in a state: Product update of state
with action.
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Formal definition of action models and epistemic
actions

Definition (Action models and epistemic actions)

An action model is A = (E ,Q, pre) where:

• E is a finite set of events.

• Q : Ag → 2E×E assigns an epistemic
(accessibility) relation to each agent.

• pre : E → LProp assigns a precondition of
the propositional language to each event.

e1 :p

a

e2 :>

a, b

b

precond.
event

(epistemic) action

We write Qa for Q(a). For e ∈ E , the pair (A, e) is called an epistemic
action whose actual event is e.

Note: Only propositional preconditions and no postconditions.

Applicability: An epistemic action α = (A, e) is said to be applicable in
an epistemic state s is s |= pre(e).
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Planning tasks and plan existence problem

Definition (Planning tasks)

A planning task is T = (s0,L, ϕg ), where

• s0 is the initial state: a finite epistemic state.

• L is the action library: a finite set of epistemic actions.

• ϕg is the goal formula: a formula of epistemic logic.

Definition (Plans)

A plan (or solution) for a planning task T = (s0,L, ϕg ) is a sequence of
epistemic actions α1, . . . , αn ∈ L such that s0 |= 〈α1〉 · · · 〈αn〉ϕg

(where, by definition, s |= 〈α〉ϕ iff α is applicable in s and s ⊗ α |= ϕ).

Definition (Plan existence problem)

Let X denote a class of planning tasks. The plan existence problem for
X is the following decision problem “Given an epistemic planning task
T ∈ X , does it have a solution?”
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Example

Consider the planning task {s0, {α1, α2, α3}, ϕg} with

ϕg = �ap ∧�bp ∧ ¬�a�bp ∧ ¬�b�ap

s0 =
w1 :p

a, b

w2

a, b
a, b

α1 =
e1 :p

a

e2 :>

a, b

b α1 =
e1 :p

b

e2 :>

a, b

a α3 =
e1 :p

a, b

α1: privately announcing p to a; α2: privately announcing p to b; α3:
publicly announcing p to both agents.

A solution (plan) is α1, α2, since s0 |= 〈α1〉〈α2〉ϕg . Another solution is
α2, α1. Also α1, α2, α1 and α1, α1, α2 are solutions, etc.
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Summary of complexity results for plan existence

Types of epistemic actions

Underlying
graphs of
actions

Non-factual,
propositional
preconditions

Factual,
propositional
preconditions

Factual,
epistemic

preconditions

Singletons
NP-complete

PSPACE-hard
[Jensen, 2014]

PSPACE-hard
[Jensen, 2014]

Chains
NP-complete

?
(open question)

?
(open question)

Trees
PSPACE-complete

?
(open question)

?
(open question)

Graphs
in EXPSPACE

in NON-
ELEMENTARY
[Yu et al., 2013]

Undecidable
[Bolander and

Andersen, 2011]

The green results will be covered in this talk. From Bolander, Jensen,
Schwarzentruber: Complexity Results in Epistemic Planning (under
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Why study very expressively restricted fragments?

Motivation for studying complexity of very restrictive fragments of
epistemic planning:

• Where does the complexity come from?

• Constructing search heuristics for planning engines (relaxed
problems).

• Subclasses of more general fragments might be translatable into
simpler fragments.
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Definition (n-ary product)

Let α = (A, e) be an epistemic action where A = (E ,Q, pre). We denote
by An = (En,Qn, pren) the n-ary product of A.

1. En = {(e1, . . . , en) | ei ∈ E for all i = 1, . . . , n},
2. Qn

a = {((e1, . . . , en), (f1, . . . , fn)) | eiQafi for all i = 1, . . . , n}
3. pren((e1, . . . , en)) =

∧
i=1,...,n pre(ei ).

The n-ary product of α is defined as αn = (An, en), where en denotes
(e, e, . . . , e)︸ ︷︷ ︸

n

.


e1 :p

a

e2 :>

a, b

b


2

=
(e1, e1) :
p ∧ p

a

(e2, e2) :
> ∧>

a, b

b

(e2, e1) :
> ∧ p

a

b

(e1, e2) :
p ∧ >

a
b

Lemma
For any epistemic action α and any ϕ ∈ LE we have that 〈α〉nϕ ≡ 〈αn〉ϕ
(that is, 〈α〉〈α〉 · · · 〈α〉︸ ︷︷ ︸

n

ϕ is modally equivalent to 〈αn〉ϕ).
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Bisimilarity on epistemic actions

Definition (Bisimilarity)

Two epistemic actions α = ((E ,Q, pre), e) and α′ = ((E ′,Q ′, pre ′), e ′)
are called bisimilar, written α↔ α′, if there exists a (bisimulation)
relation Z ⊆ E × E ′ containing (e, e ′) and satisfying for every a ∈ Ag :

[atom] If (f , f ′) ∈ Z then pre(f ) ≡ pre ′(f ′).

[forth] If (f , f ′) ∈ Z and fQag then ∃g ′ ∈ E ′: f ′Q ′ag
′ and

(g , g ′) ∈ Z .

[back] Other direction.

e1 :p

a

e2 :>

a, b

b ↔
(e1, e1) :
p ∧ p

a

(e2, e2) :
> ∧>

a, b

b

(e2, e1) :
> ∧ p

a

b

(e1, e2) :
p ∧ >

a
b

Z Z
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n-bisimilarity on epistemic actions

Definition (n-bisimilarity)

Let α = ((E ,Q, pre), e) and α′ = ((E ′,Q ′, pre ′), e ′) be epistemic actions.
They are 0-bisimilar, written α↔0 α

′, if pre(e) ≡ pre ′(e ′). For n > 0,
they are n-bisimilar, written α↔n α

′, if for every a ∈ Ag :

[atom] pre(e) ≡ pre ′(e ′).

[forth] If eQaf then ∃f ′ ∈ E ′ : e ′Q ′af
′ and (A, f )↔n−1(A′, f ′).

[back] Other direction.

Equivalently: α↔n α
′ if for any path of length m ≤ n in α:

e
a1 a2

f

am

there exists a path in α′:

e ′
a1 a2

f ′
am

with pre(f ) ≡ pre ′(f ′); and vice versa.
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Stabilisation

md(ϕ) denotes modal depth of ϕ.

Lemma ([Sadzik, 2006], slightly reformulated)

Let α, α′ be two epistemic actions and ϕ any formula.

1. If α↔ α′, then 〈α〉ϕ ≡ 〈α′〉ϕ.

2. If md(ϕ) ≤ n and α↔n α
′, then 〈α〉ϕ ≡ 〈α′〉ϕ.

Definition (Stabilisation)

Let α be an epistemic action.

1. α is stabilising at stage i if αi ↔ αi+k for all k ≥ 0.

2. α is n-stabilising at stage i if αi ↔n α
i+k for all k ≥ 0.

Lemma
If two epistemic actions are n-bisimilar for all n, then they are bisimilar.
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Example

Recall α↔ α2 where α is private announcement of p to agent a:

e1 :p

a

e2 :>

a, b

b ↔
(e1, e1) :
p ∧ p

a

(e2, e2) :
> ∧>

a, b

b

(e2, e1) :
> ∧ p

a

b

(e1, e2) :
p ∧ >

a
b

Z Z

Hence private announcements are stabilising at stage 1. Clearly, so are
public announcements.

Epistemic actions (our type) commute: 〈α1〉〈α2〉ϕ ≡ 〈α2〉〈α1〉ϕ
[Löwe et al., 2011].

Consequence: If the action library of a planning task only consists of
public and private announcements, then we never have to repeat any
action more than once.
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Stabilisation and plan-existence problem

Lemma
Let T = (s0, {α1, . . . , αm}, ϕg ) be a planning task and B ∈ N. Suppose
one of the following holds:

1. Every αi is stabilising at stage B, or

2. md(ϕg ) = n and every αi is n-stabilising at stage B.

Then T is solvable iff there exists k1, . . . , km ≤ B s.t.
s0 |= 〈α1〉k1 · · · 〈αm〉kmϕg .

Non-deterministic algorithm for deciding the plan-existence problem
when B satisfes 1 or 2 above:

procedure PlanExists((s0, {α1, . . . , αm}, ϕg ),B)
a) Guess a vector (k1, . . . , km) ∈ {0, . . . ,B}m.
b) Accept when s0 |= 〈α1〉k1 · · · 〈αm〉kmϕg .
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Sadzik’s lemma

Lemma ([Sadzik, 2006])

Let α = ((E ,Q, pre), e) be an epistemic action and n a natural number.
Then α is n-stabilising at stage |E |n.

We will now improve the upper bound on stabilisation...
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Stabilisation Lemma
Given event e in action α and n ∈ N, define:

mpathsn(e) = the number of distinct maximal paths of length ≤n
rooted at e (ignoring agent labels).

Lemma (Stabilisation Lemma)

Let α = (A, e0) be an epistemic action and n any natural number. Then
α is n-stabilising at stage mpathsn(e0).

Proof sketch.
Let k = mpathsn(e0). We then show:

(Ak+1, (e0, . . . , e0)︸ ︷︷ ︸
k+1

)↔n(Ak , (e0, . . . , e0)︸ ︷︷ ︸
k

).

e0,( e0, e0, . . . , e0 )

(e1, e2, e3, ek+1. . . , )

k + 1

e0,( e0, e0, . . . , e0 )

(e ′1, e
′
2, e

′
3, e ′k
. . . , )

k
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Classes of planning tasks

We define the following classes of planning tasks:

• Singletons: Every action in the action library is a singleton (i.e.
public announcement).

• Chains: The underlying graph of every action is a unary tree (a
chain). Leafs can be reflexive.

• Trees: The underlying graph of every action is a tree. Leafs may
be reflexive.

• Graphs: Arbitrary actions.

Singletons Chains Trees Graphs

Note that

Singletons ⊆ Chains ⊆ Trees ⊆ Graphs

and that Graphs contain all planning tasks where actions have
propositional preconditions (and no postconditions).
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Plan existence problem for Singletons and Chains

Theorem
The plan existence problem for both Singletons and Chains is
NP-complete.

Proof sketch of NP-hardness for Singletons .
Polynomial-time reduction from SAT. Given propositional formula
ϕ(p1, . . . , pn), we construct planning task
T = (s0, {α1, . . . , αm}, ϕ(♦ap1, . . . ,♦apm)).

r :

s0
w1 : p1 w2 : p2 w3 : p3 wm : pn

· · ·
a a a a

ei : ¬pi
αi

a

We can represent any propositional valuation ν by an epistemic state s
satisfying: For all pi , ν |= pi iff s |= ♦pi .
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Recall the plan-existence procedure that decides plan existence when all
actions are stabilising at stage ≤ B (by previous lemma):

procedure PlanExists((s0, {α1, . . . , αm}, ϕg ),B)
a) Guess a vector (k1, . . . , km) ∈ {0, . . . ,B}m.
b) Accept when s0 |= 〈α1〉k1 · · · 〈αm〉kmϕg .

Proof sketch of NP-membership of Chains .

Let T = (s0, {α1, . . . , αm}, ϕg ) denote a planning task in Chains.

1. αi has at most one maximal path of length ≤ n for all n.

2. By Stabilisation Lemma, αi is n-stabilising at stage 1 for any n.

3. αi is stabilising at stage 1 (↔n for all n implies ↔).

4. The procedure PlanExists(T , 1) is accepting iff T is solvable.

5. PlanExists(T , 1) runs in non-deterministic polynomial time
(non-increasing states).
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Plan existence problem for Trees

Theorem
The plan existence problem for Trees is PSPACE-complete.

PSPACE-hardness is by a polynomial-time reduction from QSAT
(satisfiability of quantified boolean formulas).

Proof sketch of PSPACE-membership of Trees .

Same overall proof strategy as for Chains. Let
T = (s0, {α1, . . . , αm}, ϕg ) denote a planning task in Trees.

1. Let l(αi ) denote number of leaves in (underlying graph of) of αi .
Then mpathsn(e) ≤ l(αi ) for any n.

2. By Stabilisation Lemma, αi is n-stabilising at stage l(αi ) for any n.

3. αi is stabilising at stage l(αi ) (↔n for all n implies ↔).

4. The procedure PlanExists(T ,maxi l(αi )) is accepting iff T is
solvable.

5. PlanExists(T ,maxi l(αi )) uses polynomial space in the size of s0
and 〈α1〉k1 · · · 〈αm〉kmϕg where ki ≤ maxi l(αi )
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Corollary on plan verification/model checking

Plan verification problem: Given a finite epistemic state s0 and a
formula of the form 〈α1〉 · · · 〈αj〉ϕg , does s0 |= 〈α1〉 · · · 〈αj〉ϕg hold.

Theorem
The plan verification problem (restricted to propositional action models
that are trees) is PSPACE-complete.

This is a generalisation of a result in van de Pol, van Rooij and
Szymanik: How difficult is it to Think that you Think that I think
that...? (under submission).

We generalise by: only single-pointed models, no postconditions, only
propositional preconditions, only tree structured action models.
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Plan existence problem for Graphs

Theorem
The plan existence problem for Graphs is in EXPSPACE.

Proof sketch of EXPSPACE-membership of Graphs .

Same overall proof strategy as for Chains and Trees. Let
T = (s0, {α1, . . . , αm}, ϕg ) denote a planning task in Graphs where
αi = (Ei ,Qi , prei ), ei ) and let k = md(ϕg ).

1. By Sadzik’s Lemma, αi is k-stabilising at stage |Ei |k .

2. The procedure PlanExists(T ,maxi |Ei |k) is accepting iff T is
solvable. This procedure runs in NEXPSPACE = EXPSPACE.
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Summary

Types of epistemic actions

Underlying
graphs of
actions

Non-factual,
propositional
preconditions

Factual,
propositional
preconditions

Factual,
epistemic

preconditions

Singletons
NP-complete

PSPACE-hard
[Jensen, 2014]

PSPACE-hard
[Jensen, 2014]

Chains
NP-complete

?
(open question)

?
(open question)

Trees
PSPACE-complete

?
(open question)

?
(open question)

Graphs
in EXPSPACE

in NON-
ELEMENTARY
[Yu et al., 2013]

Undecidable
[Bolander and

Andersen, 2011]
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